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Abstract—With the development of signal processing technology, the ubiquitous Wi-Fi devices open an unprecedented opportunity to
solve the challenging human gesture recognition problem by learning motion representations from wireless signals. Wi-Fi-based
gesture recognition systems, although yield good performance on specific data domains, are still practically difficult to be used without
explicit adaptation efforts to new domains. Various pioneering approaches have been proposed to resolve this contradiction but extra
training efforts are still necessary for either data collection or model re-training when new data domains appear. To advance
cross-domain recognition and achieve fully zero-effort recognition, we propose Widar3.0, a Wi-Fi-based zero-effort cross-domain
gesture recognition system. The key insight of Widar3.0 is to derive and extract domain-independent features of human gestures at the
lower signal level, which represent unique kinetic characteristics of gestures and are irrespective of domains. On this basis, we develop
a one-fits-all general model that requires only one-time training but can adapt to different data domains. Experiments on various
domain factors (i.e. environments, locations, and orientations of persons) demonstrate the accuracy of 92.7% for in-domain recognition

and 82.6%-92.4% for cross-domain recognition without model re-training, outperforming the state-of-the-art solutions.

Index Terms—Gesture Recognition, Feature Extraction, Wireless Sensing, COTS WiFi

1 INTRODUCTION

UMAN gesture recognition is the core enabler for a

wide range of applications such as smart homes, secu-
rity surveillance, and virtual reality. Traditional approaches
use cameras [1], [2], [3], wearable devices and phones [4],
[5], [6] or sonar [7], [8], [9] as the sensing module. While
promising, these approaches pose inconvenience due to
their respective drawbacks including leakage of privacy, the
requirement of on-body sensors, and the limit of sensing
range. The need for a secure, device-free, and ubiquitous
gesture recognition interface has triggered extensive re-
search on sensing solutions based on the wireless signals
extracted from commodity Wi-Fi. Pioneer attempts such
as E-eyes [10], CARM [11], WiGest [12] and WIMU [13]
have been proposed. In principle, early wireless sensing
solutions extract either statistical features (e.g., histograms
of signal amplitudes [10]) or physical features (e.g., power
profiles of Doppler frequency shifts [11]) from Wi-Fi sig-
nals and map them to human gestures. However, these
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Fig. 1. Cross-domain gesture recognition, where persons may be at
different locations and orientations relative to Wi-Fi links, and environ-
ments (e.g., lab, home, etc.). In this example, one male and one female
are performing clapping gestures in two domains.

primitive signal features usually carry adverse environment
information unrelated to gestures. Specifically, due to lack
of spatial resolution, wireless signals, and their features as
well, are highly specific to environment where the gesture is
performed, and the location and orientation of the performer,
as Fig. 1 shows. For brevity, we unitedly term these factors
irrelevant to gestures as domain. As a result, the classifiers
trained with primitive signal features in one domain usually
undergo drastically drop in accuracy with another domain.

Recent innovations in gesture recognition with Wi-Fi
have explored the cross-domain generalization ability of
recognition models. For example, recent works [14], [15]
borrow the ideas from recent advances in deep learn-
ing, such as transfer learning and adversarial learning,
and apply advanced learning methodologies to improve
cross-domain recognition performance. Another solution,
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WIAG [16], derives a translation function to generate signal
features of the target domain for model re-training. While to
some extent achieving cross-domain recognition, all existing
works require extra training efforts in either data collection
or model re-training at each time a new target domain is
added into the recognition model. Even worse, correlated
with the continuous location and orientation of a person,
Wi-Fi signals have an infinite number of domains, making
cross-domain training approaches practically prohibitive.

A more promising but challenging solution is a “one-
fits-all” model that is able to train once, use anywhere. Such
an ideal model, trained in one domain, can be directly
used in new domains without extra efforts, such as data
collection, generation, or re-training. Different from all ex-
isting approaches, our key idea is to move generalization
ability downward at the lower signal level, rather than
the upper model level. Specifically, we extract domain-
independent features reflecting only gesture itself from raw
domain-dependent signals. On this basis, we aim to build
an explainable cross-domain recognition model that can be
applied in new scenarios with zero effort and high accuracy.

However, we face three major technical challenges to
achieve a one-fits-all model. First, previously used signal
features (e.g., amplitude, phase, Doppler Frequency Shift
(DFS)), as well as their statistics (e.g., max, min, mean,
distribution parameter), are domain-dependent, meaning
that their values vary with different locations, orientations,
and environments even for the same gesture. Second, it is
difficult, for radio signals from only several links, to de-
scribe human gestures and actions. For example, the kinetic
profile of a single gesture still has hundreds of variables,
posing the estimation of kinetic profile as a highly under-
determined problem. Third, cross-domain generalization
often requires sophisticated learning models (e.g., deeper
networks, a larger number of parameters, a more complex
network structure, and more complicated loss functions),
which slow down or even obstruct training, over-consume
training data, and make the model less explainable.

To overcome these challenges, we propose Widar3.0,
a Wi-Fi-based gesture recognition system. Widar3.0 uses
channel state information (CSI) portrayed by commod-
ity Wi-Fi devices. Our prior efforts, Widar [17] and
Widar2.0 [18] track coarse human motion status, e.g., torso
location and velocity, by extracting the features from the
dominant reflected signal off body torso. Widar3.0, however,
aims at recognizing complex gestures that involve multiple
body parts. The key component of Widar3.0 is our novel
theoretically domain-independent feature body-coordinate ve-
locity profile (BVP) that describes power distribution over
different velocities, at which body parts are involved in the
gesture movements. Our observation is that each type of
gesture has its unique velocity profile in the body coordinate
system (e.g., the coordinates where the orientation of the
person is the positive = axis) no matter in which domain
is the gesture performed. To estimate BVP, we approximate
BVP from several prominent velocity components and fur-
ther employ compressed sensing techniques to derive accu-
rate estimates. On this basis, we devise a general learning
model to capture spatial-temporal characteristics of BVP
and finally classify gestures. Through the downward move-
ment of model generalization techniques closer to the raw

signals, Widar3.0 enables zero-effort cross-domain human
gesture recognition with many expected properties simul-
taneously, including explainable features, high and reliable
accuracy, strong generalization ability, reduced amounts of
training data. We implement Widar3.0 on commodity Wi-
Fi devices and conduct experiments on our released dataset
(16 users, 15 gestures, 15 locations, and 5 orientations in
3 environments). Especially, the results demonstrate that
Widar3.0 significantly improves the accuracy of gesture
recognition to 92.4% in cross-environment cases, while the
recognition accuracy with raw CSI and DFS profiles are
40.2% and 77.8% only. Across different types of domain
factors including user’s location, orientation, environment,
and user diversity, Widar3.0 achieves an average accuracy
of 89.7%, 82.6%, 92.4%, and 88.9%, respectively.

In a nutshell, our core contributions are three-fold. First,
we present a novel domain-independent feature that cap-
tures body-coordinate velocity profiles of human gestures
at the lower signal level. BVP is theoretically irrespective
of any domain information in raw Wi-Fi signals and thus
acts as a unique indicator for human gestures. Second,
we develop a onefits-all model on the basis of domain-
independent BVP and a learning method that fully exploits
spatial-temporal characteristics of BVP. The model enables
cross-domain gesture recognition without any extra effort of
data collection or model re-training. Third, though trained
only once, Widar3.0 achieves an average of 89.7%, 82.6%,
and 92.4% recognition accuracy across locations, orienta-
tions, and environments, respectively, which outperforms
the state-of-the-art solutions that require re-training in new
target domains. Such consistently high performance demon-
strates its strong ability of cross-domain generalization. To
the best of our knowledge, Widar3.0 is the first zero-effort
cross-domain gesture recognition via Wi-Fi, a fundamental
step towards ubiquitous sensing.

