

SmarTiSCH: An Interference-Aware Engine for IEEE 802.15.4e-based Networks

Zihao Yu⁺, Xin Na⁺, Carlo Alberto Boano[‡], Yuan He⁺, Xiuzhen Guo⁺, Pengyu Li⁺, and Meng Jin §

+School of Software & BNRist, Tsinghua University, China

‡Institute of Technical Informatics, Graz University of Technology, Austria

§ Shanghai Jiao Tong University, Shanghai, China

Industrial IoT

Industrial IoT: Mission-critical applications

Stringent requirement on reliability

IEEE 802.15.4e

Mission-critical IoT applications

IEEE 802.15.4e standard: TSCH (time-slotted channel hopping)

TSCH Protocol

Scheduler: how to allocate the cells with minimum energy expenditure?

Problem: interference

- Internal interference: internal collisions between links
- External interference: impact from external devices like WiFi devices

Previous works: centralized/distributed scheduler

Both the schedulers rely on **extra control traffic** to detect and handle interference!

Recent works: autonomous scheduler

Autonomous scheduler

Vulnerable to interference due to unawareness!

Dilemma: overhead or interference?

SmarTiSCH: an interference-aware engine

Challenges

Challenge 1 – To **obtain the awareness** of interference based on data transmission

- How to infer the type of interference from **limited information**?
- How to solve the **asymmetry** between the observation of the transmitter and the receiver?
- How to handle the **ambiguity** of the inference process?

Challenge 2 – To share and utilize the awareness under interference without extra control traffic

- How to reliably share the information **under interference**?
- How to build consensus between the transmitter and the receiver **without control packets**?
- How to **react** to interference by updating the schedule?

SmarTiSCH: passive observation

SmarTiSCH: inference of interference

Asymmetry between the observations of the transmitter and the receiver

A receiver-dominant design principle to infer the presence of interference

SmarTiSCH: inference of interference

Challenges

Challenge 1 – To **obtain the awareness** of interference based on data transmission

- How to infer the type of interference from **limited information**?
- How to solve the **asymmetry** between the observation of the transmitter and the receiver?
- How to handle the **ambiguity** of the inference process?

Challenge 2 – To share and utilize the awareness under interference without extra control traffic

- How to reliably share the information **under interference**?
- How to build consensus between the transmitter and the receiver **without control packets**?
- How to **react** to interference by updating the schedule?

SmarTiSCH: reaction to interference

The transmitter and the receiver enter the control channel for reliable information exchange

Observation: data exchange provide clues!

SmarTiSCH: reaction to interference

SmarTiSCH: reaction to interference

SmarTiSCH: Implementation

- SmarTiSCH: link-based Orchestra with our engine
- Hardware: nRF52840 nodes
- Software: ContikiNG, and use RPL with storing mode on top
- Testbed: 20 nodes in a 50m² area
- External interference: JamLab-NG
- Application: a data collection application at the root note

SmarTiSCH: Evaluation

SmarTiSCH: Evaluation

Conclusion

- SmarTiSCH increases the awareness and robustness to interference without extra cost of scheduling.
- Design: passive observation, inference of interference, reaction
- Evaluation: SmarTiSCH expands the channel resources, increases the network capacity, and improves the network performance without extra control traffic.

Systems & Ubiquitous Networking (SUN) Group

