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Gait, the walking manner of a person, has been perceived as a physical and behavioral trait for human
identification. Compared with cameras and wearable sensors, Wi-Fi-based gait recognition is more attractive
because Wi-Fi infrastructure is almost available everywhere and is able to sense passively without the
requirement of on-body devices. However, existing Wi-Fi sensing approaches impose strong assumptions
of fixed user walking trajectories, sufficient training data, and identification of already known users. In this
paper, we present GaitSense, a Wi-Fi-based human identification system, to overcome the above unrealistic
assumptions. To deal with various walking trajectories and speeds, GaitSense first extracts target specific
features that best characterize gait patterns and applies novel normalization algorithms to eliminate gait
irrelevant perturbation in signals. On this basis, GaitSense reduces the training efforts in new deployment
scenarios by transfer learning and data augmentation techniques. GaitSense also enables a distinct feature of
illegal user identification by anomaly detection, making the system readily available for real-world deployment.
Our implementation and evaluation with commodity Wi-Fi devices demonstrate a consistent identification
accuracy across various deployment scenarios with little training samples, pushing the limit of gait recognition
with Wi-Fi signals.
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Fig. 1. System overview.

1 INTRODUCTION
Person identification is an important prerequisite that triggers many applications concerning
convenience, security and, privacy, such as smart building [45], intruder detection [15] and area
access [5]. Various biometric signs, e.g., fingerprint [5], iris [7], voice [8], vital signs [19, 29] and
gait [30], have been widely studied and exploited for person identification. Among these modalities,
gait acts as one of the most convenient signatures as it is not required to be actively inputted by a
person, and can be measured within a wide range that enables room-scale and even home-scale
person identification.

Various sensor modalities, e.g., cameras [10], inertial sensors on wearables [39] and Wi-Fi signals
emitted by wireless devices [30], have been certificated to be able to extract the gait of a person
for identification. Among these sensors, video requires a deliberate deployment of surveillance
cameras in monitoring areas and has the risk of privacy leakage. Inertial sensors require users to
actively carry mobile devices. In contrast, Wi-Fi signals have become a more attractive carrier for
gait-based person identification since Wi-Fi infrastructure is ubiquitously available [34], and recent
research has shown that it can recognize one’s gait passively without wearing any devices.
The current state of Wi-Fi-based gait identification approaches [30, 37, 38], however, rely on

extensive training efforts for every target person in each monitoring area. Such cumbersomeness
stems from three limitations of the existing approaches. First, Wi-Fi signals reflected by a target
person not only possess the gait signature of the person but also are distorted by the surrounding
multipath environment. Thus, the recognition model directly trained with raw Wi-Fi features or
their statistics, as WiWho [37], may overfit the environment where the data is collected and cannot
be generalized to new environments without retraining. Second, besides the effect of environmental
factors, features related to the gait of the person in Wi-Fi signals still depend on how the person
moves relative to the Wi-Fi devices. WiFiU [30] derives parameters of gaits from Doppler Frequency
Spectrum (DFS). However, it requires that the target person walks right towards or away from the
Wi-Fi devices on fixed trajectories to ensure the consistency of the DFS profile, which limits the
practicality of the approach. Third, as the learning model becomes more and more sophisticated,
e.g., in terms of the number of parameters that need to be trained, a sufficiently large amount of
training data is required when each new person is added. In a recent work [26], a 3-layer Deep
Neural Network (DNN) requires approximately 300 training samples to be collected for each person
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Table 1. A comparison of state-of-the-art works for Wi-Fi-based gait recognition

Properties WifiU [30] WiWho [37] WiFi-ID [38] AutoID [44] GaitSense
Arbitrary track No No No No Yes
Wi-Fi link(s) 1 1 1 1 6
Feature DFS CSI+DFS CSI+DFS CSI GBVP
Training samples/user ∼50 ∼20 ∼20 ∼10 ∼50
Maximum user numbers 50 7 6 20 11
Accuracy1 (#users) 79% (50) 75% (7) 77% (6) 90% (20) 76% (11)
1 Note that the reported accuracies in these works are for different numbers of users and we only present
the results for the maximum number of users in these works.

for training. Moreover, existing approaches only focus on identifying legal users whose gait data
has been collected, but make little effort on detecting unauthorized persons. With these limitations,
existing approaches are hardly practical nor scalable. Table.1 compares recent Wi-Fi-based gait
recognition systems from aspects of resource requirements and system performance. All the existing
works impose strict restrictions on the walking tracks, undermining their application prospect.
On the contrary, GaitSense is less intrusive to the users by performing recognition for arbitrary
walking tracks, making it one of the most practical Wi-Fi-based gait recognition systems. Even
though the number of Wi-Fi links used by GaitSense is more than other works, we believe the
deployment overhead is acceptable given that more Wi-Fi infrastructures are on their way to our
daily lives.

In this paper, we present GaitSense, a ubiquitous Wi-Fi-based person identification framework,
which is robust to walking manners and environmental variance and reduces training efforts
significantly as Fig.1 shows. GaitSense has three key characteristics that enhance the robustness of
this system with limited training samples. First, GaitSense is immune to environmental variations
and motion status (e.g., location and velocity) of target persons, and retains prominent generaliz-
ability between environments and trajectories. Second, GaitSense is capable of transferring the
learned model of existing persons to newcomers with only a small amount of training data collected
from the person. Third, GaitSense is designed to detect anomalies of gaits when unauthorized
users appear for more robust identification. To support these features, we overcome three critical
challenges.

The first challenge is to overcome the negative impact of environmental variations and the motion
status of the target person during walking. GaitSense borrows the idea of body-coordinate velocity
profile (BVP) [43], which represents the velocities of body parts during walking. The BVP is resilient
to scenario factors, including environmental changes, and the location and orientation of walking
trajectories. However, BVP can not be directly used as a gait feature, as it is dedicated to in-place
activities where movements of the torso and legs are ignored. Besides, the BVP extraction algorithm
is too complicated and can not be applied in real-time systems. To adapt BVP to real-time gait
identification, we propose an agile algorithm to extract gait-specific feature GBVP and devise novel
normalization algorithms to boost its robustness to gait-irrelevant factors. The designed feature
is theoretically both environment and trajectory-independent, which mitigates gait-irrelevant
components.
The second challenge is to effectively train the model with a small quantity of data collected

from each new user. GaitSense adopts a deep neural network as the gait identification model,
which is proved to be effective but has so sophisticated structure that requires a large number of
data samples to get fully trained. To overcome the challenge, GaitSense exploits transfer learning
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Fig. 2. Challenges of Wi-Fi-based gait identification.

to avoid retraining of the partial network which extracts high-level gait features from the input
velocity profile and has the same network parameters shared by all persons.