A preliminary version of Widar3.0 has been presented in
[19]. We extend it in the following aspects:

o We design and implement a novel outlier detection
algorithm to determine whether the gestures belong
to the predefined gesture set and evaluation results
exhibit conspicuous robustness to the unknown ges-
tures compared to the previous conference version.

e We design and implement a novel dynamic link
selection algorithm to mitigate the effect of gesture-
irrelevant human motion, and extensive experiments
demonstrate a significant improvement in system
performance compared to the previous conference
version.

e We provide details in the system implementation
and conduct additional experiments to evaluate the
robustness and agility of Widar3.0 under various
settings.

2 RELATED WORK

Our work is highly related to wireless human sensing
techniques, which are roughly categorized into model-based
and learning-based ones, targeting localization and activity
recognition, respectively.
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Fig. 2. Dominant DFS of gesture differs with

person orientations and locations. components.

Model-based wireless localization. Model-based hu-
man sensing explicitly builds a physical link between wire-
less signals and human movements. On the signal side,
existing approaches extract various parameters of signals re-
flected by human or emitted by portable devices, including
DFS [11], [17], [20], ToF [21], [22], [23], [24], AoA/AoD [23],
[24], [25], [26], ACF [27], and attenuation [28], [29]. Based on
the types of devices used, parameters with different extent
of accuracy and resolution can be obtained. WiTrack [21],
[22] develops FMCW radar with wide bandwidth to ac-
curately estimate ToFs of reflected signals. WiDeo [23]
customizes full-duplex Wi-Fi to jointly estimate ToFs and
AoAs of major reflectors. In contrast, though limited by the
bandwidth and antenna number, Widar2.0 [18] improves
resolution by jointly estimating ToF, AoA and DFS.

On the human side, existing model-based works only
tracks coarse human motion status, such as location [21],
[28], velocity [17], [20], gait [30], [31] and figure [24], [32].
Though not detailed enough, they provide coarse human
movement information, which can further help Widar3.0
and other learning-based activity recognition works to re-
move domain dependencies of input signal features.

Learning-based wireless activity recognition. Due to
complexity of human activity, existing approaches extract
signal features, either statistical [10], [31], [33], [34], [35],
[36], [37] or physical [11], [13], [16], [38], [39], [40], [41], [42],
[43] ones, and map them to discrete activities. The statistical
methods treat the wireless signal as time-series data, extract
its waveforms and distributions in both time and frequency
domain as fingerprints. E-eyes [10] is a pioneer work to
use strength distribution of commercial Wi-Fi signals and
KNN to recognize human activities. Niu et al. [37] uses
signal waveforms for fine-grained gesture recognition. The
physical methods take a step further to extract features
with clear physical meanings. CARM [11] calculates the
power distribution of DFS components as learning features
of HMM model. WIMU [13] further segments DFS power
profile for multi-person activity recognition. However, due
to fundamental limits of domain dependencies of wireless
signals, directly using either statistical or physical features
is infeasible to generalize to different domains.

Tempts to adapt recognition schemes in various do-
mains fall into two categories: virtually generating features
for target domains [15], [16], [44], [45] and developing
domain-independent features [14], [46], [47]. In the former
type, WiAG [16] derives translation functions between CSIs
from different domains and generates virtual training data

Fig. 3. Complex gestures cause multiple DFS

Fig. 4. Accuracy of adversarial learning drops
without target domain data.

accordingly. CrossSense [15] adopts the idea of transfer
learning and proposes a roaming model to translate signal
features between domains. However, features generated by
these types of works are still domain-dependent, which
require training of classifier for each individual domain,
leading to a waste of training efforts. In contrast, with the
help of passive localization, Widar3.0 directly uses domain-
independent BVPs as features and trains the classifier only
once.

In the latter type, the idea of adversarial learning is usu-
ally adopted to shift the task of separating gesture-related
features from domain-related ones. EI [14] incorporates an
adversarial network to obtain domain-independent features
from CSI. However, cross-domain learning methodologies
require extra data samples from the target domain, increas-
ing data collection and training efforts. Moreover, features
generated by learning models are semantically uninter-
pretable. In contrast, Widar3.0 explicitly extracts domain-
independent BVPs, and only needs a simply designed learn-
ing model without the capability of cross-domain learning.

3 MOTIVATION

Widar3.0 addresses the problem of cross-domain gesture
recognition with Wi-Fi signals. Due to the lack of spatial
resolution, wireless signals are highly formatted by domain
characteristics. Either or not to some extent enabling cross-
domain sensing, existing wireless sensing solutions have
significant drawbacks in their feature usage. The three main
types of features are listed as follows:

Primitive features without cross-domain capability.
Most state-of-the-art activity recognition works extract
primitive statistical (e.g., power distribution, waveform)
or physical features (e.g., DFS, AoA, ToF) from CSI [48].
However, due to different locations and orientations of the
person and multipath environments, features of the same
gesture may vary significantly and fail to serve successful
recognition. As a brief example, a person is asked to push
his right-hand multiple times with two different orientations
relative to the wireless link. The spectrograms are calculated
as in [11], and dominant DFS caused by the movement of the
hand is extracted. As shown in Fig. 2, while dominant DFS
series of gestures with the same domain form compact clus-
ters, they differ greatly in trends and amplitudes between
two domains, and thus fail to indicate the same gesture.

Cross-domain motion features for coarse tracking.
Device-free tracking approaches [18], [20] build quantitative
relations between physical features of signal and the mo-
tion status of the person and enable location and velocity
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measurement across environments. However, these works
regard a person as a single point, which is infeasible for
recognizing complex gestures that involve multiple body
parts. Fig. 3 illustrates the spectrogram of a simple hand
clap, which contains two major DFS components caused by
two hands and a few secondary components.

Latent features from cross-domain learning methods.
Cross-domain learning methods such as transfer learn-
ing [15] and adversarial learning [14] latently generate fea-
tures of data samples in the target domain, either by trans-
lating samples from the source domain or learning domain-
independent features. However, these works require extra
efforts of collecting data samples from the target domain
and retraining the classifier each time new target domains
are added. As an example, we evaluate the performance of
an adversarial learning based model, EI [14] over different
domain factors (e.g., environment, location and orientation
of the person). Specifically, the classifier is trained with
and without data samples in every type of target domains.
For the absence of target domain, the experiment settings
are the same as that in Sec. 7.3. For the involvement of
the target domain, the data samples for each domain are
equally split into train and test. In Fig. 4, the central mark
indicates the median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles. The whiskers
correspond to the highest and lowest observations. As is
shown, the system accuracy significantly drops without the
knowledge of the target domains, demonstrating the need
for extra data collection and training efforts in these learning
methodologies.

Lessons learned. The deficiency of existing cross-dom
-ain learning solutions asks for a new type of domain-
independent feature. Should it be achieved, a one-size-fits-all
model could be built upon it to save much data collection
and training efforts. Widar3.0 is designed to develop and
exploit body-coordinate velocity profile (BVP) to address the
issue.

4 OVERVIEW OF WIDAR3.0

Widar3.0 is a cross-domain gesture recognition system using
off-the-shelf Wi-Fi devices. As shown in Fig. 5, multiple
wireless links are deployed around the monitoring area.
Wireless signals, as distorted by the user in the monitoring
area, are acquired at receivers and their CSI measurements
are logged and preprocessed to remove amplitude noises
and phase offsets.

The major parts of Widar3.0 are two modules, the BVP
generation module and the gesture recognition module.

Upon receiving sanitized CSI series, Widar3.0 divides
CSI series into small segments and generates BVP for each
CSI segment via the BVP generation module. Widar3.0 first
prepares three intermediate results: DFS profiles, the orien-
tation and location information of the person. DFS profiles
are estimated by applying time-frequency analysis to the
CSI series. The orientation and location information of the
person is calculated via motion tracking approaches. There-
after, Widar3.0 applies the proposed compressed-sensing-
based optimization approach to estimate the BVP of each
CSI segment. The BVP series is then output for following
gesture recognition.
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Fig. 5. System overview.

