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ABSTRACT
Along with AIGC shines in CV and NLP, its potential in
the wireless domain has also emerged in recent years. Yet,
existing RF-oriented generative solutions are ill-suited for
generating high-quality, time-series RF data due to limited
representation capabilities. In this work, inspired by the stel-
lar achievements of the diffusion model in CV and NLP, we
adapt it to the RF domain and propose RF-Diffusion. To ac-
commodate the unique characteristics of RF signals, we first
introduce a novel Time-Frequency Diffusion theory to en-
hance the original diffusion model, enabling it to tap into the
information within the time, frequency, and complex-valued
domains of RF signals. On this basis, we propose a Hierarchi-
cal Diffusion Transformer to translate the theory into a prac-
tical generative DNN through elaborated design spanning
network architecture, functional block, and complex-valued
operator, making RF-Diffusion a versatile solution to gen-
erate diverse, high-quality, and time-series RF data. Perfor-
mance comparison with three prevalent generative models
demonstrates the RF-Diffusion’s superior performance in
synthesizing Wi-Fi and FMCW signals. We also showcase
the versatility of RF-Diffusion in boosting Wi-Fi sensing
systems and performing channel estimation in 5G networks.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mo-
bile computing; • Networks→ Mobile networks.
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1 INTRODUCTION
Artificial intelligence generated content (AIGC) has catalyzed
a revolutionary impact in both industrial and academic fron-
tier, birthing a constellation of cutting-edge products founded
on deep neural networks (DNNs). Remarkable odysseys in-
clude Stable Diffusion [54], Midjourney [43], DALL-E [51]
for image creation, and ChatGPT [46] for text generation.
Nowadays, AIGC is gradually knocking on the door of

the radio-frequency (RF) domain. Current practice offers
initial proof of its potential to boost wireless systems in
terms of data augmentation [53], signal denoising [7] and
time-series prediction [22]. In downstream tasks like device
localization [76], human motion sensing [72], and channel
estimation [38], such progress not only enhances system
performance but also cuts down the cumbersome ground
truth annotation costs for application-layer DNN training.

Existing RF data generation models can be broadly divided
into two main categories:
• Environment modeling based generative model. This
approach exploits LiDAR point clouds or video footage to
craft a detailed 3D model of the environment. It then em-
ploys physical models, like ray tracing [42], to simulate how
RF signals interact with surroundings, which eventually aids
in forecasting the signals a receiver might capture. However,
one notable limitation is the method’s insufficient considera-
tion of how the materials and properties of targets can affect
RF signal propagation. Additionally, obtaining a 3D model
with accuracy compatible with RF signal wavelengths (e.g.,
1-10 mm) remains a challenge and will significantly raise
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Table 1: Illustrative examples.

Methods Examples SSIM
Wi-Fi FMCW Wi-Fi FMCW

Ground
Truth N/A N/A

Ours 0.81 0.75

DDPM
[25] 0.65 0.58

DCGAN
[50] 0.68 0.61

CVAE
[61] 0.47 0.4

system expenses. While the recent study uses the neural radi-
ance field for implicit modeling of RF-complex environments
to estimate signal propagation [76], it requires a stationary
receiver (Rx), which complicates generating essential time-
series data for wireless communication systems or tasks like
human motion recognition.
• Data-driven probabilistic generative model. Current
innovations leverage models like generative adversarial net-
work (GAN) and variational autoencoder (VAE) to augment
RF datasets [21]. Essentially, these models learn the distribu-
tion within the training data and then generate new RF data
that follow this distribution. However, these models mainly
focus on expanding feature-level distributions and struggle
to precisely generate raw RF signals due to their constrained
representation capabilities [72]. Additionally, most of them
are designed for specific tasks with dedicated loss functions
and DNN architectures, limiting their versatility. On the
other hand, GAN’s training is notoriously fickle due to the
tug-of-war between the generator and discriminator [69].
Remark. Albeit inspiring, there still lacks a versatile gener-
ative model for generating accurate and time-series raw RF
signals suitable for diverse downstream applications.

Recently, Diffusion Model has emerged as a luminous star
in the visual AIGC cosmos, underpinning a variety of innova-
tive DNNs for a range of prominent image/video applications
such as Stable Diffusion, Midjourny, and DALL-E. Compared
to the aforementioned generative models, its unique itera-
tive process of noise addition (i.e., noising) and removal (i.e.,
denoising) allows for precise capture of intricate raw data

distributions [70]. Moreover, its training is straightforward
and avoids typical problems like mode collapse or conver-
gence troubles, since it doesn’t juggle competing parts or
require delicate fine-tuning [13].
These compelling advantages inspire us to embrace the

diffusion model for synthesizing RF data. However, transfer-
ring existing diffusion models [25] to the RF domain faces
significant challenges arising from RF signal’s unique char-
acteristics beyond images, as summarized below.
(𝑖) Time series. RF signals capture dynamic details like tar-
get movement and environment/channel changes over time,
unlike static snapshots. Diffusion models designed for single-
image generation struggle to synthesize RF signal sequences.
(𝑖𝑖) Frequency domain. Essential RF details (e.g., Doppler shift,
chirp) are embedded in the frequency domain. While recent
video diffusion models can create time series, they mainly
focus on the spatial domain (e.g., pixel-wise brightness), dis-
carding the rich information in the frequency domain.
(𝑖𝑖𝑖) Number field. RF data is complex-valued with both am-
plitude and phase readings. While existing diffusion models
only focus on amplitude (e.g., light strength), the phase data
can’t be ignored due to its crucial role in wireless systems.
In summary, while diffusionmodels hold great promise, there
is a need to upgrade current models to suit the unique traits
of RF signals and tap into the underlying information in the
time series, frequency, and complex-valued domains.
Our Work. We propose RF-Diffusion, the first versatile gen-
erative model for RF signals based on Diffusion model. To
overcome the above challenges, we expand existing denoising-
based diffusion model to the time-frequency domain by re-
visiting its theoretical foundation, overall DNN architecture,
and detailed operator design, enabling RF-Diffusion to gen-
erate diverse, high-quality, and time-series RF data.
• Time-Frequency Diffusion Theory. We first propose
the time-frequency diffusion (TFD) theory as a novel para-
digm to guide diffusion models in extracting and leveraging
characteristics of RF signals across both temporal and fre-
quency domains. Specifically, we demonstrate a diffusion
model could effectively destruct and restore high-quality
RF signals by alternating between adding noise in the time
domain and blurring in the frequency domain (§3).
• Hierarchical Diffusion Transformer Design.We fur-
ther re-design the DNNs of existing denoising-based diffu-
sionmodel to be compatible with TFD. The derived DNN, des-
ignated as the hierarchical diffusion transformer (HDT), from
a top-down perspective, incorporates (𝑖) a hierarchical archi-
tecture to fully uncover time-frequency details by decoupling
spatio-temporal dimensions of RF data; (𝑖𝑖) attention-based
diffusion blocks leveraging enhanced Transformers to ex-
tract RF features; and (𝑖𝑖𝑖) a complex-valued design to en-
code both signal strength and phase information. The three
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key designs work hand-in-hand to enable RF-Diffusion to
generate high-quality RF data (§4).
We implement RF-Diffusion and conduct extensive ex-

periments that include synthesis of both Wi-Fi and FMCW
signals. To provide a clear understanding of its performance,
an intuitive comparison of the time-frequency spectrograms
generated by RF-Diffusion and those from related works is
presented in Table 1. Evaluation results demonstrate that RF-
Diffusion generates RF signals with high fidelity, achieving
an average structural similarity of 81% relative to the ground
truth. This performance surpasses prevalent generative mod-
els such as DDPM, DCGAN, and CVAE by over 18.6%. We
also demonstrate the performance of RF-Diffusion in two
case studies: augmented Wi-Fi gesture recognition and 5G
FDD channel estimation. By employing RF-Diffusion as a
data augmentor, existing wireless gesture recognition sys-
tems experience a significant accuracy improvement ranging
from 4% to 11%. When applied to the channel estimation task,
RF-Diffusion showcases a substantial 5.97 dB improvement
in SNR compared to state-of-the-arts.

