FoVR: Attention-based VR Streaming through Bandwidthlimited Wireless Networks

Songzhou Yang^{*} , Yuan He[†] , Xiaolong Zheng[‡]

*⁺School of Software and BNRist, Tsinghua University

^{*}School of Computer Science, Beijing University of Posts and Telecommunications

Virtual Reality (VR)

The number of Virtual Reality devices will reach 39.9 millions by 2020 according to Bloomberg

VR 360 Videos

Huawei report that VR 360 Videos are in a dominant position with a 99.37% proportion in VR content types

However, ...

Video will stall when the bandwidth cannot meet requirements

Video quality suffers as well

Original Quality

After ABS

Adaptive streaming can avoid stalling but damage the quality

Large Video Volume

- Satisfying retina display on VR devices with 95° FoV
 - 5073×5707 resolution per eye
 - $a = 2 \tan^{-1} \left(\frac{h}{2d} \right)$

Large Video Volume

- Satisfying retina display on VR devices with 95° FoV
 - 5073×5707 resolution per eye
 - $a = 2 \tan^{-1} \left(\frac{h}{2d}\right)$

- Bandwidth requirements under such resolution
 - 840 Mbps w/ 2D 60FPS
 - 4.2 Gbps w/ 3D 120FPS
- 802.11ac: 1.3 Gbps in theory, 400 Mbps in practice

• Furion (MobiCom 2017):

• Furion (MobiCom 2017):

- Cloud offloading
 - Can reduce computing loads on the VR sides
 - But cannot relieve the loads of network communication

• MOVR (NSDI 2017):

• MOVR (NSDI 2017):

- 60 Ghz
 - Can relieve the loads of network communication
 - But suffers when users move

Our insight into this problem

Our insight into this problem

• The vision of humans is hierarchical

• Attention Area

Non-Attention

• Out-of-Sight (OoS)

Field of View (FoV)

Attention-based VR Streaming through Bandwidth-limited Wireless Networks

Prediction

- Prediction
 - Model: Support Vector Regression
 - w/ RBF (Radial Basis Function) kernel
 - Time Window: 1s
 - Prediction Tolerance: 5°

Prefetching

Video Composition – Offline Processing

Video Composition – Online Processing

Scheduling – Decision

- Goal: Maximize the Quality of Experience (QoE)
 - Bitrate-based Video Quality Assessment (BVQA)
 - Calculated for each tile based on their bitrate
 - QoE Metric:

•
$$QoE = \sum_{i,j}^{i=N_x, j=N_y} BVQA_{ij} \times Weight_{ij}$$

- Knapsack Problem
 - Greedy Algorithm

Implement

Evaluation – Prediction

• Prediction Accuracy

Evaluation – Prediction

• Prediction Delay

Evaluation – Scheduling

• Scheduling under different bandwidth

Evaluation – Subjective

Mean Opinion Score

Evaluation – Overall Compression

Compression Ratio

Evaluation – Overall Compress

• Compress Ratio

Contribution

- We propose FoVR, a hierarchical structure of 360° video streaming on mobile VR HMD. The design of FoVR exploits the humans' hierarchical vision and composes mixed-quality VR clips, with a promise of saving bandwidth while maintaining a high QoE.
- We implement FoVR on commercial VR HMD and conventional Wi-Fi networks. We extensively evaluate FoVR in many scenarios. The evaluation results demonstrate that FoVR reduces the bandwidth cost by 88.9% and 76.2% in average, respectively compared to the original 360° video streaming and the state-of-the-art approach.

Thanks For listening Q&A