The gesture recognition module implements a deep
learning neural network (DNN) for gesture recognition.
With the BVP series as input, Widar3.0 performs normal-
ization on each BVP and across the whole series, in order
to remove the irrelevant variations of instances and per-
sons. Afterward, the normalized BVP series is input into
a spatial-temporal DNN, which has two main functions.
First, the DNN extracts high-level spatial features within
each BVP using convolutional layers. Then, recurrent lay-
ers are adopted to perform temporal modeling of inter-
characteristics between BVPs. Before the gesture classifica-
tion module, a novel outlier detection algorithm is applied
on the output of the DNN to testify the legality of the
gesture performed. Any gestures out of the predefined
gesture set will be reported as illegal and will not be
classified. Finally, the output of the DNN is used to indicate
the type of gesture performed by the user. In principle,
Widar3.0 achieves zero-effort cross-domain gesture recog-
nition, which requires only one-time training of the DNN
network but can be directly adapted to as many as new
domains.

5 BODY-COORDINATE VELOCITY PROFILE

Intuitively, human activities have unique velocity distribu-
tions across all body parts involved, which can be used as
activity indicators. Among all parameters (i.e. ToF, AoA,
DFS, and attenuation) of the signal reflected by the person,
DFS embodies most information of velocity distribution.
Unfortunately, DFS is also highly correlated with the lo-
cation and orientation of the person, circumventing direct
cross-domain activity recognition with DFS profiles.

In this section, we tempt to derive the distribution of
signal power over velocity components in the body coordi-
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Fig. 6. Relationship between the BVP and DFS profiles. Each velocity
component in BVP is projected onto the normal direction of a link, and
contributes to the power of the corresponding radial velocity component
in the DFS profile.

nate system, i.e. BVP, which uniquely indicates the type of
activities. Preliminary of the CSI model is first introduced
(§ 5.1), followed by the formulation and calculation of BVP
(§ 5.2 and § 5.3).

5.1 Doppler Representation of CSI

CSI portrayed by off-the-shelf Wi-Fi devices describes mul-
tipath effects in the indoor environment at arrival time ¢ of
packets and frequency f of subcarriers:

L
I (f,6) = (Y aulf,)e 2 UI0) i )

=1

where L is the number of paths, oy and 7; are the complex
attenuation and propagation delay of the I/-th path, and
e(f,t) is the phase error caused by timing alignment offset,
sampling frequency offset and carrier frequency offset.

By representing phases of multipath signals with the
corresponding DFS, CSI can be transformed as [17]:

A(f,t) = (H()+ Y aa(t)e? o I 080 icl50) 3

lEPy

where the constant H; is the sum of all static signals with
zero DFS (e.g., LoS signal), and P; is the set of dynamic
signals with non-zero DFS (e.g., signals reflected by the
target).

With conjugate multiplication of CSI of two antennas
on the same Wi-Fi NIC calculated, and out-band noises
and quasi-static offsets filtered out, random offsets can be
removed and only prominent multipath components with
non-zero DFS are retained [20]. As subcarriers of CSI are cor-
related with each other and each of them embodies different
center frequency and DFS that is related to the wavelength
of the signal, we adopt PCA-based algorithm proposed in
CARM [11] to extract principal components of CSI streams.
Further applying short-term Fourier transform yields power

distribution over the time and Doppler frequency domains.
One example of the spectrogram of a single link is shown
in Fig. 3. We denote each time snapshot in spectrograms as
a DFS profile. Specifically, a DFS profile D is a matrix with
dimension as F' x M, where F' is the number of sampling
points in the frequency domain, and M is the number of
transceiver links. Based on DFS profile from multiple links,
we then derive domain-independent BVP.

5.2 From DFS to BVP

When a person performs a gesture, his body parts (e.g., two
hands, two arms and the torso) move at different velocities.
As a result, signals reflected by these body parts experience
various DFS, which are superimposed at the receiver and
form the corresponding DFS profile. As discussed in § 3,
while DFS profile contains the information of the gesture, it
is also highly specific to the domain. In contrast, the power
distribution over physical velocity in the body coordinate
system of the person, is only related to the characteristics of
the gesture. Thus, in order to remove the impact of domain,
BVP is derived out of DFS profiles.

The basic idea of BVP is shown in Fig. 6. For prac-
ticality, a BVP V is quantized as a discrete matrix with
dimension as N x N, where N is the number of possible
values of velocity components decomposed along each axis
of the body coordinates. For convenience, we establish the
local body coordinates whose origin is the location of the
person and positive x-axis aligns with the orientation of
the person. Currently, it is assumed that the global lo-
cation and orientation of the person are available. Then
the known global locations of wireless transceivers can be
transformed into the local body coordinates. Thus, for better
clarity, all locations and orientations used in the following
derivation are in the local body coordinates. Suppose the
locations of the transmitter and the receiver of the i-th link
are Z_Ez) = (a:gl),ygl)), 9 = (xy),yﬁl)), respectively, then
any velocity components (%) = (vggb),vg(,b)) in the human
body coordinate will contribute its signal power to some
frequency component, denoted as () (%), in the DFS profile
of the i-th link [17]:

FOE) = Dol + ool 3)

where 7(9) = (Ug(gg ), v}ﬁ )) is the velocity in global coordinate
and is rotated from 7®) with the human orientation. ag(vz)
and az(f) are coefficients determined by locations of the

transmitter and the receiver:

RO 20
(@) — —(_ =t T
Ay’ = )\( l—(z) + l—(l) )7
N2 (172
_ _ 4)
o -1 v v )
a,’ = — - - R
R S 100 PR TR

where ) is the wavelength of Wi-Fi signal. As static com-
ponents with zero DFS (e.g., the line of sight signals and
dominant reflections from static objects) are filtered out
before DFS profiles are calculated, only signals reflected
by the person are retained. Besides, when the person is
close to the Wi-Fi link, only signals with one time reflection
have prominent magnitudes [18] as Fig. 3 shows. Thus,
Equation 3 holds valid for the gesture recognition scenario.
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Fig. 7. The BVP series of a pushing and pulling gesture. The main velocity component corresponding to the person’s hand is highlighted with red

circles in all snapshots.

From the geometric view, Equation 3 means that the 2-
D velocity vector ¢ is projected on a line whose direction
vector is d(¥) = (—ag), ag)). Suppose the person is on an
ellipse curve whose foci are the transmitter and the receiver
of the i-th link, then d(® is indeed the normal direction of
the ellipse at the person’s location. Fig. 6 shows an exam-
ple where the person generates three velocity components
¥;,J = 1,2, 3, and projection of the velocity components on
the DFS profiles of three links.

Since coefficients a and a!/ only depend on the loca-
tion of the i-th link, the relation of projection of the BVP

on the i-th link is fixed. Specifically, an assignment matrix

A%)X N2 can be defined:
G _ [ 1 f=rO%0
Ajk = { 0 else ’ ®)

where f; is the j-th frequency sampling point in the DFS
profile, and ¥y, is velocity component corresponding to the
k-th element of the vectorized BVP V. Thus, the relation
between DFS profile of the i-th link and the BVP can be
modeled as:

D@ — (D) o@Dy (6)

where (¥ is the scaling factor due to propagation loss of the
reflected signal.