The third challenge is to detect novel users for robust identification and intruder detection
purposes. As the conventional recognition pipelines are meant to perform identification within the
predefined set, which would output erroneous human identity if the test users are not included
in the training set. GaitSense designs an anomaly detection algorithm to determine whether the
test users have been seen during the training phase and perform identification afterward to avoid
misidentification.
Putting it all together, we implement GaitSense on commodity off-the-shelf Wi-Fi devices and

conduct experiments in typical indoor scenarios. We collect data from 11 subjects and overall 4,600
traces. GaitSense achieves the accuracy of 93.2% for 5 user identification and 76.2% for 11 user
classification while reducing the training data of newcomers from 400 samples to 50 samples on
arbitrary trajectories with arbitrary speeds. To the best of our knowledge, GaitSense is the first
gait-based identification approach without any restriction on walking trajectory and speed.

In summary, we make the following contributions.
• We propose an agile algorithm to extract gait-specific feature GBVP that is resilient to
environment and trajectory change and thus relieves restrictions on walking manners.

• The proposed gait identification approach requires little training efforts for various scenarios
and persons and thus can be easily deployed and extended.

• The system is capable of detecting illegal users that are not included in the training set before
the recognition process, which enables robust identification and intruder detection.

• We implement GaitSense on COTS Wi-Fi devices and extensive experiments have demon-
strated the effectiveness and robustness of the proposed system.

2 MOTIVATION
GaitSense attempts to tackle three main challenges in Wi-Fi-based gait identification, which may
hinder its steps towards ubiquitous sensing.

Immune to trajectory and speed variance. Both WiWho [37] and WiFiU [30] try to preserve
human-specific information in their extracted features, e.g., DFS from Wi-Fi signals. Such features,
however, are highly correlated with users’ relative movements to Wi-Fi devices, thus impose
stringent restrictions on their monitoring tracks. Widar3.0 [43] proposes a domain-independent
feature BVP, which is mainly designed for in-place activities and sensitive to the moving speed
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Stance Phase Swing Phase

Fig. 3. Gait cycle for one leg.

of the target. As a brief example, two people are asked to walk on three tracks multiple times at
different speeds. We train the simple human identification classifier composed of convolutional
and recurrent layers with the features collected on track #0, including DFS, BVP, and our proposed
GBVP, and test with those on the other trajectories. As shown in Fig.2a, while DFS and BVP indicate
human identity from the same track with high accuracy, they fail to hold performance when testing
and training datasets are from different tracks. Whereas, GBVP is robust to track and speed variance.

Reducing training data for newcomers. To fully exploit the spatial and temporal properties
of motion features, existing works [9] leverage sophisticated deep neural networks to achieve
high accuracy. However, a more complex structure usually means more parameters need to be
trained, which leads to the requirement of a massive amount of training data. This problem becomes
increasingly conspicuous when new users are added and the network should be re-trained. Fig.2b
illustrates the exponential growth trend of required training samples needed to reach specific
accuracy for a typical DNN network.

Detecting anomaly user. Current Wi-Fi-based gait identification approaches focus on enhanc-
ing classification accuracy within a pre-defined user set. A more realistic challenge is how to
identify illegal intruders whose gait patterns have not been seen by the training set. However,
WiWho [37] and WiFiU [30] either ignore this scenario or use threshold-based anomaly detection
algorithms, which are sensitive to environmental changes.

Lessons learned. The deficiency of existing gait identification works demands to be relieved
before practical usage is achieved. GaitSense is designed to address these issues.

3 PRELIMINARY
In this section, we provide preliminary knowledge of gait, and modeling and extraction of BVP, a
feature capturing kinetic characteristics of human motion.

3.1 Preliminaries on Gait
Gait means the walking manner of a person. The gait cycle of one leg can be partitioned into
two stages, and Fig.3 takes the left leg as an example. The stance phase begins when the heel of
the left foot strikes the ground and ends when the right foot toes off the ground. Then the swing
phase follows and ends when the heel of the right foot strikes the ground. For different people, the
gait cycle will vary as it is determined by the underlying musculoskeletal structure of the person.
Such biometric discrepancy contributes to the possibility of utilizing gait patterns to discriminate
different persons and achieve human identification [2].
Although walking is a complicated motion as it involves different body parts including both

torso and limbs, prior work [36] has proved that human identity extracted from gait is embodied

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article . Publication date: May 2021.



6 Yi Zhang, et al.

mostly in limbs motions. Hence, we mainly focus on the movement patterns of limbs in our paper
to recover human movements for identification.

3.2 Preliminaries on BVP
CSI from Wi-Fi. The physical layer Channel State Information (CSI) describes channel character-
istics of the Wi-Fi signal propagation environment. Suppose that there is a moving person in the
monitoring area, the received CSI with multipath effects can be modeled as follows:

Hm(f , t) = (Hm(f )+

Ldynamic∑
l=1

αm,l (f , t)e
j2π

∫ t
−∞

fD ,l (u)du ) · eεm (f ,t ),
(1)

where Hm(f ) refers to the static reflection paths. Ldynamic is the number of dynamic reflection
paths. αm,l is the amplitude attenuation of l th path onmth antenna. fD ,l is the Doppler Frequency
Offset (DFO) caused by the moving person, corresponding to the path length changing rate of the
l th reflection path. Term eεm (f ,t ) is the phase noise introduced by hardware imperfection onmth

antenna, which can be calibrated by conjugate multiplication of CSI from two antennas of the same
Wi-Fi NIC [22], and static phase offset can be manually removed according to [33].

BVP From CSI. When a person performs a gait activity, the whole body is exposed to Wi-Fi
signals, causing dynamic multipath components in the received CSI signals. Each dynamic reflection
path causes different DFO, which are superimposed at the receiver and form the observed DFS
profile. DFS can be extracted by applying time-frequency-analysis [31] on the received CSI signals.
However, DFS may NOT stay consistent across different walking settings for the same person, as
DFO only captures the radial velocity component and is determined by the relative position of the
moving target from the perspectives of the Wi-Fi transmitter and receiver.
A recent work [43] proposed to leverage DFS from multiple Wi-Fi links to generate BVP, an

ideal motion indicator that is resilient to environmental changes and the location and orientation
of the target. BVP describes power distributions over velocity components at each timestamp in
the body coordinate system, whose origin is at the location of the target and the positive direction
of the x-axis is determined by the orientation of the target. BVP is an N × N matrix, where N is
the number of possible values of velocity components decomposed along each axis of the body
coordinate.