In summary, this paper makes the following contributions.
(1) We propose RF-Diffusion, the first generative diffusion
model tailored for RF signal. RF-Diffusion is versatile and
can be leveraged in a wide spectrum of fundamental wireless
tasks such as RF data augmentation, channel estimation, and
signal denoising, propelling AIGC to shine in the RF domain.
(2) We present the Time-Frequency Diffusion theory, an ad-
vanced evolution beyond traditional denoising-based dif-
fusion methods. The integration of TFD with its bespoke
Hierarchical Diffusion Transformer (HDT) enables enhanced
precision in time-series sampling and a balanced focus on
spectral details of the data.
(3) We fully implement RF-Diffusion. Extensive evaluation
results from case studies show RF-Diffusion’s efficacy.
Community Contribution. RF-Diffusion’s code and pre-
trained model are publicly available. Our solution, in part or
in all, could provide a collection of tools for both industry
and academia to push forward AIGC in RF domain. Moreover,
its ability to handle time-series sampling while highlighting
the spectral nuances of the data has potential benefits be-
yond the wireless community, offering value to video, audio
processing, and other time-series-dependent modalities.

2 OVERVIEW
We propose RF-Diffusion, a pioneering probabilistic gener-
ative model for RF data that leverages the diffusion model
framework, as detailed in Fig. 1. At its core, RF-Diffusion
aligns with the principle of denoising-based diffusion models
by employing a dual-process approach: a forward process of
integrating noise into the data, and a reverse process of gen-
erating data from noise. However, RF-Diffusion distinguishes
itself through two innovative features:

𝒙𝑡−1

𝒙𝑡−1

𝒙0

𝒙0

𝒙𝑇

𝒙𝑇

𝒙𝑡

𝒙𝑡

……

… …

§3.1 Forward Time-Frequency Diffusion 

§3.2 Reverse Time-Frequency Diffusion

𝑞 𝒙𝑡 𝒙𝑡−1

𝑝𝜃 𝒙𝑡−1 𝒙𝑡

𝒙𝑡−1

𝑿𝑡−1 𝑿′𝑡−1

𝒙′𝑡−1 𝒙𝑡
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𝝈𝑡−1

𝝐

+ 𝝁𝑡−1𝒙𝑡−1 Deblur

§4 Hierarchical Diffusion 
Transformer 

𝒙𝑡Denoiseෝ𝝁𝑡−1

Figure 1: RF-Diffusion overview.

(𝑖) RF-Diffusion incorporates the proposed Time-Frequency
Diffusion (§3) theory to direct each stage of state transition in
both forward (i.e., 𝑞(𝒙𝑡 |𝒙𝑡−1)) and reverse (i.e., 𝑝\ (𝒙𝑡−1 |𝒙𝑡 ))
processes, enabling RF-Diffusion to harness the RF signal
information across both the time and frequency domain.
(𝑖𝑖) RF-Diffusion introduces theHierarchical Diffusion Trans-
former (§4), which is a restructured DNN model for the re-
verse generation process, to align with the Time-Frequency
Diffusion theory and the characteristics of RF signals.
As for the specific data flow, RF-Diffusion gradually in-

troduces Gaussian noise in the time domain and blurs the
spectrum in the frequency domain at each stage in the for-
ward direction. As the diffusion step 𝑡 advances, the original
RF signal 𝒙0 diminishes, eventually degrading into noise. In
TFD theory, we demonstrate any destructed signal 𝒙𝑡 can
be restored to its original form 𝒙0 using a parameterized
reverse process. Guided by the destruction process alter-
nating in time-frequency domain, the reverse restoration
process emphasizes both time-domain amplitude accuracy
and frequency-domain continuity to achieve time-frequency
high-fidelity signal generation.
In the reverse direction, HDT are served as the param-

eterized model for learning the restoration process. It de-
couples the Gaussian noise and the spectral blur, effectively
addressing them in the spatial denoise and time-frequency
deblur stages, respectively. During its training, HDT takes
destructed signal 𝒙𝑡 as the model input, and uses the signal
of previous diffusion step 𝒙𝑡−1 to supervise the output. Once
trained, RF-Diffusion is capable of iteratively transforming
fully degraded noise back into a specific type of signal.
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3 TIME-FREQUENCY DIFFUSION
In this section, we introduce the proposed Time-Frequency
Diffusion (TFD) process. Unlike prevailing denoising diffu-
sion models, the time-frequency diffusion process compre-
hensively addresses two potential distortions in wireless
signal data: 1) amplitude distortion due to additive Gaussian
noise; 2) spectral aliasing resulting from insufficient time
resolution. Therefore, the learned reverse process focuses
not only on precisely reconstructing the amplitude of indi-
vidual samples but also on preserving spectral resolution in
time-series signals. In what follows, we first introduce the
forward destruction process (§3.1) which jointly eliminates
the original data distribution in the time and the frequency
domain. On this basis, we describe how to reverse the pro-
cess (§3.2) and fit it through a parameterized model, which
is the basis of our conditional generation (§3.3) task.

3.1 Forward Destruction Process
The time-frequency diffusion model is proposed for the RF
signal, which can be treated as the complex-valued time-
series data. Therefore, we take the signal as a two-dimensional
complex tensor 𝒙 ∈ C𝑀×𝑁 , where𝑀 represents the spatial
dimension of each sample, while 𝑁 represents the temporal
dimension of the times series.
Given a signal that follows a specific distribution 𝒙0 ∼

𝑞(𝒙0), the forward destruction process yields a progression
of random variables 𝒙1, 𝒙2, . . . , 𝒙𝑇 . Each diffusion step in this
process disrupts the original distribution from both the time
and frequency domains. Specifically, the forward diffusion
process from step 𝑡 − 1 to 𝑡 is described as follows:
• Frequency Blur. To dissipate the spectral details of the
original signal, the Fourier transform 𝔉(·) is first per-
formed to the temporal dimension. Subsequently, with
the predefined Gaussian convolution kernel G𝑡 , a cyclic
convolution ∗ operation is performed on the spectrum,
resulting in a blurred spectrum G𝑡 ∗𝔉(𝒙𝑡−1).

• Time-series Noise. To drown out the amplitude details of
the signal, complex standard Gaussian noise 𝝐 ∼ CN(0, I)
is introduced, and a weighted summation is performed
with a predefined parameter √𝛼𝑡 , where 𝛼𝑡 ∈ (0, 1).

By combining the above two steps, we get:

𝒙𝑡 =
√
𝛼𝑡𝔉

−1 (G𝑡 ∗𝔉(𝒙𝑡−1)) +
√

1 − 𝛼𝑡𝝐, (1)

where𝔉−1 (·) indicates the inverse Fourier transform.
To ensure the practical feasibility of the time-frequency

diffusion process, it is essential that the transition from 𝒙0 to
𝒙𝑡 for any given step 𝑡 ∈ [1,𝑇 ] can be executed with an ac-
ceptable time complexity, instead of involving an iteration of
𝑡 steps. To simplify this process, certain advantageous charac-
teristics of the Fourier transform and the Gaussian function
are leveraged. Based on the convolution theorem [68], we

have 𝔉−1 (G𝑡 ∗ 𝔉(𝒙𝑡−1)) = 𝔉−1 (G𝑡 )𝒙𝑡−1
1. Therefore, the

operation in Eqn. 1 can be expressed as:

𝒙𝑡 =
√
𝛼𝑡𝒈𝑡𝒙𝑡−1 +

√
1 − 𝛼𝑡𝝐, (2)

where 𝒈𝑡 = 𝔉−1 (𝑮𝑡 ) is still a Gaussian kernel, which means
the convolution of the signal with the Gaussian kernel in the
frequency domain can be equivalently transformed into the
multiplication of the signal with another Gaussian kernel
in the time domain. For ease of notion, let 𝜸 𝑡 =

√
𝛼𝑡𝒈𝑡 , and

𝜎𝑡 =
√

1 − 𝛼𝑡 , indicating the weight of the signal 𝒙𝑡−1 and
the standard deviation of the added noise at step 𝑡 .

