

Link Quality Estimation of Cross-Technology Communication

Jia Zhang¹, Xiuzhen Guo¹, Haotian Jiang¹,

Xiaolong Zheng², Yuan He¹

Cross-Technology Communication

Development of CTC

- Early work: Packet level CTC
- The state of the arts: Physical level CTC

Development of CTC

• The state of the arts: Physical level CTC

Sender-Based

WEBee [Mobicom'17] PMC [ICNP'17] LTE2B [Sensys'19] Passive-ZigBee [Sensys'18]

WIDE [IPSN'19] BlueBee [Sensys'17] **Receiver-Based**

XBee [Mobicom'18] LEGO-Fi [Infocom'19] XFi [ICNP'20] Both-Based

LongBee [Infocom'18] TwinBee [Infocom'18]

Chiron [Mobisys'15] PIC [Sensys'19] Symphony [ICNP'19]

Link quality estimation of CTC

- The quality of CTC link concern:
 - Link selection, transmission strategy and routing structure.
- A cornerstone of hybrid networking:
 - Allocation of link resource
 - Network QoS
 - Network structure optimization
- Link quality estimation is a building block!

Metrics of link quality estimation

- Raw physical-level indicator
 RSSI, SNR...
- Metrics derived from physical-level measurement
 LQI, CSI...
- Packet-level indicators
 - PRR, ETX...

Mismatch of metrics and the CTC link

CTC link is jointly affected by two factors:
The emulation error and the channel distortion

Mismatch of metrics and the CTC link

- CTC link is jointly affected by two factors:
 The emulation error and the channel distortion
- Raw physical-level indicator & Metrics derived from physical-level measurement
 - Both of them can not characterize the process of CTC
- Packet-level indicators
 - Overlook the differences at the lower layers of the protocol stack

Design goals of the new metric

- Can fully characterize CTC link characteristics
 - Consider both the emulation error and the channel distortion
- Easy to measure
- Easy to use on commercial devices

Understanding the CTC link

• The CTC link

Two factors

Channel distortion is uncertain and affects the link
 performance

The emulated signal waveform

• Emulation error is certain and affects the link performance

The chip error and the SER of each symbol

Link model

• Decoding error

The appearance of decoding error

Link model

- Variation of phase shifts
 - Phase changes on the sampling points: a random variation within the range of [-x, x]
 - Emulation phase shifts can be obtained in advance

The phase shift change model

C-LQI

 C-LQI is defined as the expected probability for a symbol to be correctly decoded by the receiver of a CTC link

 $C - LQI = \frac{the \ same \ symbols \ correcty \ decoded}{all \ the \ same \ symbols}$

Calculation of C-LQI

The protocol design

 $C - LQI = \frac{the \ same \ symbols \ correcty \ decoded}{all \ the \ same \ symbols}$

- How to design the probe frames
 - Choosing the two highest decoding probability symbols
- How to calculate the channel parameter
 - Utilizing a mapping table between the parameter and the decoding probability
- > How to estimate the link quality
 - Calculating packet reception rate using C LQI or making a judgment

Evaluation(selection)

- WEBee-based implementation
 - Tx : 802.11a/g, 2440 MHz
 - Rx : 802.15.4, channel 19
- Performance metric: Relative errors
- Compare with s-PRR(the previous PRR in a short period) and EWMA(Exponentially Weighted Moving-Average)
 - Probe num : 100
 - The previous weight of EWMA : 0.2

• Chip error probability

Different channels or different symbols have different chip error probabilities

Overall performance comparison

C-LQI is more accurate than others as it has more decoding information

• Frame number & Payload length

Appropriate parameters make C-LQI perform better

• Distance & Tx Power

Higher received signal strength makes C-LQI perform better

Tx Period & Environment

Appropriate parameters make C-LQI perform better

Conclusion & future work

- We propose C-LQI, the first metric of the CTC link quality, which takes both the emulation error and the channel distortion into account.
- Future work
 - Hybrid network building
 - Scheduling
 - Concurrent transmission
 - Link allocation
 - ...

Shared resources

• Our resource sharing URL :

http://tns.thss.tsinghua.edu.cn/sun

Thanks

j-zhang19@mails.tsinghua.edu.cn

http://tns.thss.tsinghua.edu.cn/sun