To recover BVP from DFS, a quantitative model can be established to mathematically depict their
relationship. For a single reflection path, we can suppose that the moving target is on an ellipse
whose foci are the transmitter and receiver at any instant. The velocity component projected on the
norm direction causes changes in reflection path length and induces DFO as the following shows:

f (®v) = axvx + ayvy , (2)
Here, ax and ay are projection coefficients to project vx and vy onto norm direction. They are

determined by the location of the transmitter, receiver, and target, which can be provided with the
help of existing localization systems (please refer to [43] for details).

Searching over the velocity and attenuation of all the potential reflection paths by approximating
observed DFS with reconstructed DFS from combined DFO, BVP can be recovered from multiple
links’ CSI information.
As BVP is theoretically immune to the changes of environment, and location and orientation

of the moving target, it is a favorable feature to indicate gait patterns and characterize human
identities, especially for arbitrary walking traces. However, BVP is not readily applicable for gait
recognition, because it is modeled for in-place human activities (arm gestures) but gait involves
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the collaborative motion of the arm, torso, and legs. Besides, the BVP extraction algorithm is too
complex to be applied to real-time services.

4 SYSTEM DESIGN
4.1 Overview
Fig.4 shows the workflow of our system. GaitSense first collects CSI measurements from multiple
Wi-Fi links and removes random phase noises caused by hardware imperfection by applying the
denoising algorithms in [14, 22, 33]. GaitSense then performs motion tracking and time-frequency
analysis, followed by GBVP estimation with a novel and agile algorithm. With GBVP as input,
GaitSense implements a deep neural network composed of both convolutional layers and recurrent
layers to capture underlying spatial and temporal characteristics of GBVP. GaitSense further utilizes
transfer learning to adapt to new users with only a few gait samples collected from the user. Finally,
GaitSense performs anomaly detection to identify illegal users from the predefined user set.
In the following sections, we will discuss the detailed design of GaitSense, including GBVP

extraction in §4.2, the recognition model and methods for reducing training data in §4.3, as well as
illegal user detection algorithms in §4.6.

4.2 GBVP Extraction
Widar3.0 [43] proposed an environment-independent motion feature BVP to portray in-place human
activities (gestures), which is resilient to location, orientation, and environmental changes. However,
BVP can not be directly used for gait recognition and the reasons are two-fold. 1) BVP assumes that
the reflection objects on the human body are at fixed locations during movements. This assumption
holds valid for gesture recognition because the motion range for arms is at the decimeter level
and can be ignored compared to the relative location between the human torso and Wi-Fi devices.
However, for gait recognition, users can walk for several meters and the locations of reflection
points will change drastically during walking. Hence, the velocity profile should be reformulated.
2) The complexity of the BVP extraction algorithm is especially high and can hardly be applied
in real-time systems. Gait recognition technique is commonly used in security or commercial
scenarios and demands an agile recognition system. Therefore, GaitSense designed a rigorous and
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Fig. 5. Torso and limbs motion in DFS profile.

agile feature extraction algorithm to acquire environment-independent and gait-specific feature
GBVP (gait-BVP) to tackle these concerns.

GBVP formulation. To foumulate GBVP, we first define an operator ⊗ as:

A ⊗ B ≜
M∑
i=1

N∑
j=1

A(i , j ,∗) · B(i , j), (3)

where A ∈ RM×N×P and B ∈ RM×N . Hence, the operation result A ⊗ B ∈ RP is equivalent to
multiply each element of B with corresponding vector in the third dimension of A and then sum
them up. Using the defined operator, we formulate GBVP as follows:

[GBVP] = minG

L∑
i=1

|EMD(D(i)(G), [DFS](i))| + η∥G∥0, (4)

where G ∈ RN×N is GBVP. D(i)(G) ∈ RN×N×F is the reconstructed DFS from GBVP for ith Wi-Fi
link. [DFS](i) is the observed DFS on ith link. L is the total number of links. N is the number of
possible values of velocity components along x/y axis. F is the number of frequency bins in DFS.
EMD(·, ·) is the Earth Mover’s Distance [23] and | | · | |0 is the number of non-zero elements in GBVP.
η is the sparsity coefficient. Equation.4 is similar to BVP but the following formulation makes GBVP
more agile and adaptive to torso movements:

D(i)(G) = SUB(A(i)) ⊗ G, (5)

where A(i) ∈ R(N×N×F ) is the coefficient matrix to map GBVP into DFS on ith link. The SUB(·)
is the operator to cherry-pick the most relevant elements in the coefficient matrix to reduce the
searching space of GBVP and eventually reduce algorithm complexity. We will shortly introduce
the algorithm on how to do that reduction. Each element in the coefficient matrix can be determined
by:

A(i)
(j ,k ,m)

=

{
1, fm = f (i)(< vj ,vk >, t)
0, otherwise

, (6)

where < vj ,vk > is the corresponding velocity vector of the < j,k >th element in GBVP matrix.
fm is the mth frequency sampling point in the DFS profile. f (i)(·, t) is a mapping function to
convert target velocity into DFS observation for ith link at time t (as illustrated in Equation.2).

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article . Publication date: May 2021.



GaitSense: Towards Ubiquitous Gait-Based Human Identification with Wi-Fi 9

(a) Search zone within GBVP. (b) Normalized GBVP with speed compensation.

Fig. 6. GBVP extraction and normalization.

Different from BVP, the mapping function is dependent on the location of human torso and is time-
varying. Theoretically, f (i)(·, t) should be updated whenever the location of user’s torso changes
(we dismiss the relative location of limbs to torso). In practice, we only update this function when
the location changes over a specific threshold (i.e., 0.5 meters) for computational efficiency. In
GaitSense, we acquire target user’s torso position and orientation by existing Wi-Fi-based passive
tracking system [11, 20, 21].

We would like to clarify that even though GBVP is an extended version of BVP, they are different
in both model formulation and motion representation. First, the extraction algorithm of BVP is
based on the static location of the human torso while GBVP is for moving activities. Second,
BVP only captures the motion of human arms, which is applicable in gesture recognition tasks.
However, GBVP portrays both the motion of the torso and limbs, which is applicable in full-body
activity recognition tasks such as gait recognition or fitting activity recognition. GBVP fills the
gap for human activity recognition that is not fully covered by BVP features. We believe, with
the collaborative use of BVP and GBVP, human-centered wireless sensing will be pushed into an
environment-independent manner.

Accelerating GBVP extraction. For activity recognition tasks with Wi-Fi, only a few major
reflection paths are considered andWidar3.0 [43] leveraged this sparsity by adding a regular term in
target function to recover BVP. However, this sparsity is not fully exploited and the algorithm is still
too cumbersome to be applicable. Our key insight is that the spatial correlation embodied in human
motion could potentially be used to reduce the complexity of the GBVP extraction algorithm.

