Crocs:

Cross-Technology Clock Synchronization for WiFi and ZigBee

Zihao Yu, Chengkun Jiang, Yuan He, Xiaolong Zheng, Xiuzhen Guo Tsinghua University

A scenario of Industrial IoT

Clock synchronization in different networks

Clock synchronization between heterogeneous devices

Cross-technology communication

Cross-technology communication

The timing of packets

Side channel

The energy of packets

Timestamp transmission

Encode the digits sequentially

Timestamp transmission

The example of energy modulation

'1': packet presence '0': packet absence

Observation of cross-technology communication

- Low throughput
- Limited robustness

time interval pattern

The simple pattern of packets may be destroyed by noise

Time alignment

Decoupled synchronization

Barker code

Ρ

A finite sequence of N values of +1 and -1: a_j for j = 1, 2, ..., N

roperty:
$$c_v = \sum_{j=1}^{N-v} a_j a_{j+v}$$

 $|c_v| \leq 1$ for all $1 \leq v < N$.

No of panels	Barker Code	
2	+1 -1	+1 +1
3	+1 +1 -1	
4	+1 +1 -1 +1	+1 +1 +1 -1
5	+1 +1 +1 -1 +1	
7	+1 +1 +1 -1 -1 +1 -1	
11	+1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1	
13	+1 +1 +1 +1 +1 -1 -1 +1 +1 -1 +1 -1 +1	

Barker code with different length

Autocorrelation function of Barker-7 code

Time alignment design

How to encode the Barker code:

Energy 🔀 Not robust to noise

Interval \checkmark Use two unit intervals, t₁ and t₂ to create the Barker code

Realization:

Evaluation

- One USRP acts as WiFi sender
- Another USRP generates noise
- TelosB mote is used as ZigBee device

Beacon matching rate

The beacon matching rate with relatively low noise

The beacon matching rate with relatively high noise

Time error without clock calibration

Time error with clock calibration

Summary

We design Crocs, the first cross-technology clock synchronization protocol that works for WiFi and ZigBee.

We design a Barker code based beacon to trigger the event of synchronization.