Since the forward process is aMarkov chain, by recursively
applying Eqn. 2 and incorporating with the reparametriza-
tion trick [34], the relationship between the original signal
𝒙0 and the degraded signal 𝒙𝑡 can be obtained:

𝒙𝑡 = 𝜸 𝑡𝒙0 +
𝑡∑︁

𝑠=1
(
√

1 − 𝛼𝑠
𝜸 𝑡

𝜸𝑠

)𝝐 = 𝜸 𝑡𝒙0 + �̄�𝑡𝝐, (3)

where 𝜸 𝑡 =
∏𝑡

𝑠=1𝜸𝑠 = 𝜸 𝑡 · · ·𝜸 1. As 𝛼𝑡 and 𝒈𝑡 are predefined
hyperparameters corresponding to the noise and blur sched-
uling strategy, any 𝜸 𝑡 and �̄�𝑡 are constant coefficients, rep-
resenting the weight of the original signal and the standard
deviation of the added noise. Thus, the forward destruction
process to any step 𝑡 can be quickly completed without iter-
ation. Stated in probabilistic terms, essentially 𝒙𝑡 follows an
non-isotropic Gaussian distribution conditioned on 𝒙0:

𝑞(𝒙𝑡 |𝒙0) = CN(𝒙0; �̄�𝑡 , �̄�
2
𝑡 I), (4)

where �̄�𝑡 = 𝜸 𝑡𝒙0 and �̄�𝑡 =
∑𝑡

𝑠=1 (
√

1 − 𝛼𝑠
�̄�𝑡

�̄�𝑠
). Specifically,

the vector𝜸 𝑡 consists of distinct weighting coefficients, each
applied multiplicatively across the temporal dimension of
the original signal to perform weighting adjustments.
It is proven in Appendix A that as the diffusion step 𝑡

increases, the original signal is gradually eliminated, and 𝒙𝑡
eventually converges to a closed-form noise distribution:

lim
𝑇→∞

𝒙𝑇 = lim
𝑇→∞

𝑇∑︁
𝑡=1

(
√

1 − 𝛼𝑡
𝜸𝑇

𝜸 𝑡

)𝝐 = lim
𝑇→∞

�̄�𝑇 𝝐, (5)

where �̄�𝑇 =
∑𝑇

𝑡=1 (
√

1 − 𝛼𝑡
�̄�𝑇

�̄�𝑡
)𝝐 is determined by predefined

noise scheduling strategy in practical implementation.

3.2 Reverse Restoration Process
The restoration process is the reversal of the destruction,
which gradually eliminates the noise and restores the original
data distribution.
To learn a parameterized distribution 𝑝\ (𝒙0) which ap-

proximates the original distribution 𝑞(𝒙0), an effective ap-
proach is to minimize their Kullback-Leibler (KL) divergence:

1Vector multiplications in this paper default to element-wise products.
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\ = arg min
\

𝐷KL (𝑞(𝒙0)∥𝑝\ (𝒙0))

= arg min
\

(E𝑞 (𝒙0 ) [− log𝑝\ (𝒙0)] + E𝑞 (𝒙0 ) [log𝑞(𝒙0)])

= arg max
\

E𝑞 (𝒙0 ) [log𝑝\ (𝒙0)] .
(6)

Unfortunately, 𝑞(𝒙0) is intractable to calculate in general [35,
60], therefore E𝑞 (𝒙0 ) [log𝑝\ (𝒙0)] cannot be expressed explic-
itly. Building on the concepts of prior works [25, 63], we
approximate the distribution by maximizing the variational
lower bound. As established in [25], the optimization prob-
lem in Eqn. 6 can be approximated as:

\ = arg min
\

𝐷KL (𝑞(𝒙𝑡−1 |𝒙𝑡 , 𝒙0)∥𝑝\ (𝒙𝑡−1 |𝒙𝑡 )), (7)

where 𝑞(𝒙𝑡−1 |𝒙𝑡 , 𝒙0) represents the actual reverse process
conditioned on 𝒙0, while 𝑝\ (𝒙𝑡−1 |𝒙𝑡 ) denotes the reverse
process fitted by our model. Eqn. 7 shows the problem of
reconstructing the original data distribution can be trans-
formed into a problem of fitting the reverse process. Rewrite
𝑞(𝒙𝑡−1 |𝒙𝑡 , 𝒙0) based on the Bayesian theorem (Appendix B),
and we prove it follows a Gaussian distribution over 𝒙𝑡−1:

𝑞(𝒙𝑡−1 |𝒙𝑡 , 𝒙0) ∼ CN(𝒙𝑡−1; �̃�𝑡−1, �̃�
2
𝑡−1I),

�̃�𝑡−1 =
1
�̄�2
𝑡

(𝜸 𝑡 �̄�
2
𝑡−1𝒙𝑡 +𝜸 𝑡−1𝝈

2
𝑡𝒙0), �̃�𝑡−1 =

�̄�𝑡−1
�̄�𝑡

𝝈𝑡 .
(8)

Let’s assume that 𝑝\ (𝒙𝑡−1 |𝒙𝑡 ) is a Gaussian Markov process:
𝑝\ (𝒙𝑡−1 |𝒙𝑡 ) ∼ CN(𝒙𝑡−1; 𝝁\ (𝒙𝑡 ),𝝈2

\
(𝒙𝑡 )I). (9)

Therefore, the KL divergence of two Gaussian distributions
in Eqn. 7 can be simplified as follows:

𝐷KL (𝑞(𝒙𝑡−1 |𝒙𝑡 , 𝒙0)∥𝑝\ (𝒙𝑡−1 |𝒙𝑡 ))

=E𝑞 (𝒙0 ) [
1

2�̃�2
𝑡

∥�̃�𝑡−1 − 𝝁\ (𝒙𝑡 )∥2] +𝐶. (10)

In summary, the optimization of the the parameterizedmodel
𝑝\ (𝒙𝑡−1 |𝒙𝑡 ) can be achieved by minimizing the mean square
error (MSE) between 𝝁\ and �̃�𝑡−1. In other words, if a model
can infer the mean value �̃�𝑡−1 of the previous step from the
input 𝒙𝑡 of the current diffusion step, then it is competent
for the data generation task.

3.3 Conditional Generation
In most practical applications, the generation process is ex-
pected to be guided by the condition label 𝒄 , which indicates
a specific type of the generated signal (e.g., the signal corre-
sponding to a specific device location or human activity).

Incorporating the conditional generation mechanism into
RF-Diffusion offers significant advantages: (𝑖) Enhanced prac-
ticality. The conditional generation mechanism enables RF-
Diffusion system to generate signals of different categories
based on various condition combinations. This eliminates
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Figure 2: Illustration of the conditional forward and
reverse trajectories.

the need for training separate models for each signal type,
significantly improving the model’s utility in practical appli-
cations. (𝑖𝑖) Increased signal diversity. A well-trained condi-
tional generation model creates diverse samples featuring
any conceivable combination of characteristics within the
condition-label space of the training dataset, which extends
the model’s generalizability beyond the initial scope of the
training set, ensuring that data augmentation contributes to
performance improvements in downstream tasks.
In this context, the condition input 𝒄 defines specific sce-

narios, including various rooms, Tx-Rx deployments, human
activity types, and signal bandwidths. This input guides the
generation process to produce data that aligns with the condi-
tional distribution 𝑝\ (𝒙 |𝒄). An illustration of the conditional
forward and reverse processes is presented in Fig. 2.