We observe that, during gait activity, the limbs would swing to opposite sides of the torso with
limited speeds and the velocity of all the reflection paths would cluster around the velocity of
the torso. This observation can be confirmed by Fig.5. This profile is constructed with CSI for 4
continuous cycles from one user. The red curve demonstrates the major energy corresponding to
torso motion and the white curves demonstrate the residual energy corresponding to the motion of
limbs. It is clearly shown that both sparsity and spatial clustering phenomena exist in the reflected
signals. Hence, if we can pinpoint the velocity of the torso on the GBVP matrix, then the whole
body GBVP components can be searched within a small area centered on the torso component.

Based on the above observations, GaitSense first identifies the maximum frequency bins in DFS
from each Wi-Fi link and formulates the relationship between frequency bins and velocity with
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Fig. 7. Gait recognition model.

Equation.2. Solving the equations from multiple links, GaitSense pinpoints the torso velocity on the
GBVP matrix. On top of that, GaitSense crops the adjacent elements of the torso component in the
coefficient matrix described in Equation.5. The subtracted coefficient matrix is then used for GBVP
recovery with Equation.4. After the above process, the GBVP search space is hereby reduced. In
our experiments, the crop windows size is empirically selected and a smaller window would result
in shorter running time but deteriorative accuracy, vice versa. The torso and limbs components as
well as the search zone in GBVP are visualized in Fig.6a.

GBVP Normalization. While GBVP is theoretically only related to the gait of the target, it
requires extra normalization to increase the stability as a gait indicator. The reasons are three-fold.
First, literature [36] has proven that the torso movement contains little information on gait patterns
and needs to be removed. Second, the power of the reflected signals is correlated with torso position
relative to transceivers. Third, different walking speeds correspond to different limbs swing speeds,
which results in variations of the number of GBVP frames and values floating within each GBVP
matrix.

Thereafter, GaitSense first compensates the torso speed by applying translation and rotation on
GBVP. The translation displacement is ∥ ®vtorso ∥2 and the rotation angle is ∠ ®vtorso − ∠ ®vr ef where
®vr ef is the manually selected reference orientation. This transformation procedure is similar to
moving the target human to a treadmill, on which the target performs fixed-speed walking.

GaitSense then normalizes the sum of all elements in each GBVP to 1. It is based on the observation
that the absolute reflection power contains environment information while the relative power
distribution over physical velocities doesn’t. Lastly, GaitSense scales each single GBVP with a
scaling ratio vob

vtд
, where vob is the observed walking speed and vtд is the target walking speed.

GaitSense then resamples GBVP series over time with a resampling ratio of vtд
vob

, which is based on
the hypothesis that the total displacement of the limbs relative to the torso is analogous across
different walking speeds.
After normalization, only human identity information is retained while gait-irrelevant factors

are removed. The normalized GBVP is visualized in Fig.6b, where torso speed is compensated and
walking direction is normalized to a fixed direction.
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Fig. 8. Network weights trained from two datasets (lower layers share commonalities).

4.3 Recognition Mechanism
Fundamental model. Generally speaking, each single GBVP frame captures limbs’ velocity dis-
tribution relative to the torso, and the GBVP series exhibit how the distribution varies over time.
As shown in the upper half of Fig.7, we adopt a deep neural network (DNN) to best depict the
characteristics of GBVP.

The input of the fundamental DNNmodel is of size 20×20×30, as velocity is quantized into 20 bins
along the axis of the body-coordinate system, and the GBVP series is adjusted to 30 snapshots after
normalization. GaitSense first applies 3D CNN onto the GBVP series for spatial feature compression
and time redundancy reduction. Convolution operations along with the time domain also alleviate
single GBVP estimation error. 16 convolutional filters of size 5×5×5 output 16 3D matrices of size
16×16×26. Then a max-pooling layer is applied to down-sample feature maps to the size of 8×8×26.
By flattening the feature maps except for the time dimension, we obtain a vector series of size
1,024×26. And a fully connected (FC) layer is appended.

Recurrent layers are also incorporated into the model to model the temporal dynamics of the
vector series. Considering the long-term characteristics of GBVP as a gait cycle that always lasts
for a duration of more than one second [17], regular RNN suffers from the vanishing gradient
problem [24], which hinders them from being used for long-term information extraction. Thus,
instead of regular RNN, we adopt a better variation of RNNs: Long Short TermNetworks (LSTM) [25].
The output of LSTM is then encoded with the softmax layer to do multiclass classification.

Transfer learning for reducing training efforts. Despite the fact that the structure of the
fundamental model is not that sophisticated, the DNN model still demands enormous training
data to converge. And when a new user is added to the human identification system, he/she must
perform massive gait activities. Evaluation results in §5 show that there will be a rapid reduction
in recognition accuracy even if the amount of training data decreases slightly.
Our solution was inspired by the observation that neural networks trained on similar datasets

often share commonalities, i.e., the model trained on similar datasets undergoes analogous conver-
gence procedure to some extent [27, 35]. This characteristic is exploited in a well-known research
realm called Transfer Learning.

To testify the validity of Transfer Learning in gait recognition, we tune the fundamental model
from scratch on two independent datasets separately, each of which is composed of GBVP series from
two different users. We visualize and compare the network weights from the two converged models.
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As can be seen from Fig.8, the lower layers of the neural network have analogous distributions
of weights while the upper layers vary a lot. This phenomenon paves the way to transfer the
information learned from different datasets and alleviate data collection efforts.
To leverage this generalizability between datasets, GaitSense first trains a model on the pre-

collected large-scale dataset, which consists of GBVP from n_class_1 persons. Then GaitSense
replaces the softmax layer in the fundamental model with a different shape of n_class_2 and
initiates it randomly. The remaining weights of the model are initialized with the weights copied
from the pre-trained model. The lower half of Fig.7 shows how transfer learning is applied in
GaitSense. We will demonstrate that starting from the transferred structure and weights, our model
can converge on the new dataset with significantly fewer data instances in §5.

4.4 Data Augmentation
By transferring the DNNmodel to new user sets, the scale of dataset required for model retraining is
significantly reduced, relieving the need for extra data collection and model adaptation efforts when
applying the system to new users. However, given that the neural network is heavily parameterized,
it still requires a considerable amount of training data collected from the users. To further boost
the agility of GaitSense, we propose a series of data augmentation algorithms to expand the scale
of the collected dataset virtually.
As is discussed in §4.2, the GBVP feature is a 3-dimensional matrix. The first two dimensions

represent the velocity along the horizontal plane and the third dimension represents time. This
physically plausible trait of GBVP allows us to generate novel data samples by directly deforming
the original samples. Specifically, we design three methods to generate synthetic data to augment
the training dataset.