5.3 BVP Estimation

How to recover BVP from DFS profiles of only several
wireless links is another main challenge because the kinetic
profile of a single gesture has hundreds of variables, posing
the BVP estimation from DFS profiles as a severely under-
determined problem with only a limited number of con-
straints provided by several wireless links. Specifically, in
practice, we estimate one BVP from DFS profiles calculated
from 100 ms CSI data. Due to the uncertainty principle, the
frequency resolution of DFS profiles is only about 10 Hz.
Given that the range of human-induced DFS is within £ 60
Hz [11], the DFS profile of one link can only provide about
12 constraints. In contrast, we moderately set the range
and the resolution of velocities along two axes of the body
coordinates as + 2 m/s and 0.2 m/s, respectively, leading
to as much as 400 variables! Fortunately, when a person
performs a gesture, only a few dominant distinct velocity
components exist, due to the limited number of major
reflecting multipath signals. Thus, there is an opportunity to
correctly recover the BVP from DFS profiles of only several
links.

Before a proper solution of BVP developed, it is neces-
sary to understand the minimum number of links required
to uniquely recover the BVP. Fig. 6 shows an intuitive
example with three velocity components v;,j = 1,2,3.
With only the first two links (blue and green), the three
velocity components create three power peaks in each DFS
profile. However, when we recover the BVP, there are 9
candidates of velocity components, ie. vj,7 = 1,2,3 and
ug, k = 1,---,6. And one can easily find an alternate solu-
tion, i.e. {u1, us, ug }, meaning that two links are insufficient.

By adding the third link (purple), it is able to resolve the
ambiguity with high probability no matter how many veloc-
ity components exist, if no overlap of projections happens in
the third DFS profile. When projections overlap, however, it
is possible that adding the third or even more links cannot
resolve the ambiguity. For example, suppose the third link
in the Fig. 6 is in parallel with the y-axis, and there are
three overlaps of projections (i.e. {u1,v2}, {vs, uq,us} and
{us, v1}), then the ambiguous solution {uy,us,us} is still
not resolvable. However, such ambiguity can hardly hap-
pen due to its stringent requirement on the distribution of
velocity components as well as the orientation of the links.
Moreover, we can further reduce the probability of the am-
biguity by adding more links. We evaluate the impact of the
number of links used by Widar3.0 on system performance
in Section 7.5.

With observing of the sparsity of BVP and validating
the feasibility of recovering BVP from multiple links, we
adopt the idea of compressed sensing [49] and formulate
the estimation of BVP as an [y optimization problem:

M
miny Y [EMD(ADV, D)| + 5|[Vo, 7)

=1

where M is the number of Wi-Fi links. The sparsity of the
number of the velocity components is coerced by the term
1||V]lo, where 7 represents the sparsity coefficients and || - ||o
is the number of non-zero velocity components.

EMD(-, ) is the Earth Mover’s Distance [50] between
two distributions. The selection of EMD rather than Eu-
clidean distance is mainly due to two reasons. First, the
quantization of BVP introduces approximation error, i.e.
projection of velocity components to the DFS bin might be
adjacent to the true one. Such quantization error can be re-
lieved by EMD, which takes the distance between bins into
consideration. Second, there are unknown scaling factors
between the BVP and DEFS profiles, making the Euclidean
distance inapplicable.
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Fig. 7 shows an example of solved BVP series of a push-
ing and pulling gesture. The dominant velocity component
from the hand and the coupling ones from the arm can be
clearly observed.

5.4 Dynamic Link Selection

For the above BVP estimation algorithm, it is assumed that
the reflected signals from each part of user’s arms can be
received by all the Wi-Fi receivers. However, this assump-
tion may not hold valid due to the blockage of human
torso. For example, when a user faces the transmitter and
performs clap gesture, the receivers behind his body could
hardly capture the reflected signal from his arms. Therefore,
the signals received by these shadowed receivers embodies
mostly the perturbations rather than motion features and
should be dismissed for BVP estimation.

To deal with this problem, we leverage the prior-
knowledge on devices deployment. Specifically, when a user
intends to use the gesture recognition system, he or she
would approach the monitoring area and halt to perform
gestures. Widar3.0 leverages the antecedent movement of
the person to estimates his location and orientation, which
are the location and moving direction of the person at the
end of the approaching track. Since existing works [18], [20],
[28] have pushed the limit of Wi-Fi-based passive tracking
application into decimeter level, Widar3.0 can exploit these
approaches for location and orientation estimation. Based
on the acquired location and orientation, Widar3.0 prunes
those Wi-Fi receivers that may potentially be blocked by
human torso and uses the rest devices for BVP estimation.
Fig. 8 illustrates the diagram of the proposed dynamic link
selection algorithm. With the facing direction as origin and
clockwise as positive direction, we regard the sector ranging
from —90° to +90° as visible area. Those receivers within
this area are considered to be valid for BVP estimation and
the others are considered to be shadowed. If a user performs
gestures on the side of his body, it is deemed as another type
of gesture. In this case, the dynamic link selection algorithm
would be invalid.

A
racing A Transmitter
] | directionT | ] Receiver
-90 P | %3
R
|_ —— — >~ Shadowed

Approaching
track

receiver

Fig. 8. Diagram of dynamic link selection algorithm.

6 RECOGNITION MECHANISM

In Widar3.0, we design a DNN learning model to mining
the spatial-temporal characteristics of the BVP series. Fig. 9
illustrates the overall structure of the proposed learning
model. Specifically, the BVP series is first normalized to

remove irrelevant variations caused by instances, persons
and hardware settings (§ 6.1). The normalized output is then
inputted into a hybrid deep learning model, which from
bottom to top consists of a convolutional neural network
(CNN) for spatial feature extraction (§ 6.2) and a recurrent
neural network (RNN) for temporal modeling (§ 6.3). The
output feature vector of RNN is firstly fed into a KNN-
based outlier detection algorithm described in § 6.4, which
reports whether the captured motion is from the predefined
legitimate gesture set. Those motions which pass the legality
testification will be input into a Dense layer cascaded with
a Softmax layer for classification.

The designed model is a result of the effectiveness of
the domain-independent feature BVP. With BVP as input,
the hybrid CNN-RNN model can achieve accurate cross-
domain gesture recognition although the learning model
itself does not possess generalization capabilities. We will
verify that the CNN-RNN model is a simple but effective
method in Section 7.4.

6.1 BVP Normalization

While BVP is theoretically only related to gestures, two prac-
tical factors may affect its stability as the gesture indicator.
First, the overall power of BVP may vary due to the adjust-
ment of transmission power. Second, in practice, instances
of the same type of gesture performed by different persons
may have different time length and moving velocities. More-
over, even instances performed by the same person may
slightly vary. Thus, it is necessary to remove these irrelevant
factors to retain the simplicity of the learning model.

For signal power variation, Widar3.0 normalizes the
element values in each single BVP by adjusting the sum
of all elements in BVP to 1. For instance variation, Widar3.0
normalizes the BVP series along the time domain. Specifi-
cally, Widar3.0 first sets the standard time length of gestures,
denoted as ty. Then, for a gesture with time length as t,
Widar3.0 scales its BVP series to tg. The assumption behind
the scaling operation is that the total distance moved by
each body part remains fixed. Thus, to change the time
length of the BVP series, Widar3.0 first scales coordinates
of all velocity components in the BVP by a factor of %, and
then resamples the series to the sampling rate of the original
BVP series. After normalization, the output becomes related
to gestures only, and is input to the deep learning model.

6.2 Spatial Feature Extraction

The input of the learning model, BVP data, is similar to a
sequence of images. Each single BVP describes the power
distribution over physical velocity during a sufficiently
short time interval. And the continuous BVP series illus-
trates how the distribution varies corresponding to a certain
kind of action. Therefore, to fully understand the derived
BVP data, it is intuitive to extract spatial features from each
single BVP first and then model the temporal dependencies
of the whole series.