Following the conclusion of previous work [13, 27, 61], we
directly incorporate the condition 𝒄 in both the forward pro-
cess Eqn. 4 and the reverse process Eqn. 8, and get 𝑞(𝒙𝑡 |𝒙0, 𝒄)
and 𝑞(𝒙𝑡−1 |𝒙𝑡 , 𝒙0, 𝒄) respectively. Then, by combining Eqn. 7
and Eqn. 10, the optimization can be written as:

\ = arg min
\

𝐷KL (𝑞(𝒙𝑡−1 |𝒙𝑡 , 𝒙0, 𝒄)∥𝑝\ (𝒙𝑡−1 |𝒙𝑡 ), 𝒄)

= arg min
\

E𝑞 (𝒙0 ) [∥�̃�𝑡−1 − 𝝁\ (𝒙𝑡 (𝒙0, 𝑡, 𝝐), 𝒄)∥2] .
(11)

The training process of the parameterized model used for
restoration is summarized Algorithm 1. By incorporating the
desired signal type as a conditional input, the trained model
can iteratively synthesize the original signal from a sampled
noise. The generative process is illustrated in Algorithm 2.

4 HIERARCHICAL DIFFUSION
TRANSFORMER

To bridge the gap between time-frequency theory and a prac-
tical generative model, we introduce a hierarchical diffusion
transformer (HDT). Our proposed HDT incorporates many
innovative designs, aligning it with the underlying time-
frequency diffusion theory and making it adept for RF signal
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Figure 3: Hierarchical Diffusion Transformer design.

Algorithm 1 RF-Diffusion Training.
Input: Dataset following 𝒙 ∼ 𝑞(𝒙) with condition 𝒄
Output: Trained model `\
1: Set hyperparameters 𝑇 , 𝛼𝑡 and 𝒈𝑡
2: while `\ not converged do
3: Sample 𝒙0 ∼ 𝑞(𝒙0) with condition 𝒄 from dataset
4: Sample diffusion step 𝑡 ∈ Uniform(1, . . . ,𝑇 )
5: Sample noise 𝝐 ∼ CN(0, I)
6: Get 𝒙𝑡 = 𝜸 𝑡𝒙0 + �̄�𝑡𝝐 ⊲ Eqn. 3
7: Calculate �̃�𝑡−1 based on 𝒙0 and 𝒙𝑡 ⊲ Eqn. 8
8: Minimize ∥�̃�𝑡−1 − 𝝁\ (𝒙𝑡 (𝒙0, 𝑡, 𝝐), 𝒄)∥2 ⊲ Eqn. 11
9: end while

Algorithm 2 RF-Diffusion Sampling.
Input: Trained model `\ , condition 𝒄
Output: Generated sample 𝒙0
1: Set hyperparameters 𝑇 , 𝛼𝑡 and 𝒈𝑡
2: Sample noise 𝝐 ∼ CN(0, I)
3: Let 𝒙𝑇 = �̄�𝑇 𝝐 ⊲ Eqn. 5
4: for 𝑡 = 𝑇, . . . , 1 do
5: Get model output 𝝁\ (𝒙𝑡 , 𝒄), and let 𝝈\ = �̃�𝑡−1
6: Sample 𝒙𝑡−1 ∼ 𝑝\ (𝒙𝑡−1 |𝒙𝑡 ) with 𝝁\ and 𝝈\ , which

means let 𝒙𝑡−1 = 𝝁\ (𝒙𝑡 , 𝒄) + 𝝈\𝝐 ⊲ Eqn. 9
7: end for
8: return 𝒙0

generation. We first introduce the overarching hierarchical
design (§4.1), followed by the detailed design of our proposed
attention-based diffusion block (ADB) (§4.2). Addressing the
challenge of complex-valued signal generation, we extend
the core design of the classic transformer block [66] into the
complex domain (§4.3). Moreover, we propose phase mod-
ulation encoding (PME) (§4.4), a novel positional encoding
approach tailored for complex-valued neural networks.

4.1 Hierarchical Architecture
From the top perspective, HDT adopts a hierarchical architec-
ture to efficiently decouples the estimation of non-isotropic
noise. As shown in Fig. 3, HDT is divided into two stages:
spatial denoising and time-frequency deblurring.
The diffusion step, denoted as 𝑡 , is encoded, thereby in-

forming the model about the current input’s diffusion level.
The conditional vector 𝑐 undergoes encoding as well. In
conjunction with the input 𝒙 (𝑛)

𝑡 , these components engage
in computations, striving to discern the latent correlation
between the input and its pertinent condition.

Our observation is that the non-isotropic noise can be dis-
sected into two components: 1) Independent Gaussian noise
𝝐 across both the spatial dimension𝑀 and the temporal di-
mension 𝑁 . 2) Different information and noise weights (i.e.,
𝛾
(𝑛)
𝑡 and 𝜎 (𝑛)

𝑡 ) along the temporal dimension 𝑁 . Therefore,
by splitting the time-series data into separate samples, we get
𝒙 (𝑛)
𝑡 = 𝛾

(𝑛)
𝑡 𝒙 (𝑛)

0 +𝜎 (𝑛)
𝑡 𝝐 (𝑛) . Herein, within each sample, both

signal and noise weights remain constant. Therefore, each
spatial denoising module processes a single sample 𝒙 (𝑛)

𝑡 of
the input sequence independently. During this stage, denois-
ing circumvents the temporal domain weighting induced by
spectral blurring, focusing exclusively on the Gaussian noise
𝝐 (𝑛) introduced into the original information. This approach
resonates with the principles of denoising diffusion [25].
Although the spatial denoising module effectively miti-

gates the impact of noise 𝝐 , its individual treatment for each
sample disregards the temporal weighting effects originating
from spectral blurring. Therefore, the processed results are
concatenated as �̂� = [�̂� (1) , · · · , �̂� (𝑁 ) ] and serve as sequence
input for the time-frequency deblurring module, aiming to
estimate the mean value �̃�𝑡−1.
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4.2 Attention-based Diffusion Block
As shown in Fig. 3, the input data are process by a sequence
of transformer blocks in both the denoising and deblur stage.
We introduce an innovative attention-based diffusion block
to jointly analyze the noisy input 𝒙𝑡 , condition 𝒄 , and step 𝑡 .
Self-attention for feature extraction. The multi-head

self-attention module captures autocorrelation feature from
the noisy input and extracts the high-level representations
implicit in the signal. Compared to convolutional layers with
translation invariance, attention layers are sensitive to the
positional information of each sample in the sequence, thus
enabling more effective restoration of the original signal.

Cross-attention for conditioning. To enhance the con-
ditional generation capability, RF-Diffusion incorporates a
cross-attention module to learn the latent associations be-
tween the inputs and their corresponding conditions. This
module is designed to directly capture the intricate dynamics
between the inputs and specified conditions, thereby improv-
ing the diversity and fidelity of generated signals.
Adaptive layer normalization for diffusion embed-

ding. Inspired by the widespread usage of adaptive normal-
ization layer (adaLN) [47] in existing conditional generative
models [9, 13], we explore replacing standard layer normal-
ization with adaLN. Rather than directly learn dimension-
wise scale 𝑎 and shift parameters 𝑏, we regress them from the
𝑡 , embedding the diffusion step information into our model.