• Smoothing to remove temporal mutations. Each frame of the GBVP series represents the
distribution of signal power over different velocities. This distribution should transform
continuously over time because the movements of the human body are successive. However,
based on our observation, the extracted GBVP series have mutations over time, making it
challenging to capture the consistent features of gait movements. The mutations are due to
the following reasons. First, radio frequency (RF) signals have a specular reflection effect
when reflected from the human body [1, 42], which makes some of the reflected signals not
received by the Wi-Fi receiver. Consequently, some of the elements in GBVP frames are
missing and this phenomenon is varying over time. Second, the GBVP extraction algorithm
is based on the compressed sensing technique and is prone to local optimums. This will break
the continuity structure of the GBVP series over time. To remedy this, we smooth the GBVP
series over time with a sliding window to produce a sanitized version of the sample. This
smoothing process alleviates the temporal mutations and better captures the transformations
of the human body during walking.

• Randomizing to introduce diversity. The previous method augments data by removing
temporal mutations. In this entry, we adopt the randomization technique to introduce diversity
into the GBVP series. Specifically, we randomly generate sparse matrices that follow a normal
distribution and add them to each frame of GBVP. The maximum value of non-zero elements
is set to half of the maximum value of GBVP and the sparsity is set to 20% empirically.
Note that each frame of GBVP is randomized with the same random distribution, which is
equivalent to randomizing over both spatial and temporal dimensions.

• Averaging over adjacent gait cycles to enhance walking periodicity.Human gait motion
has periodical patterns and each cycle embodies the complete gait feature for a user. We will
demonstrate in §5 that a single gait cycle suffices for gait identification. However, during
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Fig. 9. Ambiguity exists in GBVP estimation due to the constrained field of vision for each Wi-Fi link.
Ambiguity can be removed with a single link when the user walk on a linear track.

human walking, several factors affect the stability of gait patterns across different cycles. First,
the changes in surrounding environments would affect the walking manners. For example, the
body would push more weights on the outer legs when turning at the corner, making the gait
pattern distorted. Second, the relative locations of the Wi-Fi devices to the human body are
continuously changing when the users walk towards different locations. This phenomenon
induces perturbations in the received signals and hence affects the GBVP periodical patterns.
To remedy this, we split GBVP series into different cycles and the adjacent cycles are averaged
to preserve the periodicity. This creates an extra number of synthetic samples for model
training.

4.5 Extending to a Single Wi-Fi Link
In GaitSense, we adopt six Wi-Fi links (including one transmitter and six receivers) to capture
human walking. This setting enables orientation-agnostic recognition. However, in real-world
scenarios, the users may walk on fixed tracks with specific directions (e.g., corridor, aisle, etc), under
which circumstances, a single link is sufficient for GBVP estimation. Hence, it is attractive to extend
GaitSense to work with a single Wi-Fi link. In this section, we first discuss the ambiguity that exists
in the GBVP estimation algorithm and present the reasons why multiple links are required to solve
this problem. Then, we discuss the method to extend the algorithm to a single link when users
walk on straight tracks, relieving the need for heavy hardware deployment.

In GaitSense, we quantize GBVP as a discrete matrix with dimension as N × N , where N is
the number of possible values of velocity components decomposed along the X-axis and Y-axis.
The value of each element represents the power of the reflected signal from all the objects with
the corresponding velocity. For each Wi-Fi link, if we draw an ellipse across the reflection object
with the transmitter and receiver as foci, only the velocity along the norm direction of the ellipse
can induce DFO. In other words, DFS profiles only reflect the projected velocity along the norm
direction. The relationship between projected velocity and GBVP is depicted in Fig.9. To estimate
the GBVP matrix, we have to reversely perform this projection procedure. Suppose three reflection
objects are observed and their ground truth velocities are marked with brown color in Fig.9. Each
link can only capture the projected velocity along its norm direction, which creates ambiguity in
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GBVP estimation. Specifically, with only the information from link #1, all the elements along the
projection direction (marked with pink and orange colors) are potentially the target ones. To remedy
this, we have to add more links. With link #1 and #2, ambiguity still exists in the elements marked
with an orange color and three links are sufficient in this case. However, when the projection of
ground truth elements overlaps on link #3, more links are demanded to resolve this ambiguity.
The above discussion presents the most general model for GBVP estimation where users may

walk on arbitrary tracks. However, in realistic scenarios, we can leverage the prior information
of walking tracks to relieve the need for more Wi-Fi links. As is discussed in §3, human limbs
swing forward and backward during walking, which means most of the body parts move along
the same direction (the facing direction). This phenomenon is also observed from our measured
GBVP features (Fig.6). When users walk along a linear track, the dominant elements in the GBVP
matrix will align on a line. For example, in Fig.9, a user walks along X-axis and the three ground
truth elements only occur in the search zone marked with a dashed grid. In this case, we only need
link #1 to recover the location of the three elements without ambiguity. Generally speaking, when
the user walks on a linear track, we only need one link that is not perpendicular to the walking
direction to recover the GBVP matrix.

In practice, if GaitSense is deployed to perform recognition on a linear and fixed track, we place
one pair of Wi-Fi devices with their line-of-sight (LOS) perpendicular to the walking track. The
sub-area in Equation.5 is cropped by the direction of the track:

D(i)(G) = SUB(A(i) ∗M (θ )) ⊗ G, (7)

where θ is the angle of the walking direction,M (θ ) is the mask matrix formulated as:

M (θ )
i , j =

{
1, |anдle(< vi ,vj >) − θ | < ϵ
0, otherwise

, (8)

where < vi ,vj > is the corresponding velocity vector of the < i, j >th element in GBVP matrix.
ϵ is the threshold (set to 0.1 rad). By applying the mask matrix, the non-zero elements in the
GBVP matrix are constrained to be within a linear zone and ambiguity is circumvented. When
GaitSense is deployed for arbitrary tracks, we still need at least three Wi-Fi links to estimate GBVP
for recognition.

4.6 Anomaly Detection
Anomaly detection is another important problem for human identification as illegal users should be
discriminated against the legal ones even if no data instance of intruders is collected in the training
dataset.

We split a dataset of 6 persons into 5 legitimate users and 1 illegal user, and train the classifier to
favor 5 legitimate users. Thereafter, we feed all of the 6 users’ data into the model and extract the
128 dimension vectors of LSTM output as features for anomaly detection. We then apply the t-SNE
algorithm to visualize those features in Fig.10.
As can be seen, the feature points from legitimate user 1-5 are tightly clustered, while those

from illegal user 6 (purple points) spread across the feature space randomly. The key insight is that
these outliers mostly occur at the edge space of each cluster. We describe our anomaly detection
algorithm in Algorithm.1.