CNN is a useful technique to extract spatial features
and compress data [51], [52], and it is especially suitable
for handling the single BVP, which is highly sparse but
preserves spatial locality, as a velocity component usually
corresponds to the same body part as its neighbors with
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Fig. 9. Structure of gesture recognition model.
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similar velocities. Specifically, the input BVP series, denoted
as V, is a tensor with dimension as N x N x T, where T
is the number of BVP snapshots. For the t-th sampling BVP,
the matrix V..; is fed into the CNN. Within the CNN, 16 2-D
filters are first applied to V..; to obtain local patterns in the
velocity domain, which form the output V__t1 ). Then, max
pooling is applied to V(t1 ) to down-sample the features and
the output is denoted as V(t2 ). With V(t2 ) flattened into the
vector ﬁ'(zt) , two 64-unit dense layers with ReLU as activation
functions are used to further extract features in a higher
level. Note that one extra dropout layer is added between
two dense layers to reduce overfitting. The final output .
characterizes the t-th sampling BVP. And the output series is
used as the input of following recurrent layers for temporal
modeling.

6.3 Temporal Modeling

Besides local spatial features within each BVP, BVP series
also contains temporal dynamics of the gesture. Recurrent
neural networks (RNN) are appealing in that they can model
complex temporal dynamics of sequences. There are differ-
ent types of RNN units, e.g., SimpleRNN, Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) [53].
Compared with original RNNs, LSTMs and GRUs are more
capable of learning long-term dependencies, and we choose
GRUs because GRU achieves performance comparable to
that of LSTM on sequence modeling, but involves fewer
parameters and is easier to train with less data [53].

Specifically, Widar3.0 chooses single-layer GRUs to
model the temporal relationships. Inputs {¥.,, t =
1,---,T} output from CNN are fed into GRUs and a
128-dimensional vector ¢.., is generated. Furthermore, a
dropout layer is added for regularization, and a softmax
classifier with cross-entropy loss for category prediction is
utilized. Note that for recognition systems which involve
more sophisticated activities with longer durations, the
GRU-based models can be transformed into more complex
versions [51], [54]. In § 7.4, we will verify that single-layer
GRUs are sufficient for capturing temporal dependencies for
short-time human gestures.

00 ~NOOA WNR

-40 -20 0 20 40 60 -40

Fig. 10. t-SNE visualization of outlier and resident samples (#7 and #8
are outliers).

6.4 Outlier Detection

The learning pipeline used in Widar3.0 is designed to per-
form recognition within the predefined gestures. However,
when deploying the system for real-world applications,
there is often little control over the testing gesture types,
which may be unseen during training. Those novel gestures
may lead to erroneous and confident predictions. This be-
havior can deteriorate user experience or even have serious
consequences in medical or industrial scenes. Therefore,
being able to accurately detect unseen examples can be
practically important for gesture recognition tasks. From
now on, we define the gestures in the predefined gesture
set as Resident Gestures and those unseen gestures as Outlier
Gestures.

It is documented [55] that resident samples have high
density in the distribution of training datasets for neural
networks and outlier samples have low density. A popu-
lar and intuitive strategy for detecting outliers is to train
a generative model [56], [57] to approximate the density
distribution of training datasets. However, this is not a
favorable solution for Widar3.0 as we intend to build an
agile system without extra training procedures. We hereby
resort to the existing recognition pipeline in Fig. 9 and fully
exploit its potential for outlier detection. Specifically, we
would like to find a low-dimensional latent representation
of the input BVP series that have analogous properties of
density distribution to that of the high-dimensional BVP
series (i.e., high density for residents and low density for
outliers). In our implementation, the output of the RNN
layer is a 128-dimensional tensor, which embodies sufficient
gesture discriminations after spatial and temporal refining
with CNN and RNN layers. We visualize the output tensors
from 8 different gestures in Fig. 10, of which gesture #1 to
#6 are resident gestures and gestures #7 and #8 are outlier
gestures. Apparently, the condensed features of resident
gestures are tightly clustered and the samples from outlier
gestures occur mostly at the edge zone of resident clusters,
which have a lower density than those in the kernel zone.
This demonstrates the feasibility of density-based outlier
detection with these latent features.

Essentially, our outlier detection algorithm is to identify
the local density of the test sample and compare it with
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Fig. 11. lllustration of KNN-based outlier detection algorithm (K=10).

the density of the resident samples to determine its identity.
We design a KNN-based method to achieve this purpose.
Fig. 11 takes K = 10 as an example and illustrates the
sketch of this algorithm. For each test sample, Widar3.0 first
has to determine its potential class in the predefined gesture
set by the KNN method. Specifically, Widar3.0 identifies the
K-nearest neighbors of the test sample in the training set,
among which the most prevalent gesture class is deemed
as the potential class. This step is crucial as different classes
in the resident dataset may have different density distribu-
tions. The following procedures only consider the resident
samples in potential class. Then, Widar3.0 identifies the K-
nearest neighbours of the test sample in the potential class,
denoted as s;, where 7 = 1, ..., K. Their distances to s; are
averaged to indicate the local density of the test sample, de-
noted as LD . Afterwards, Widar3.0 calculates the average
distance of s; to its K-nearest neighbours in potential class as
d; and obtains the expected local density of test sample as
FELDg = Zfil d;/ K. Finally, Widar3.0 detects outliers by
comparing the ratio p = LDy /ELDg with a predefined
threshold 7. All the distances are measured by Euclidean
distance. To futher clarify the detection process, we present
the pseudocode in Algorithm.1.

Algorithm 1 KNN-based outlier detection algorithm

Input: resident samples s; € S, test sample «, labels of
resident samples [; € L, parameters K and 7.
Output: identity of « (resident or outlier)
(Euclidean distance is employed)
1: Determine potential class of o by performing KNN clas-
sification in S.
2: Reduce S into S by removing the samples not belong to
potential class. ~ ~
3: Find K-nearest neighbours of avin S: s; € §,1 = 1... K.
4: Get local density of oz LDy = Y5 | |Jo — ][/ K.
Calculate the average distance of s; to its K-nearest
neighbours in S: d;, ¢ = 1... K.
Get expected local density of a: ELD g = Zfil di/K.
Obtain outlier indicator: p = ;LDDKK.
if p > 7 then
« is outlier
10: else
11: o is resident
12: end if

@

o P N D

We further investigate the impact of parameters K and
7 on Algorithm.1 in § 7.5.

7 EVALUATION

This section presents the implementation and detailed per-
formance of Widar3.0.

7.1 Experiment Methodology

Implementation. Widar3.0 consists of one transmitter and
at least three receivers. All transceivers are off-the-shelf
mini-desktops (physical size 170mm x 170mm) equipped
with an Intel 5300 wireless NIC. The cost for each NIC is
approximately 5% and the cost for each laptop is approxi-
mately 100$. We would like to emphasize that our system
can be deployed on any ubiquitous wireless devices like
personal laptop, desktop or even mobile phone, as long as
the Wi-Fi NIC on them can support CSI logging. Linux CSI
Tool [58] is installed on devices to log CSI measurements.
Devices are set to work in the monitor mode, on channel
165 at 5.825 GHz where there are few interfering radios as
interference does pose severe impacts on the collected CSI
measurements [59]. The transmitter activates one antenna
and broadcasts Wi-Fi packets at a rate of 1,000 packets per
second. The receiver activates all three antennas which are
placed in a line. We implement Widar3.0 in MATLAB and
Keras [60].