4.3 Complex-Valued Module Design
In order to work effectively with complex-valued wireless
signals, the RF-Diffusion model is designed as a complex-
valued neural network. Several adaptations have been made
to HDT to facilitate complex-valued operations.

Complex-valued attention module. Two key improve-
ments have been implemented in the dot-product attention
mechanism to accommodate complex number computation:
1) The dot product of the query and key vectors is extended
to the hermitian inner product, 𝒒H𝒌 , which captures the cor-
relation of two vectors in the complex space. This preserves
the effective information of both the real and imaginary parts
to the fullest extent. 2) Given that the softmax function oper-
ates on real numbers, adjustments have been made to make
it compatible with complex vectors. Specifically, softmax is
applied to the magnitude of the dot product, while the phase
information remains unchanged. This modification main-
tains the probabilistic interpretation of vector relevance. In
mathematical terms, the complex-valued attention computa-
tion for complex vectors 𝒒 and 𝒌 can be expressed as:

softmax( |𝒒H𝒌 |) exp( 𝑗∠(𝒒H𝒌)). (12)

Complex-valued feed-forward module. Feed-forward
module consists of two main of operations: linear transfor-
mation and non-linear activation. A complex-valued linear
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Figure 4: Illustration of phase modulation encoding.

transformation can be decomposed into real-valued ones [64].
Specifically, for complex-valued input 𝒙 = 𝒙𝑟 + 𝑗𝒙𝑖 , the
transformation with complex weight𝒘 = 𝒘𝑟 + 𝑗𝒘𝑖 and bias
𝒃 = 𝒃𝑟 + 𝑗𝒃𝑖 can be written as follows:

𝒘𝒙 + 𝒃 =

[
ℜ(𝒘𝒙 + 𝒃)
ℑ(𝒘𝒙 + 𝒃)

]
=

[
𝒘𝑟 −𝒘𝑖

𝒘𝑟 𝒘𝑖

] [
𝒙𝑟
𝒙𝑖

]
+
[
𝒃𝑟
𝒃𝑖

]
.

(13)
Furthermore, applying an activation function 𝑔(·) to a com-
plex value can be seen as activating the real and imaginary
parts separately: 𝑔(𝒙) = 𝑔(𝒙𝑟 ) + 𝑗𝑔(𝒙𝑖 ).

4.4 Phase Modulation Encoding
Leveraging the attention mechanism, a Transformer network
parallelly processes the entire sequence. Yet, it lacks inherent
capability to discern the positional information of the input.
To address this, we introduce an innovative phase modula-
tion encoding (PME) strategy tailored for complex spaces,
serving as the positional encoding scheme for HDT.

As illustrated in Fig. 4, suppose the maximum dimension
of each vector in the sequence is 𝑑 . For the 𝑖-th element of
the 𝑛-th vector in the sequence, PME operates as follows:

PME(𝒙 (𝑛) (𝑖), 𝑛) = 𝒙 (𝑛)
𝑖

exp ( 𝑗𝑛\𝑖 ), (14)

where \𝑖 is given by \𝑖 = 10000− 𝑖
𝑑 . This procedure can be

conceptualized as a phase modulation process—essentially
imparting a specific phase offset to the original data based
on the position 𝑛 in the sequence.

The PME inherently decodes the relative position during
computation, establishing its essential role in position en-
coding. Specifically, when executing the complex-domain
Attention operation on the encoded key vector 𝒌 and query
vector 𝒒, it is equivalent to:

PME(𝒒, 𝑛)HPME(𝒌,𝑚) = PME(𝒒H𝒌,𝑚 − 𝑛). (15)

Therefore, the relative position information 𝑚 − 𝑛 can be
derived. This enables our model to learn more proficiently
by integrating the positional details of the sequence.
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5 IMPLEMENTATION
We implement RF-Diffusion based on PyTorch and train
our model on 8 NVIDIA GeForce 3090 GPUs, incorporating
essential implementation techniques outlined below.
Exponential moving average. Following common practice
in most generative models, we adopt the exponential moving
average (EMA) mechanism with a decay rate of 0.999. EMA
calculates a sliding average of the model’s weights during
training, which improves model robustness.
Weight initialization. We zero-initialize each final layer
before the residual to accelerate large-scale training [20],
and apply Xavier uniform initialization [18] to other lay-
ers, which is a standard weight initialization technique in
transformer-based models [15].
Hyperparameters. We train our model using AdamW opti-
mizer [33, 39] with an initial learning rate of 1× 10−3. A step
learning rate scheduler with a decay factor of 0.5 is adopted
to improve training efficiency. In the training process, we
apply a dropout rate of 0.1 to mitigate overfitting.
Noise scheduling strategy. In our implementation, the
rate of data destruction is designed to increase incrementally
from a lower to a higher intensity as the diffusion process
progresses. This is aimed at achieving a balance between the
model complexity and the generation quality [35]. Specifi-
cally, we configure the diffusion process with a maximum
of 𝑇 = 300 steps. The noise coefficient, 𝛽𝑡 =

√
1 − 𝛼𝑡 , is set

to linearly increase from 10−4 to 0.03, i.e., 𝛽𝑡 = 10−4𝑡 . In
parallel, the standard deviation of the Gaussian convolution
kernel in the frequency domain, denoted as 𝑮𝑡 , is adjusted to
linearly escalate from 10−3 to 0.3, facilitating the controlled
amplification of noise across the diffusion steps.
Data preprocessing. Each signal sequence from the dataset
is either interpolated or downsampled to a consistent length
of 512. This guarantees uniformity in the model’s input
length. Prior to input into our model, each sample within
the input sequence is normalized by average signal power,
which means each sample is divided by the average L2-norm
of all the samples in the sequence.

6 EVALUATION
6.1 Experiment Design
6.1.1 Data Collection. As shown in Fig. 5, our dataset com-
prises wireless signals collected under three distinct scenar-
ios, featuring variations in room selection, device location,
and human factors, including their location, orientation, and
activities. We compile condition labels for each sequence into
a conditional vector 𝒄 , guiding both training and sampling
phases. Our research evaluates RF-Diffusion’s proficiency in
producing signals across different modulation modes, focus-
ing on Wi-Fi and FMCW radar signals as two primary types
of wireless sensing and communications.

• Wi-Fi.We collect Wi-Fi signal based on the commercial
NIC IWL5300 working in 5.825 GHz with 40 MHz band-
width. The transmitter injects Wi-Fi packets to 3 receivers
to extract the channel state information (CSI) correspond-
ing to the environment.

• FMCW. FMCW signals are recorded using the mmWave
radar IWR1443 [29]. This radar device can be placed at
either one of two different locations in each scene, working
at a frequency band from 77 GHz to 81 GHz.

More than 20,000 Wi-Fi sequences and 13,000 FMCW se-
quences are collected. Each sequence has an associated con-
dition label indicating the room, device placement, human
ID, location, orientation and activity type. All experiments
conducted in this paper conform to the IRB policies.

6.1.2 Comparative Methods. We compare RF-Diffusionwith
three representative data generation model:
• DDPM [25]. The denoising diffusion probabilistic model
(DDPM) introduces Gaussian noise to original data and
subsequently learns to reverse this process, thereby gener-
ating raw data from the noise.

• DCGAN [50]. The deep convolutional generative adversar-
ial network (DCGAN) stands as a widely recognized GAN.
In DCGAN, two models (i.e., generator and discriminator)
are simultaneously trained in an adversarial manner. Once
trained, the generator can produce data that convincingly
bypasses the discriminator’s scrutiny.

• CVAE [62]. The conditional variational autoencoder (CVAE)
learns the Gaussian implicit representation of the data,
thereby enabling data generation. This method is widly
adopted in both sensing [21] and communication [38] sys-
tems to synthesize of wireless features.

To adapt them for RF signal, we have re-implemented the
model using complex-valued neural networks [64].