Algorithm.1 can be divided into three steps. First, during the training time, GaitSense calculates
the mean average neighbour distance for each legitimate class and treats them as the class density.
Second, during the testing time, GaitSense identifies the K-nearest neighbours of the test sample,
and regards the most prevalent class in its neighbours as its potential class. At last, for the test
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Fig. 10. t-SNE visualization of legitimate and illegal user distribution (illegal user marked as 6).

Algorithm 1 Anomaly detection algorithm
Input: Θ [i] , (i = 1, 2, ...,M), the legitimate users’ feature data of allM classes.

Φ [i] , (i = 1, 2, ...,m), the legality unknown users’ feature data to be classified.
K , the nearest neighbour parameter.
ω, the threshold parameter.

Output: ϕ [i] , (i = 1, 2, ...,m): the legality of Φ [i] , (i = 1, 2, ...,m)

Calculate neighbour density for each legitimate class:
1: for i = 1 toM do
2: For each sample θ j in Θ [i], calculate its mean distance to K nearest neighbours, denoted as

dj
3: Density [i] = averaдe (d)
4: end for

Diagnose legality of each sample in Φ:
5: for i = 1 tom do
6: Identify K nearest neighbours of Φ [i] in Θ
7: Regard the most prevalent class τ in its neighbours as the potential class
8: Calculate mean distance to its K nearest neighbours in Θ [τ ], denoted as λ
9: if λ > ω · Density [τ ] then
10: ϕ [i] = Illeдal
11: else
12: ϕ [i] = Leдal
13: end if
14: end for
15: return ϕ

sample, GaitSense computes its average distance to the nearest K samples in that potential class. If
it is larger than the weighted class density, the test sample is considered illegal, vice versa.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article . Publication date: May 2021.



16 Yi Zhang, et al.

(a) Discussion Room (b) Hall

Monitoring 

Area

Monitoring 

Area

Monitoring 

Area

U
P

U
P

(a) Floor plan of rooms.

Tx

Rx

Track

1.7m1.7m 1.7m1.7m

1
.6

5
m

1
.6

5
m

1
.6

5
m

1
.6

5
m

0.55m4.6m 0.55m4.6m

0
.5

m
4

.4
m

0
.5

m
4

.4
m

44

33

22

11

xx

11

22

33

44

12

3

4

5

6

x
55

66

(b) Tx/Rx positions and walking tracks.

Fig. 11. Experimental settings.

5 EVALUATION
This section presents the experimental settings and the detailed performance of GaitSense.

5.1 Experimental Methodology
Implementation. GaitSense consists of one transmitter and six receivers. Each of the transceivers
is a mini-computer physically sized 170mm × 170mm × 50mm and equipped with an Intel 5300
Wi-Fi card. The operating system is Ubuntu 10.04 with Linux CSITool [6] installed to log CSI
measurements. The Wi-Fi cards work at channel 165 with a center frequency of 5.825 GHz. CSI
measurements are logged at a rate of 1,000 Hz and the CSI processing and feature extracting
algorithms are implemented in MATLAB, while the learning model is implemented in Keras with
TensorFlow as backend. Table.2 presents the size of the implemented DNN model.

Table 2. DNN Model Parameters

Layer 3D Conv Max pooling FC-1 LSTM FC-2 Total
Params. 2,016 0 65,600 74,496 387 142,499

Evaluation setup.We conducted experiments under two different indoor environments with
different layouts: an empty discussion room with desks and chairs and a wide hall beside stairways.
Fig.11a demonstrates the floor plan of monitoring area. Benefiting from GBVP’s robustness to device
deployment, we empirically setup a monitoring area of 4.6m × 4.4m square, which is sufficient to
collect at least 5 steps of gait data. The setup of transceivers and walking tracks is demonstrated in
Fig.11b. The 4.6m × 4.4m square is a typical setting to perform gait recognition in indoor scenarios
especially in the office or household environments. However, people can also custom their device
deployment settings according to their needs, and three requirements should be met. First, the
receivers should be within 6 meters of the transmitter. This is because the signal amplitude decays
during propagation and we observed a tumble in system performance when the distance exceeds 6
meters. Second, no more than three devices should be in a straight line. This rule guarantees that
the ambiguities in the GBVP estimation procedure are removed to the utmost extent. Third, the
LOS path for each transmitter-receiver pair should not be blocked by objects and the users. This is
because the signal reflection model only holds valid when the LOS path exists.
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Fig. 12. Overall accuracy.

GaitSense is designed to handle various walking tracks, but it’s hard to traverse the endless
instances of tracks. Our evaluation results have shown that 2 steps are sufficient to portray the
identity of users and a walking orientation error within 50 degrees exerts minor influence on
recognition accuracy. Hence, an arbitrary walking track can be segmented into sub-tracks, each can
be quantized into one of the 8 directions separating 45 degrees apart. Hence, we designed four linear
tracks, including two perpendicular lines to both axes and two diagonal lines shown in Fig.11b.
Each of these tracks has enough length for five steps and users can walk on both ways. To evaluate
the system performance on non-straight tracks, we also design non-linear tracks with circle and
rhombus shapes, which are labeled #5 and #6 in Fig.11b. For the linear tracks, we manually annotate
the human locations mainly for benchmark analysis. For track #5 and #6, we adopt Wi-Fi-based
human tracking systems to provide the human locations for case study in §5.6.
We recruited 11 volunteers (4 females and 7 males) to participate in our experiments, covering

the height from 155cm to 186cm and weight from 44kg to 75kg, and age from 20 to 28 years old.
These volunteers were asked to walk normally with different speeds on those tracks and each data
sample contains five steps. Specifically, 10 of the volunteers were asked to walk in each direction of
four tracks 50 times in Hall, contributing to 10 users × 4 tracks × 2 directions × 50 instances for
datasets. 3 of the volunteers in the Discussion Room contributed to 3 users × 4 tracks × 2 directions
× 25 instances in the dataset. All experiments were approved by our IRB. The datasets are released
and incorporated into our previously published Widar3.0 datasets at the website1.

5.2 Overall Performance
All the data collected from 11 volunteers in Hall were mixed and randomly split into two datasets,
discarding the walking tracks and speed. We employed standard 10-fold cross-validation to evaluate
the accuracy. Fig.12a shows the confusion matrix for 11 users.
The overall identification accuracy for all of the 11 users is 76.2%. From the confusion matrix,

most users experience an accuracy of over 75% except for user E, H, and J, which may be attributed
to their walking manner of putting hands in pockets, leading to infrequent motions of arms and
induce less significant features in GBVP. User J and F are likely to be confused, which may be
caused by their similarities in body shape.
Fig.12b further shows the identification accuracy for different user numbers. Basically, the

identification accuracy declines withmore users involved, which is intuitive becausemore categories
1http://tns.thss.tsinghua.edu.cn/widar3.0/index.html
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would lead to more crowded feature clusters in feature space. The accuracy for two users is above
99%, meaning that the extracted gait features are distinct for identification. Notably, GaitSense holds
its accuracy above 93.2% for about 5 users, demonstrating its potential for smart home applications
where there are only a few users in indoor scenarios.