Evaluation setup. To fully explore the performance of
Widar3.0, we conduct extensive experiments on gesture
recognition in 3 indoor environments: an empty classroom
furnished with desks and chairs (Room 1), a spacious hall
(Room 2) and an office room with furniture like sofa and
tables (Room 3). Fig. 12 illustrates the general environmental
features and the sensing area in different rooms. The size of
classroom is 4.5m x 5.5m, the size of office is 2.5m x 4m
and the size of hall room is 4.5m x 2.5m. Fig. 13 shows a
typical example of the deployment of devices and domain
configurations in the sensing area, which is a 2m x 2m
square. Note that the 2m x 2m square is a typical setting to
perform interactive gestures for recognition and response,
especially in the scenario of smart home, with more Wi-
Fi nodes incorporated into smart devices (e.g., smart TV,
Xbox Kinect, home gateways, smart camera) to help. We
assume that only the gesture performer is in the sensing
area as moving entities introduce noisy reflection signals
and further result in less accurate DFS profiles of the target
gestures. Except for the two receivers and one transmitter
placed at the corner of the sensing area, the remaining four
receivers can be deployed at random locations outside two
sides of the sensing area. As Section 5.3 has mentioned, the
deployment of devices hardly pose impacts on Widar3.0
theoretically. All devices are held up at the height of 110
cm, where users with different heights can perform gestures
comfortably. In total, 16 volunteers (12 males and 4 females)
with different heights (varying from 185 cm to 155 cm)
and different weights (varying from 44 kg to 89 kg) and
somatotypes participate in experiments. The ages of the
volunteers vary from 22 to 28.

Dataset. We collect gesture data from 5 locations and 5
orientations in each sensing area, as illustrated in Fig. 13. All
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Fig. 12. Layouts of three evaluation environ-
ments.

Fig. 14. Sketches of gestures evaluated in
the experiment.
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Fig. 15. Confusion matrices of different settings with two gesture datasets.

experiments are approved by our IRB. Two types of datasets
are collected. Specifically, the first dataset (Dataset 1) con-
sists of common hand gestures used in human-computer
interaction, including pushing and pulling, sweeping, clap-
ping, sliding, drawing circle and drawing zigzag. The
sketches of the six gestures are plotted in Fig. 14. This
dataset contains gesture samples of 16 users X 5 positions
x 5 orientations x 6 gestures x 5 instances. Eight users
contribute to 6,000 data samples collected in the classroom,
five users contribute to 3,750 data samples collected in
the hall and four users contribute to 3,000 data samples
collected in the office. Among them, one user has data in
both hall and office and the other users only have data in
one room. The second dataset (Dataset 2) is collected for
a case study of more complex and semantic gestures. Two
volunteers (one male and one female) draw number 0 ~ 9 in
the horizontal plane, and a total of 5,000 samples (2 users X
5 positions x 5 orientations x 10 gestures x 10 instances) are
collected. Before collecting the datasets, we ask volunteers
to watch the example video of each gesture. The datasets

and the example videos are available at website'.

Prerequisites acquisition. The position and orientation
of the user are prerequisites for the calculation of BVP. In
general, the last estimation of location and the last esti-
mation of moving direction can be provided by tracking
systems [18], [20], [28], as the location and orientation of the
user in Widar3.0. Note that the function of Widar3.0 is inde-
pendent of that of the motion tracking system. To fully un-
derstand how Widar3.0 works, we record the ground truth
of location and orientation of the user in most experiments,
and explicitly introduce location and orientation error in
the parameter study (Section 7.5) to evaluate the relation
between recognition accuracy and location and orientation
€erToTS.

Model setting. The input shape of the DNN model is
20 x 20 x 22, where the first two dimensions represent the
numbers of velocity components along the x and the y axis
respectively, and the third dimension represents the frames
of snapshots over time. For the 2D convolutional layer, the

1. http:/ /tns.thss.tsinghua.edu.cn/widar3.0/index.html
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number of filters is set to 16, the kernel size is set to 5, and
the activation function is set to ReLU. For the max-pooling
layer, the kernel size is set to 2 x 2. The two fully connected
layers all have 64 units and are activated by ReLU. All the
dropout ratios are set to 0.5. For the GRU layer, the hidden
units are set to 128 and only the last output is passed to the
following layer. The RMSprop optimizer is adopted and the
learning rate is set to 0.001. We train the model with a batch
size of 32.

7.2 Overall Accuracy

Taking all domain factors into consideration, Widar3.0
achieves an overall accuracy of 92.7%, with 90 and 10
percentage data collected in Room 1 used for training and
testing, respectively. Fig. 15a shows the confusion matrix of
6 gestures in dataset 1, and Widar3.0 achieves consistently
high accuracy of over 85% for all gestures.

Fig. 15b, 15¢, 15d and 15e further show confusion ma-
trices considering each specific domain factors. For each
domain factor, we calculate average accuracy of cases where
one out of all domain instances are used for testing, while
the rest domain instances are for training. The average
accuracy over all gestures are provided as well, and it can
be seen that Widar3.0 achieves consistent high performance
across different domains, demonstrating its capability of
cross-domain recognition.

We observe that for in-domain cases, the gestures “push-
ing and pulling”, “drawing circle” and “drawing zigzag”
usually correspond to a relatively lower accuracy. While the
“pushing and pulling” gesture is the simplest one among
all gestures, it is performed just in front of the user torso,
and is more likely to be blocked from the perspectives of
certain links, which results in less accurate BVP estimation
as shown in the following experiments (Section 7.5). When
users perform the gesture “drawing circle” or “drawing
zigzag”, the trajectory has significant changes in vertical
direction. However, Widar3.0 is designed to extract BVP
only in the horizontal plane, leading to information loss
for the two gestures, and decrease in recognition accuracy.
Similar gesture-specific performance can be observed from
cross-domain results.

Case study. We now examine if Widar3.0 still works
well for more complex gesture recognition tasks. In this
case study, volunteers draw number 0~9 in the horizontal
plane and 5,000 samples are collected in total. We divide the
dataset into training and testing randomly with the ratio 9:1.
As shown in Fig. 15f, Widar3.0 achieves satisfying results of
over 90% for 8 gestures and the average accuracy is 92.9%.

7.3 Cross-Domain Evaluation

We now evaluate the overall performance of Widar3.0 on
different domain factors, including environment, person di-
versity and location and orientation of the person. For eval-
uation on each domain factor, we keep the other domain fac-
tors unchanged, and perform leave-one-out cross-validation
on the datasets. We also evaluate the performance when
multiple domain factors change simultaneously, which is
important for real-world deployment of Widar3.0. Besides,
we evaluate the performance when user is in different
dresses on different dates.

Location independence. The model is trained on the
BVPs of random 4 locations, all 5 orientations and 8 people
in Room 1. And the data collected at the last location in
the same room is used for testing. As shown in Fig. 16, the
average accuracies for all locations uninvolved in training
are all above 85%. Widar3.0 achieves a best performance of
92.3% with location e, which is at the center of the sensing
area, as the target domain. The accuracy descends to 85.3%
when testing dataset is collected at location d, as wireless
signal reflected by human-body becomes weaker after a
longer distance of propagation, which leads to less accurate
BVPs. In addition, BVP is modeled from signals reflected by
the person. If the person happens to pass his arm through
the line-of-sight path of any links, the accuracy will slightly
drop, as proved by the result of location b.

Orientation sensitivity. In this experiment, we select
each orientation as the target domain and other 4 orienta-
tions as the source domain. The red component in Fig. 17
shows that the accuracy remains above 80% for orientation
2, 3, 4 with all the 6 links involved. Compared with best
target orientation 3, whose accuracy is around 90%, the
performance at orientation 1&5 declines by over 10%. The
reason is that gestures might be shadowed by human body
in these two orientations and the number of effective wire-
less links for BVP generation decreases. To overcome this
phenomenon, we adopt a dynamic link selection algorithm
described in Section 5.4. The blue component in Fig. 17
shows a significant improvement when we select partial
links for BVP estimation under different user orientations.
We attribute this improvement to the relief of torso move-
ment influences after pruning the shadowed Wi-Fi links.

Environment diversity. The accuracy across different en-
vironments is another significant criterion for performance
of cross-domain recognition. In this experiment, gesture
samples collected in room 1 are used as the training dataset,
and three groups of gesture samples collected in three
rooms are used as testing datasets. As Fig. 18 depicts, while
the accuracy for different rooms slightly drops, the aver-
age accuracy preserves over 87% even if the environment
changes totally. In a nutshell, Widar3.0 is robust to different
environments.