6.1.3 Evaluation Metrics. For a comprehensive evaluation,
we adopt two metrics, both of which are commonly used
in previous research for evaluating data-driven generative
models [2, 13, 25, 30, 44]. Recognizing that a definitive “gold
standard” for generative models has not been established,
these metrics are among the most authoritative.
• SSIM [67]: The Structural Similarity Index Measure (SSIM)
is a prominent criterion for gauging the similarity between
two samples by analyzing their means and covariances.
We’ve adapted SSIM for the complex domain, making it
suitable for assessing complex-valued signals.

• FID [24]: The Fréchet Inception Distance (FID) evaluates
generative models by measuring the Fréchet distance be-
tween the high-level features of real and synthesized data.
We adopt a pretrained STFNets [73] as the feature extractor
to better fit the property of wireless signals.
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Figure 5: Experimental scenarios.
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Figure 6: Wi-Fi signal generation quality.

6.2 Overall Generation Quality
The evaluation result for RF-Diffusion on Wi-Fi and FMCW
signal are illustrated in Fig. 6 and Fig. 7 respectively. As
shown, our proposed RF-Diffusion has proved the superiority
over comparative methods on both two metrics.
Specifically, as shown in Fig. 6, RF-Diffusion generates

Wi-Fi signal with an average SSIM of 0.81, exceeding DDPM,
DCGAN, and CVAE by 25.4%, 18.6% and 71.3% respectively.
RF-Diffusion achieves an FID of 4.42, outperforming the
above comparative methods by 42.4%, 63.0%, and 57.3%.
RF-Diffusion also outperforms the comparative methods

in terms of generating high-fidelity FMCW signals. As shown
in Fig. 7, the FMCWsignal generated byRF-Diffusion achieves
an average SSIM of 0.75 and an average FID of 6.10.

The impressive performance of RF-Diffusion can be attrib-
uted to several key factors: 1) Our proposed time-frequency
diffusion adopted by RF-Diffusion emphasizes refining the
frequency spectrum of the RF signal, thereby preserving finer
spectral details in the generated signals, which is difficult to
be captured by other methods. 2) Through its iterative gener-
ation approach, RF-Diffusion attains precise reconstruction
of data details via multi-step approximations, leading to a
superior quality of generated data. 3) In contrast to DCGAN,
which optimizes two models concurrently, RF-Diffusion’s
loss function is more streamlined and its training process
more stable, ensuring a richer diversity in the generated
signal and contributing to a commendable FID score.
6.3 Micro-benchmarks
6.3.1 Impact of Diffusion Methods. To validate the efficacy
of our proposed time-frequency diffusion theory, we re-
tained the network model architecture of RF-Diffusion but
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Figure 7: FMCW signal generation quality.

replaced the time-frequency diffusion process with two al-
ternate schemes: 1) Gaussian diffusion, which is similar to
DDPM and by only introduces Gaussian noise to the sig-
nal amplitude, and 2) blur diffusion which only performs
spectral blurring. As depicted in Fig. 8, our time-frequency
diffusion theory consistently outperforms both in terms of
the SSIM and FID metrics. Specifically, the SSIM values for
time-frequency diffusion, Gaussian diffusion, and blur diffu-
sion stand at 0.81, 0.71, and 0.45, respectively. This translates
to the time-frequency diffusion offering an SSIM improve-
ment of 13.9% over Gaussian diffusion and a notable 79.2%
over blur diffusion. In terms of the FID, the time-frequency
diffusion surpasses the other two methods by margins of
41.3% and 83.5%, respectively. The results indicates that the
time-frequency diffusion theory successfully incorporates
two diffusionmethods on orthogonal spaces, and thus achiev-
ing complementary benefits.

6.3.2 Impact of Network Design. To demonstrate the ad-
vantages of our proposed hierarchical diffusion transformer
(HDT), we compare it against: 1) single-stage diffusion trans-
former (SDT), which is a simplified form of HDT, with only
one stage for end-to-end data restoration, and 2) U-Net [55],
a popular choice in prevalent diffusion models. As shown in
Fig. 9, our proposed HDT outperforms the SDT and U-Net.
Specifically, the SSIM for HDT, SDT, and U-Net are 0.81, 0.75,
and 0.68 respectively. This indicate that HDT achieves a SSIM
boost of 7.7% over SDT and a significant 18.9% increment
compared to U-Net. When assessed using the FID metric,
HDT continues to lead by margins of 48.2% and 49.3% against
SDT and U-Net, respectively. The outstanding performance
benefits from the follows aspects: 1) Compared with SDT,
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HDT can efficiently decouple the non-isotropic noise intro-
duced in the diffusion process and eliminate it through two
sequential stages; 2) Compared with translation-invariant
U-Net, HDT’s transformer architecture can effectively dis-
tinguish the signal characteristics at different times, thereby
achieving more accurate signal generation.

6.3.3 Scalability Analysis. Scalability refers to a model’s abil-
ity to enhance its performance with increasing size, which
is critical for large generative models like RF-Diffusion. To
verify the scalability of RF-Diffusion, we trained 9 models
of different sizes, exploring different numbers of attention-
based diffusion blocks (16B, 32B, 64B) and hidden dimensions
(64, 128, 256). Fig. 10 illustrates that the FID performance of
RF-Diffusion is strongly correlated with model parameters
and GFLOPs, indicating that scaling up model parameters
and additional model computation is the critical ingredient
for better performance. Increasing the model size is antici-
pated to further enhance RF-Diffusion’s performance.

7 CASE STUDY
This section showcases how RF-Diffusion benefits wireless
researches in two distinct downstream tasks: Wi-Fi-based
gesture recognition and 5G FDD channel estimation.

7.1 Wi-Fi Gesture Recognition
Wireless sensing [12, 17, 71, 74] has emerged as a major re-
search focus. By serving as a data augmentor, RF-Diffusion
can boost the performance of existing wireless sensing sys-
tems, all while preserving the original model structure with-
out any modifications. In particular, our approach involves
initially training RF-Diffusion using a real-world dataset.
Subsequently, RF-Diffusion generates synthetic RF signals of
the designated type, guided by condition labels. These syn-
thetic samples are then integrated with the original dataset,
collectively employed to train the wireless sensing model.
Both RF-Diffusion-augmented solution and baseline are fun-
damentally based on the same real-world dataset, ensuring
a fair comparison, as RF-Diffusion itself is trained on this
real-world dataset and no extra data is ever involved.
We illustrate this approach through the case of Wi-Fi-

based gesture recognition and evaluate the performance
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Figure 11: Performance of augmented Wi-Fi sensing.
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Figure 12: Impact of synthetic data volume.

gains achieved by integrating RF-Diffusion into established
gesture recognition models.

7.1.1 Experiment Design. We select two different types of
Wi-Fi-based model for a comprehensive evaluation:
• Widar3.0 [78] is a gesture recognition model founded on
physical principles. It initially extracts features from raw
signals and subsequently conducts recognition through a
deep neural network.

• EI [31] is a data-driven end-to-end human activity recog-
nition model that takes raw signal as input.
We utilize the publicly available dataset fromWidar3.0 [78]

to assess performance. This evaluation encompasses scenar-
ios where RF-Diffusion and comparative methods (§6.1.2)
were employed as data augmentors.