5.3 Generalizability Evaluation
Now we evaluate the performance of proposed generalization mechanisms, including GBVP extrac-
tion accelerating algorithm, GBVP normalization algorithm and transfer learning framework.

Accelerating performance. The process of GBVP extraction is accelerated by the novel accel-
eration algorithm. To validate the efficiency and effectiveness of GBVP over BVP, we collect 400
samples of CSI from three volunteers and each corresponds to 4 steps. We then extract BVP as well
as GBVP with different accelerating windows sizes (as described in §4.2). The system is running
on a server with 32 cores of Intel Xeon CPU E5-2620 v4 @ 2.10GHz and Matlab2016b installed.
The system running delay and recognition accuracy are demonstrated in Fig.13. Note that the time
consumption of the DNN model is within 6 ms for a gesture that lasts 2 seconds, which is too trivial
to be considered. The end-to-end delay of GaitSense is approximate to that of the GBVP estimation
algorithm. As can be seen, even with 2 seconds of CSI as input, the BVP extraction would last for
unbearably 78 seconds. However, with our proposed accelerating algorithm, the feature extraction
speed can be accelerated 156 times while maintaining the recognition accuracy to some extent. The
GBVP extraction delay is 0.5 seconds with a window size of 5x5 and the accuracy holds above 83%,
which enables the system to respond in realtime. We believe the proposed accelerating algorithm
would push the BVP to a broader application prospect on other motion recognition scenarios.

Normalization performance. For walking track independence, we randomly select two users’
data from all the datasets, using one track for test and the remaining three tracks to train our model,
ignoring their walking speed. As is shown in Fig.14, the overall accuracy with normalized GBVP is
significantly above that without normalization. The second track benefits least from normalization
because we selected its direction as the reference direction and the GBVP from other tracks are
rotated to match this orientation. For walking speed independence, we classify all the collected data
into 6 categories, each with quantized speed. We then select one category for test and the others to
train the model. Fig.15 demonstrates the remarkable improvements with normalization. The fifth
category benefits the least from normalization because we selected its speed as the reference speed
and GBVP with other speeds are normalized to this case.

Transfer learning and data augmentation performance. Transfer learning is applied to
re-train the model on a new dataset from an existing pre-trained model, which needs fewer data
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samples for the model to converge. Data augmentation techniques are used to generate synthetic
datasets from the authentic data and use both of the datasets for model training. To verify the
effectiveness of these methods, we randomly selected four ([A,B,C,D]) users’ data with a total of 4
× 400 samples containing all the tracks and speeds. These samples are feed into a pre-trained model
that has already been tuned on two ([A,E]) user’s data. By gradually decreasing the number of data
involved in re-training, results can be found in Fig.16. We also evaluate the system performance
when the augmented data samples are used for model retraining. In Fig.16, the TL represents
Transfer Learning and Synth represents Synthetic dataset. With transferred model structure and
weights, only 50 data samples from each user are needed to keep the recognition accuracy above
80%. When the synthetic dataset is used, the accuracy increases by 3%-5%. But when training the
model without transfer learning and without data augmentation, accuracy can hardly exceed above
60% with such few data. We also evaluated transformations between different user pairs with
limited data samples. Fig.17 exhibits consistency in generalizability between different user set pairs.
The slight degradation of accuracy for user pair (A,B)-(C,D,E,F,G) may attribute to user G’s great
similarities in gait patterns with the other users.

5.4 Anomaly Detection Evaluation
This section presents the performance of the anomaly detection algorithm. Before we give the
detailed evaluation results, several definitions should be clarified. Fail Alarm Rate (FAR) defines the
ratio of illegal users are classified as legitimate users. False Rejection Rate (FRR) defines the ratio of
legitimate users classified as intruders. Looking back into Algorithm.1, the weight ratio poses a
significant impact on FRR and FAR.
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Fig. 19. Impact of gait instances.
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Fig. 20. Impact of Wi-Fi links number.

We randomly select 5 users to construct the legitimate set and another user as an intruder. By
gradually changing the weight ratio parameter, results can be found in Fig.18. Intuitively, a small
weight ratio would produce a narrow confidential space for legitimate users, which may lead to a
large FRR. While a large weight ratio would produce a loose confidential space, which may falsely
embrace illegal users, causing higher FAR. The green part in Fig.18 represents a high risk for fail
alarm and the orange part represents a high risk for false rejection. To seek a balance between FRR
and FAR, we empirically set the weight ratio to 0.96, which produces 9% for both FAR and FRR.
Note that, due to the environment-independent feature of GBVP, the weight ratio only needs to be
tuned once and can generalize to other scenarios.

5.5 Parameter Study
This section presents the impact of parameters to the performance of GaitSense.

Impact of gait instances. To evaluate the impact of gait instances on identification accuracy,
we randomly select four users and let them perform 5 steps of walk. We then manually split steps
into different numbers by DFS peaks and valleys. Results can be found in Fig.19. The performance
falls slightly from 5 steps to 2 steps but tumbles to below 78% with a single step. The reason is that
a full gait cycle contains 2 consecutive steps, each of which is insufficient for the representation of
identity. Meanwhile, gait is a periodic motion and the repetition of gait cycles introduces trivial
extra information for gait characteristics. Result from temporal memorability of LSTM in our
model, GaitSense is capable of retaining distinctions from single gait cycles. Hence, we claim that 2
consecutive steps are sufficient for human identification. In practice, we suggest using four steps
for more robust performance.

Impact of link numbers. In the formulation of extracting GBVP for gait, we adopted 6 Wi-Fi
links, which potentially contain redundancy. In this section, we evaluate the impact of link numbers
on system performance. We randomly selected four users for classification and randomly prune
partial links. Results can be found in Fig.20. The accuracy gradually slides when involved Wi-Fi
links reduce. This is because fewer links capture fewer reflection paths from the human body, and
theoretically at least 3 links are necessary to recover valid GBVP. With only 2 links, accuracy drops
to below 80% and is hardly beyond research usage.

Impact of orientation error. In the GBVP normalization process, we rotate GBVP to identify
with the reference orientation, which demands a precise estimation of walking direction. However,
orientation extracted from state-of-the-artmotion tracking techniques contains prominent errors. To
evaluate the impact of orientation error on human identification accuracy, we generated training and
testing sets by manually providing trace orientation, and added controllable orientation disturbance
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Fig. 21. Impact of orientation error.
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Fig. 22. Performance on non-linear tracks.
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Fig. 23. Performance with a single link.

to the test set. Results can be found in Fig.21. As the illustration showed, an orientation error
within 50 degrees doesn’t noticeably deteriorate accuracy, while an orientation error above 50
degrees witnesses an unacceptable dilution in identification accuracy. Hence, the four tracks with
eight orientations designed in our evaluation implementation are sufficient to represent more
complicated walking traces.