Cross multiple domain factors. In this experiment, we
evaluate the system performance when multiple domain
factors change simultaneously. There are four combinations
of the three domain factors {R/L, R/O, L/O, R/L/O}, in which
the R, L and O represent Room, Location and Orientation
respectively. From the previous experiments, we observe
that Orientation factor has a more significant impact than
the others. Hence, the redults for {R/O, L/O, R/L/O} cases
are presented with the respective orientations. For the {R/L}
case, we select each location in one room as the target
domain and the other 4 locations in another room as the
source domain. The accuracies over five locations are av-
eraged to obtain an overall performance. For {R/O, L/O}
cases, we select each orientation (or location) in one room as
the target domain and the other 4 orientations (or locations)
in another room as the source domain. The accuracy over
each orientation is reported separately. For the {R/L/O} case,
we select each orientation and location in one room as the
target domain and the other 4 orientations and 4 locations
in another room as the source domain. The accuracies over
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Fig. 16. Accuracy across different locations.

Fig. 17. Accuracy across different orienta-

Fig. 18. Accuracy across different environ-
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Fig. 19. Accuracy across multiple factors.

five locations are averaged and each orientation is reported
separately. The results are shown in Fig. 19. In this figure, the
latter three cases each has five markers to represent the per-
formance over five orientations. When two factors change
simultaneously, the performance decreases by about 2~3%
compared to one-factor experiments. When three factors
change simultaneously, the performance further decreases
by about 3~4% compared to two-factor experiments. Even
though some edge orientations impose a strong impact
on system performance, this could be trivial in real-world
deployment scenarios because the users are accustomed to
perform gestures when facing the devices.

Person variety. Data collected from different persons
may have discrepancy due to their various behavior pat-
terns. Widar3.0 incorporates BVP normalization to alleviate
this problem. To evaluate the performance of Widar3.0 on
different users, we train the model on a dataset from every
combination of 7 persons, and then test with the data of
the resting person. Fig. 20 shows that the accuracy remains
over 85% across 7 persons. The impact of the number of
persons used in training the recognition model is further
investigated in Section 7.5.

Performance on different dates.

Data collected from the same person with different
dresses may be different due to the signal reflection on
human clothes. In this experiment, we evaluate the system
performance when users wear different dresses on different
dates. Gesture samples collected from the classroom are
used for training and samples collected in the hall from a
user on date 1 as well as his samples collected in the office
on date 2 are used for testing separately. Results shown
in Table. 1 reveals a consistent performance regarding this
factor. Essentially, BVP portrays the velocity distribution
over human arms and the motion of clothes are synchronous
to that of arms. Hence, Widar3.0 is resilient to date factor.

Fig. 20. Accuracy across different persons.

Methods

Fig. 21. Comparison of recognition approaches.

TABLE 1
Performance on different dates.
Accuracy | Date-1  Date-2
Mean 0.912 0.910
Variance 1.7e-4 1.5e-4

7.4 Method Comparison

This section compares the capability of cross-domain recog-
nition with different methods, learning features and struc-
tures of learning networks. Some outlier detection methods
are evaluated in comparison with our proposed KNN-based
method. In the experiment, training and testing datasets are
collected separately in Room 1 and 2.

Comparison with the state-of-the-arts works. We com-
pare Widar3.0 against several alternative state-of-the-arts
methodologies, CARM [11], EI [14] and CrossSense [15],
where the latter two are feasible for cross-domain recog-
nition. Specifically, CARM uses DFS profiles as learning
features and adopts HMM model. EI incorporates an adver-
sarial network and specializes the training loss to addition-
ally exploit characteristics of unlabeled data in target do-
mains. CrossSense proposes an ANN-based roaming model
to translate signal features from source domains to target
domains, and employs multiple expert models for gesture
recognition. Fig. 21 shows the system performance of the
four approaches. Widar3.0 achieves better performance with
the state-of-the-art cross-domain learning methodologies, EI
and CrossSense, and it does not require extra data from a
new domain or model re-training. In contrast, both feature
and learning model of CARM do not have cross-domain
capability, which is the main reason for its significantly
lower recognition accuracy.

Comparison of input features. We compare three types
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Fig. 22. Comparison of input features.

of features with different levels of abstraction from raw
CSI measurements, i.e. denoised CSI, DFS profiles and BVP,
by feeding them into the CNN-GRU hybrid deep learning
model, similar to that in Widar3.0. Specifically, the size of
denoised CSI is 18 (the number of antennas of 6 receivers)
x 30 (the number of subcarriers) x T (the number of
time samples), and the DFS profile has the shape as 6 (the
number of receivers) x F (the number of Doppler frequency
samples) x T (the number of time samples). As shown in
Fig. 22, BVP outperforms both denoised CSI and DFS, with
an increase of accuracy by 52% and 15%, respectively. The
performance improvement of BVP attributes its immunity
to changes of layouts of transceivers, which however may
significantly influence the other two types of features.

Comparison of learning model structures. Different
deep learning models are further compared and the system
performance is demonstrated in Fig. 23. Specifically, the
CNN-GRU hybrid model increases the accuracy by around
5% compared with the simple GRU model which merely
captures temporal dependencies. The former model bene-
fits from representative high-level spatial features within
each BVP snapshot. In addition, we also feed BVP into
a two-convolutional-layer CNN-GRU hybrid model and
a CNN-Hierarchical-GRU model [54]. It is shown that a
more complex deep learning model does not promote the
performance, demonstrating that BVP of different gestures
are distinct enough to be discriminated by a simple but
effective classifier.

Comparison of outlier detection methods. We compare
the proposed KNN-based outlier detection algorithm with
four other popular methods. 1) The Softmax [61] method
recognizes the samples that have low prediction confidence
on the Softmax layer as outliers. 2) The ODIN [62] method
uses temperature scaling and input preprocessing tech-
nique to detect outliers based on the prediction confidence
of Softmax layer. 3) The Variational Autoencoder (VAE)
method [63] trains a VAE model on resident samples and
employs the reconstruction loss during testing as outlier
indicator. 4) The Likelihood-ratio method [64] contrasts
the likelihood of a generative model against a background
model and employs the likelihood ratio between the two
models as outlier indicator. Methods 1) and 2) require no
modification to the classification model (Fig.9). For meth-
ods 3) and 4), we build a VAE model [65] with three
fully-connected layers as Encoder and another three fully-
connected layers as Decoder, which have sizes of {1024, 512,
128} and {128, 512, 1024} respectively. The latent dimension
is set to 16. For method 4), we perturb the training set

CNN+GRU %
( | +1
Deep learning model

Fig. 23. Comparison of DNNs.
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Fig. 24. Outlier detection performance.

by randomly rotating and scaling BVP frames along its
central point to mimic the variations in gesture directions
and speeds, which corrupts the semantic structure in the
training data. The perturbed dataset is used to train the
background model. The evaluation results are shown in
Fig. 24 and Table. 2, in which the metrics have been in-
troduced in Section 6.4. Numbers in front and inside of
the brackets are mean and variance respectively based on
10 independent runs with random initialization of network
parameters and random shuffling of training inputs. As
can be seen, while the Likelihood-ratio method performs
better than the VAE method, they are both worse than the
other methods. We believe this is due to the intrinsic trait
of Wi-Fi signals. Wi-Fi signal is a kind of radio frequency
(RF) signal that has a wavelength larger than the roughness
of human body, which causes the specular reflection effect
when reflected [24]. Hence, the signals reflected from each
part of human body would be tightly clustered around
a specific direction. Consequently, partial BVP elements
would be blanked due to the absence of the received signal
on that direction. The distribution of blanked elements devi-
ate significantly even when human performs the same ges-
ture with subtle differences. Therefore, reconstruction loss
would be significant. However, for the other three methods,
they are based on the latent features extracted by CNN
and RNN layers, which mitigate the spatial and temporal
mutations caused by specular reflections. The results shows
that generative model-based outlier detection methods are
not favorable choices for wireless signal-based recognition
tasks. For KNN, Softmax and ODIN methods, their perfor-
mance are very close. Basically, our proposed KNN method
exploits the feasibility of using latent features for outlier
detection, which requires no extra training process or data
collection compared to VAE and Likelihood-ratio methods.
Besides, KNN method provides more information on the
density distribution of input samples than the Softmax and
ODIN methods and could be valuable to gain insight into
the properties of datasets.