7.1.2 Cross-domain Evaluation. We first evaluate the sens-
ing performance when the training and testing set are from
different domains (i.e., room, device placement, human loca-
tion, orientation, etc.), a common scenario in real-world wire-
less sensing system deployments. We synthesize an equiva-
lent volume of data as the real-world dataset using the pre-
trained RF-Diffusion. Subsequently, both synthesized and
authentic datasets are used for training. As shown in Fig. 11a,
integrating RF-Diffusion brings performance improvements
of 4.7% and 11.5% for Widar3.0 and EI, respectively. Integrat-
ing DDPM can bring relatively limited performance gains
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of only 1.8% and 7.3%, respectively. Additionally, the inte-
gration of DCGAN or CVAE may result in a degradation of
recognition accuracy due to deviations in the synthetic data
distribution from the original data distribution.
Compared with Widar 3.0, the EI model obtains a more

significant improvement since: 1) EI is more sensitive to the
data volume and data diversity as an end-to-end DNN; 2)
the information in the wireless signals generated in a data-
driven manner cannot be fully exploited in Widar3.0 when
being converted into physical features.
In conclusion, RF-Diffusion enhances the cross-domain

performance of wireless sensing systems in two aspects:

• Enhanced data diversity. Synthetic training data with
higher diversity avoidmodel overfitting and thus implicitly
improves the model’s domain generalization ability.

• Feature distillation. The generative model RF-Diffusion
implicitly imparts its learned signal features to the recog-
nition model through synthetic training data, contributing
to improved performance.

7.1.3 In-domain Evaluation. In the in-domain scenario, the
training and testing data are from the same domain. As
shown in Fig. 11b, the integration of RF-Diffusion yields per-
formance improvements of 1.8% and 8.7% for Widar3.0 and
EI, respectively. Overall, compared with the cross-domain
scenario, the performance gain in the in-domain case is rel-
atively modest. This is attributed to the limited impact of
diverse synthetic training data on enhancing the model’s
performance within the same domain. For in-domain testing,
even with a less diverse synthetic data generated by DCGAN,
an obvious performance gain can be achieved.

7.1.4 Impact of Synthesized Data Ratio. We further investi-
gate the impact of the synthesized data ratio used for training
to provide more insights. We evaluate Widar 3.0 and EI in
both cross-domain (CD) and in-domain (ID) cases.

As shown in the Fig. 12, we introduce varying quantities of
synthetic data (from +25% to +200%) to the real-world dataset
for joint training of the recognition model. Notably, as the
volume of synthetic data increases, the trend in recognition
accuracy exhibits an ascent to a peak followed by a decline.
Specifically, in the cross-domain case, Widar3.0 reaches the
highest accuracy of 92.7% with +100% synthetic data, while
EI reaches the highest accuracy of 83.8% with +125% syn-
thetic data. In the in-domain case, Widar3.0 achieved the
highest accuracy of 93.4% with +50% synthetic data, while EI
achieved the highest accuracy of 89.1% with +75% synthetic
data. Drawing from these statistical findings, we deduce the
following insights: 1) For most wireless recognition models,
judicious incorporation of synthetic data into the training set
can effectively enhance model performance. 2) Excessive in-
troduction of synthetic data can potentially shift the training
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Figure 13: Performance of channel estimation.

data distribution away from the original, consequently dimin-
ishing recognition accuracy. 3) The cross-domain scenario
requires a greater infusion of synthetic data into the training
set to achieve optimal model performance compared to the
in-domain scenario. 4) Data-driven end-to-end models (e.g.,
EI) reap more substantial benefits from data augmentation
facilitated by RF-Diffusion.

7.2 5G FDD Channel Estimation
In this section, we discuss how RF-Diffusion enables channel
estimation of the Frequency Domain Duplex (FDD) system
in 5G, where the uplink and downlink transmissions operate
at different frequency bands. Therefore, the principle of reci-
procity that two link channels are equal no longer holds [38].
To estimate the downlink channel state, client devices must
receive additional symbols from a base station with amassive
antenna array and send back the estimated results, causing
unsustainable overheads. To solve this problem, substantial
research is devoted to predicting the downlink channel by
observing the uplink channel state information. For example,
FNN [5] and FIRE [38] make use of a fully connected network
and a VAE to transfer the estimated CSI from the uplink to
the downlink, respectively.
We discover that by employing the uplink CSI as condi-

tional input, RF-Diffusion demonstrates the capacity to esti-
mate downlink channel CSI in a generative manner. Specifi-
cally, in RF-Diffusion, the downlink CSI 𝒙down serves as the
target data for generation, while the uplink CSI is encoded
as the condition 𝒄up and input into the model. The trained
RF-Diffusion learns the correlation between 𝒄up and 𝒙down,
thereby accomplishing the channel estimation task. This ef-
ficacy is rooted in the assumption of shared propagation
paths, positing that both link channels are shaped by the
same underlying physical environment [28, 65].

7.2.1 Experiment Design. Our evaluation is based on the
publicly available dataset Argos [58], which is a real-world
MIMO dataset collected in a complex environment with
a large number of non-line-of-sight (NLoS) propagation.
Each CSI frame contains 52 subcarriers. Similar to previ-
ous works [38, 76], we designate the initial 26 subcarriers
for the uplink channel, while the remaining 26 are allocated
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to the downlink channel. For a comprehensive evaluation,
we compare our approach against three different types of
channel estimation solutions:
• NeRF2 [76] implicitly learns the signal propagation envi-
ronment from the uplink channel state based on a neural
network, and then estimate the downlink channel.

• FIRE [38] is a channel estimation system based on VAE,
which compresses the uplink channel CSI into a latent
space representation and further transforms it into a down-
link channel estimation.

• Codebook [32], commonly used in standard implementa-
tions per the 3GPP physical channel standard[1], requires
both base stations and clients to maintain a codebook of
vectors created using predefined rules. Clients measure the
channel locally, select the closest codebook vectors, and
send the corresponding indices back to the base station.

7.2.2 Channel Estimation Accuracy. As shown in Fig. 13a,
when we input the blue uplink CSI as a condition into the
trained RF-Diffusion, the red downlink estimate will be out-
put, which closely aligns with the ground truth downlink
channel state. Assessment of channel estimation accuracy
employs the Signal-to-Noise Ratio (SNR) metric [38, 76]. This
metric gauges the congruence between the estimated down-
link channel 𝒙est and the ground truth 𝒙down through the
following formulation:

SNR = −10 log10

(
∥𝒙down − 𝒙est∥2

∥𝒙down∥2

)
. (16)

A higher positive SNR corresponds to enhanced proximity be-
tween the predicted channel and the ground truth. As shown
in Fig. 13b, RF-Diffusion achieves the highest SNR among
all comparative methods with an average SNR of 27.01, out-
performing NeRF2 and FIRE by 34.6% and 77.5% respectively,
and achieves more than 5× performance gain compared with
the standard implementation based on codebook.
The observed underperformance of NeRF2 can be attrib-

uted to its treatment of the signal propagation space as a
time-invariant system, a characterization that may not hold
in practical scenarios. VAE-based FIRE and codebook-based
methods fall short in the fine-grained characterization of the
underlying distribution of channel states. In contrast, RF-
Diffusion adeptly learns the intricate correlation between the
uplink and downlink channels, leveraging its robust model-
ing capacity to achieve highly accurate channel estimation.