5.6 Case Study
This section presents the system performance for some practical cases.

Performance on non-linear tracks. In the above experiments, the users are required to walk
on linear tracks and the human locations are annotated manually. However, this setting is not
practical for real-world deployment, where users may walk on arbitrary tracks with various shapes.
To test the system performance on non-linear tracks, we perform this case study evaluation. In
this case study experiment, three users’ data are from tracks #1∼#4, and two users’ data are from
all the tracks marked in Fig.11b. For the circle-shaped track #5, we split it into two semicircles
and define the shape as the "Arc". For the rhombus-shaped track #6, we split it into four lines and
combines them into the "One-turn" and "Two-turns" shapes. All the non-linear tracks start from the
point closest to the X-axis. To acquire the locations of users during walking, we adopt the system
proposed in Widar [20], which uses similar device deployment settings with ours. The tracking
results and the GBVP extraction results are synchronized according to the timestamps logged by
CSITool. As is shown in Fig.22, the average recognition accuracy for track "One-turn" is 85% and it
decreases to 83% for tracks "Two-turns" and "Arc". The accuracy eventually decreases to 79% for
tracks "Rhombus" and "Circle". The results reveal a decrease in performance when users walk for
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longer distances. This is because the tracking system is based on velocity estimation and is prone
to cumulative errors. The localization results will deviate from ground truth when the users walk
further and break the structure of GBVP features. We believe this limitation can be mitigated by
using more accurate tracking systems [11, 21] and we leave it for future work. However, according
to our evaluation on the impact of gait instances in §5.5, gait can be recognized with a small number
of steps benefiting from the periodicity property of human walking. Hence, the impact of the
walking track and its length are trivial to the performance of GaitSense.

Performance with a single Wi-Fi link. GaitSense extracts GBVP feature from CSI signals,
which is mathematically an underdetermined procedure and requires CSI readings from at least
three Wi-Fi links to mitigate the ambiguity. However, as is discussed in §4.5, when the users walk on
linear tracks, this problem becomes easily solvable with a single Wi-Fi link. This setting is common
in real-world scenarios, where users may walk along corridors or aisles. With fewer links used, the
system becomes more practical for deployment. In this experiment, we evaluate the performance
of GaitSense when only a single link is used. Specifically, five participated users walk on tracks
#1∼#4, and only the transmitter (Tx) and one receiver (Rx) are used accordingly. For tracks #1 and
#2, Tx and Rx-3 are used and for tracks #3 and #4, Tx and Rx-6 are used. We adopt this setting
because only the movements perpendicular to the links can induce DFO. The evaluation results are
shown in Fig.23. As is shown, the accuracies are around 78% for tracks #1 and #3, which reveals
that a single Wi-Fi link can also produce satisfying recognition accuracy. The performance tumbles
to around 72.5% for tracks #2 and #4, which is because these tracks are not fully perpendicular to
the links and have some leakage in the information. This experiment demonstrates that GaitSense
is capable of using one single Wi-Fi link for user recognition, as long as the walking tracks are
fixed and perpendicular to the link. However, when users are allowed to walk on arbitrary tracks,
at least three links are required to perform recognition.

6 RELATEDWORK
Our work is focused on human identification based on gait patterns, which can be roughly catego-
rized into vision-based, sensor-based, and radio-based works.

Sensor-based gait identification. Sensor-based approaches fall into two categories: floor sen-
sors and wearable sensors. In the former type, geophone [18] or pressure sensors [3] are installed
under/on the floor to detect slight floor vibrations or measure foot shape, orientation, and contact
force distribution when human feet strike the ground, and structural vibration patterns are extracted
to depict human identification. These techniques are susceptible to sensor position, floor structure,
and walking speed. In the latter type, accelerometers [39] or rotation sensors [16] are explored to
record accelerations and rotation variance during walking. However, these techniques are prone
to sensor noise and non-gait motions. While GaitSense extracts gait features that are immune to
walking speed, track variance, and imposes no intrusion on target users.

Vision-based gait identification. Vision-based approaches leverage cameras to generate some
series of human silhouettes from the video frame and then apply DNN-based classifier on the
sequence of human silhouettes [4, 28, 41]. These methods require a continuous stream of camera
data or LOS but are prone to ambient light conditions. They are also criticized for privacy concerns.
While GaitSense only extract feature from Wi-Fi signals, which is unrelated to light conditions and
is able to work under dark environments. GaitSense doesn’t capture target images and can better
preserve privacy.

Radio-based gait identification. Radio-based gait identification methods fall into two cate-
gories: using specialized devices and using Wi-Fi devices. In the former type, Frequency-Modulated
Continuous-Wave (FMCW) radar [12] is applied to analyze DFS induced by human motion. These
techniques are less appealing due to their high costs of dedicated infrastructures. In the last type,
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WiWho [37] and WiFiU [30] leverage CSI collected from commercial Wi-Fi devices to depict human
identification, but require the user to walk on a predefined track. A recently published work Gait-
Way [32] proposes to extract gait features from the speed variations, which imposes no limitations
on the walking manners. However, due to its cumbersome recognition pipeline, a large number
of training samples are demanded to adapt the system to novel users. In comparison, GaitSense
designs several methods including transfer learning and data augmentation to relieve the needs for
massive training data, requiring only dozens of walking instances to tune the system.

Recently, a pioneering work XModal-ID [13] proposes to combine vision technology with wire-
less signals for human identification. The key idea underpinning this work is to capture human
mesh models with cameras and simulate wireless signal that can be reflected from the model.
By comparing the synthesis signals with the observed signals, XModal-ID can perform human
identification with only one gait sample and the image of the person, relieving the need for a
large-scale training dataset. Our work, however, exploits another way for human identification
with deep learning-assisted technology, and both works set new stages for the wireless sensing
field.

7 CONCLUSION
In this paper, we present GaitSense, a Wi-Fi-based person identification framework that is robust
to walking trajectory with few training efforts. GaitSense first proposes an enhanced gait-specific
feature, which is environment, trajectory, and speed independent theoretically. GaitSense then
reduces the training efforts for new users by transfer learning technique. At last, GaitSense leverages
a novel anomaly detection algorithm to detect illegal users. Experimental results show that GaitSense
achieves an accuracy of 93.2% for 5 users for arbitrary tracks and the performance retains above
81.6% even when training data decreases to 20% of that needed by the original system.
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