8 RELATEDWORK
We briefly review the related works in the following.

Diffusion probabilistic models. Diffusion probabilistic
models [60, 70] have emerged as a powerful new family of
deep generative models with record-breaking performance
in many applications [13], including image synthesis, point

cloud completion, and natural language processing, etc. One
of the best-known diffusion model is the DDPM [60], which
progressively destruct data by injecting gaussian noise, then
learn to reverse this process for high-fidelity sample genera-
tion. On this basis, DDIM [44] expedites reverse sampling,
while LDM [54] conducts diffusion in latent space to cur-
tail computational overhead. The above schemes have been
widely used in a wide range of tasks such as image super-
resolution [26, 57], inpainting [40], and style transfer [56].
The most recent studies [37, 52] have successfully applied
a combination of blurring and additive noise to the image,
yielding satisfactory results. Although first proposed for im-
age generation, the diffusion model’s versatility extends to
other domains including point cloud completion [41, 79], text
generation [3, 19], audio synthesis [11, 35], and beyond. In ad-
dition, diffusion model has a great potential for multi-modal
generation. By integrating pre-trained language model [49],
the diffusion models achieve impressive performance in text-
to-image [45, 51] and text-to-audio [48] tasks.
RF-Diffusion, in contrast, stands as the pioneering diffu-

sion model tailored for wireless signal generation. It intro-
duces an innovative time-frequency diffusion process, which
regulates noise and blurring across two orthogonal domains,
thus encompassing both temporal and spectral intricacies
of wireless signals. By generating high-fidelity signals, RF-
Diffusion benefits wireless applications like Wi-Fi sensing
and 5G channel estimation.
Signal generation in wireless systems. Conventional

wireless signal generation schemes are mainly based on mod-
eling and simulation. In particular, these methods involve
utilizing LiDAR-scanned 3D models, and employing electro-
magnetic (EM) ray tracing techniques [42] to simulate the
distribution of wireless signals. Recent studies [10, 36, 75]
have integrated vision-based human reconstruction tech-
niques with signal propagation models, enabling the genera-
tion of wireless signals that interact with the human body.
Unfortunately, the above schemes fails to model the struc-
ture material and physical characteristics, which constraints
their performance in real-world applications. The recently
proposed NeRF2 [76] learns the properties of the signal prop-
agation space based on a deep neural network and then
accomplishes the signal generation task. However, NeRF2 is
limited to specific static scenarios and degrades for dynamic
real-world scenarios. RF-EATS [21] and FallDar [72] employ
Variational Autoencoders (VAEs) to extract environment-
independent features, thereby enhancing the generalizability
of wireless sensing models. Additionally, other studies have
utilized Generative Adversarial Networks (GANs) to gener-
ate Doppler spectrum [16]. Other research endeavors have
addressed channel estimation in wireless communication
systems using either GANs [6, 14] or VAEs [8, 38]. Nonethe-
less, due to their limited representation capabilities, solutions
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based on GANs and VAEs struggle to faithfully characterize
the intrinsic properties of original wireless signals. Conse-
quently, the aforementioned systems are suitable solely for
specific tasks, lacking the competence for general-purpose
wireless data generation.

In contrast, RF-Diffusion, as a versatile generative model
for wireless signals, can proficiently generate fine-grained
signals in high-fidelity, even within dynamic scenarios.

9 DISCUSSION AND FUTUREWORK
RF-Diffusion is a pioneering attempt towards diffusion-based
RF signal generation, and there is room for continued re-
search in various perspectives.
• RF-Diffusion for data-driven downstream tasks. Ex-
tensive practices [4, 23, 59, 77] indicate that synthetic data
from generative models significantly enhances data-driven
downstream tasks. As a conditional generative model, RF-
Diffusion effectively captures the representative features and
their novel combinations, while randomizing non-essential
details. This approach allows for the generation of inno-
vative data samples that extend beyond the initial scope
of the dataset, thus improving the generalization ability of
downstream models. This paper specifically explores and
experiments with applying RF-Diffusion to augment Wi-Fi
gesture recognition, demonstrating its potential. However,
the applicability of RF-Diffusion extends to any data-driven
task in wireless communication and sensing.
• RF-Diffusion as a simulation tool. As a probabilistic
generative model, RF-Diffusion operates independently of
any signal propagation assumptions and does not require
pre-modeling of the environment. This flexibility implies
that, while RF-Diffusion offers novel opportunities for signal
synthesis, it may not achieve the same level of stability and
precision as traditional signal simulation tools in all scenar-
ios. RF-Diffusion is not designed to supplant simulation tools
but rather to introduce a novel data-driven approach for sig-
nal synthesis, which is particularly valuable in complex and
dynamic environments, such as indoor spaces with human
activity, where accurate modeling poses challenges.
• Autoregressive signal generation. RF-Diffusion, a non-
autoregressive generative model, processes time series as a
unified entity, necessitating downsampling and interpolation
for variable-length sequences, which limits its versatility.
The advent of autoregressive models like GPT introduces
alternative methods for time-series signal generation, which
improves adaptability for sequences of differing lengths and
enable effective exploration of temporal correlation features.

10 CONCLUSION
This paper presents RF-Diffusion, the pioneering generative
diffusion model designed for RF signals. RF-Diffusion excels
in generating high-fidelity time-series signals by employing

a novel time-frequency diffusion process. This process cap-
tures the intricate characteristics of RF signals across spatial,
temporal, and frequency domains. This theoretical frame-
work is then translated into a practical generative model
based on the hierarchical diffusion transformer. RF-Diffusion
exhibits remarkable versatility. It holds significant potential
for essential wireless tasks, ranging from boosting the ac-
curacy of wireless sensing systems, to estimating channel
states in communication systems, shedding light on the ap-
plications of AIGC in wireless research.
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A CONVERGENCE OF FORWARD
DESTRUCTION PROCESS

As 𝑇 → ∞, the forward process converges to a distribution
independent of the original signal. The above proposition is
equivalent to the following two conditions: (1) lim𝑇→∞ �̄�𝑇 =

0, (2) lim𝑇→∞ �̄�𝑇 < ∞. We find a sufficient condition for
the above to hold true: all element in 𝜸 𝑡 =

√
𝛼𝑡𝒈𝑡 should

be less than 1, i.e., ∀𝑛,𝛾 (𝑛)
𝑡 < 1. Under this condition, ac-

cording to Eqn. 3, lim𝑇→∞ �̄�𝑇 = lim𝑇→∞𝜸𝑇𝒙0 = 0 holds.
Let 𝛼min = min(𝛼𝑡 ), 𝑡 ∈ [1,𝑇 ] and 𝛾

(𝑛)
max = max(𝛾 (𝑛)

𝑡 ) and
𝜸max = (𝛾 (1)

max, . . . , 𝛾
(𝑁 )
max ). It can be proven that:

lim
𝑇→∞

�̄�𝑇 = lim
𝑇→∞

𝑇∑︁
𝑡=1

(
√

1 − 𝛼𝑡
𝜸𝑇

𝜸 𝑡

)

≤
√

1 − 𝛼min lim
𝑇→∞

𝑇∑︁
𝑡=1

(𝜸max)
𝑡−1 =

√
1 − 𝛼min

1 −𝜸max
< ∞

(17)

B REVERSE PROCESS DISTRIBUTION
Based on the Bayes’ theorem, we get:

𝑞(𝒙𝑡−1 |𝒙𝑡 , 𝒙0) = 𝑞(𝒙𝑡 |𝒙𝑡−1, 𝒙0)
𝑞(𝒙𝑡−1 |𝒙0)
𝑞(𝒙𝑡 |𝒙0)

∝ exp(−1
2 (

(𝒙𝑡 −𝜸 𝑡𝒙𝑡−1)2

𝝈2
𝑡

+
(𝒙𝑡−1 −𝜸 𝑡−1𝒙0)2

�̄�2
𝑡−1

−
(𝒙𝑡 −𝜸 𝑡𝒙0)2

�̄�2
𝑡

))

= exp(((
𝜸 𝑡

𝝈𝑡

)2 + ( 1
�̄�𝑡−1

)2)𝒙2
𝑡−1 − (

2𝜸 𝑡

𝝈2
𝑡

𝒙𝑡 +
2𝜸 𝑡−1
�̄�2
𝑡−1

𝒙0)𝒙𝑡−1 +𝐶 (𝒙𝑡 , 𝒙0)),

(18)
in which the recursive relationship is used: �̄�2

𝑡 = 𝜸 2
𝑡 �̄�

2
𝑡−1+𝝈2

𝑡 ,
which can be inferred by combining Eqn. 2 and Eqn. 3.
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