TABLE 2
Outlier detection performance.

Methods ‘ AUROCT  AUPRCYT FPR80J
KNN 0.81(3e-4)  0.79(7e-4)  0.31(2e-3)
Softmax 0.81(3e-4) 0.82(4e-4) 0.32(2e-3)
ODIN 0.80(7e-4)  0.83(5e-4)  0.40(6e-3)
VAE 0.67(3e-4)  0.69(de-4)  0.60(3e-3)
Likelihood-ratio | 0.70(5e-4) 0.74(3e-4)  0.57(2e-3)
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7.5 Parameter Study

Impact of link numbers. In the above experiments, 6 links
are deployed for more accurate estimation of BVP. This
section studies the impact of the number of links on system
performance. In Fig. 25, the red dashed line indicates the
performance with fixed link numbers and positions and the
blue line indicates the performance with the dynamically
selected partial links for different users’ orientations as
is described in Section 7.1. With fixed link selection, the
accuracy gradually decreases as the number of links reduces
from 6 to 3, but experiences a more significant drop when
only two links are used. The main reason is that some BVPs
cannot be correctly recovered with only 2 links considering
the ambiguity mentioned in Section 5.3, and gestures at cer-
tain locations or orientations cannot be fully captured due
to blockage. With dynamic link selection, accuracy grows
significantly compared to that with the same number of
fixed links. Moreover, even fewer links can outperform that
with fixed links selection. For example, when dynamically
picking 5 links, the averaged accuracy is 0.917, but when
consistently using all the 6 links, the averaged accuracy is
0.895. This phenomenon indicates that the captured gesture-
irrelevant information from the shadowed links deteriorates
the system performance to some extent.

Impact of location and orientation estimation error.
Localizations and orientations provided by Wi-Fi-based mo-
tion tracking systems usually have errors of about several
decimeters and 20 degrees, respectively. Thus, it is necessary
to understand how these errors impact the performance of
Widar3.0. Specifically, we record ground truth of location
and orientation, and calculate errors where gestures are
performed. On one hand, as shown in Fig. 26, the overall
accuracy remains over 90% when the location error is within
40 cm, but then drops as the error further increases. The
significant decrease in accuracy at 0.3m is potentially due to
the line-of-sight blockage at that circumstance. On the other

Location error(m)

Fig. 26. Impact of location error.
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Fig. 27. Impact of orientation error.
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hand, Fig. 27 shows that the overall accuracy gradually
drops with more deviation of orientation. While the track-
ing errors negatively impact the performance of Widar3.0,
taking practical location and orientation errors into con-
sideration, we believe existing motion tracking works can
still provide location and orientation results with acceptable
accuracy.

Impact of training set diversity. This experiment studies
how the number of volunteers in training dataset impacts
the performance. Specifically, a varying number of vol-
unteers from 1 to 7 participate in collecting the training
dataset, and data from another new person is used to test
Widar3.0. Fig. 28 shows that the average gesture recognition
accuracy decreases from 89% to 74% when the number of
people for training varies from 7 to 1. The reasons come
from two folds. First, with the training dataset contributed
by fewer volunteers, the deep learning model will be less
thoroughly trained. Second, the behavior difference between
testing persons and training persons will be amplified even
if we have adopted BVP normalization. In general, Widar3.0
promises an accuracy of over 85% with more than 4 people
in the training set.

System time overhead. In this experiment, we evaluate
the system time overhead. Basically, the calculation process
of Widar3.0 consists of three major parts: BVP extraction,
outlier detection and gesture inference. We noticed that the
outlier detection and gesture inference are both performed
within several milliseconds, which could be dismissed for
practical use. For BVP extraction, the designed algorithm
is a compressed sensing-based estimation process and BVP
frames for each gesture are estimated sequentially, which
would incur significant time complexity. To evaluate the
time overhead, we take a gesture instance that lasts for 1.5
seconds as an example. We run BVP extraction algorithm
(implemented in MATLAB) on a workstation with 6 CPU
cores (12 virtual cores) working at 2.3 GHz frequency and
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with CentOS system installed. We use the parallel comput-
ing toolbox provided by MATLAB to create 12 (maximum
for hardware) parallel processes, each of which calculates
one frame of BVP. Fig. 29 demonstrates the results. When
frame rate of BVP is set to 10 Hz, a total of 15 frames are to
be calculated for this gesture and the time consumption is
13 seconds. When frame rate is less than 5 Hz, the parallel
processes only need one round processing to obtain the BVP
frames for this gesture, which happens within 6.6 seconds.
For accuracy evaluation, the in-domain recognition accuracy
is evaluated with different sampling rates of BVP. As is
shown, accuracy slightly decreases from 92% to 89% when
frame rate reduces to 5 Hz and tumbles to 71% when frame
rate reduces to 2.5 Hz. In general, a 6.6 seconds delay for a
1.5 seconds gesture is applicable for various application sce-
narios. Besides, GPU computing technique could be applied
to further reduce the system time consumption.

Impact of CSI rate. In this experiment, we evaluate
the performance of Widar3.0 with regard to different CSI
transmission rates. We collect CSI measurements at the
initial transmission rate of 1,000 packets per second, and
down-sample the CSI series to 750 Hz, 500 Hz, 250 Hz.
Note that this is different from BVP frame rate evaluation
discussed in System time overhead. When changing CSI
rate, the CSI samples used to estimate each BVP frame is
changed accordingly. For example, for 1,000 Hz CSI and 10
Hz BVP, every 100 samples of CSI snapshots are used to
estimate one BVP frame and for 500 Hz CSI and 10 Hz BVP,
every 50 samples of CSI snapshots are used to estimate one
BVP frame. Fig. 30 shows that the accuracy degrades slightly
by around 4% when the sampling rate drops to 250Hz, and
remains over 85% for all cases. In addition, Widar3.0 can
further reduce the impacts on communication with shorter
packets used as only CSI measurements are useful for the
recognition tasks.
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Fig. 31. Outlier detection performance for different K values.

Impact of parameters to outlier detection algorithm.
In Algorithm.1, parameters K and 7 should be determined
beforehand. We select the most proper parameters by per-
forming evaluations on this algorithm. We adopt dataset
1 (described in Section. 7.1) to be resident set, and collect
extra 400 instances of outlier samples when a user performs
arbitrary gestures. Three metrics are used to depict the
outlier detection performance [64], which are the area under
the ROC curve (AUROC), the area under the precision-recall
curve (AUPRC), and the false positive rate at 80% true pos-
itive rate (FPR80). Fig. 31 presents the results. As is shown,
when K increases from 1 to 20, AUROC and AUPRC grow
slightly. This is because a very small K value could hardly

capture a stable local density and is susceptible to variance.
When K increase from 20 to 800, the performance reduces
significantly, which is due to the uneven distribution of the
density distributions and a very large K would capture
a global density rather than a local density. In Widar3.0,
we adopt a consistent K = 20 and 7 = 1.188, which
corresponds to a False Positive Rate of 15%. Given that dif-
ferent resident classes have different density distributions,
we suggest to rerun the parameter determination precess
whenever the training dataset changes.

8 DISCUSSIONS

User height. Since transceivers are placed at the same
height, CSI measurements mainly capture the horizontal ve-
locity components. Thus, different user heights may impact
the recognition performance of Widar3.0, as the devices may
observe different groups of velocity components intercepted
at this height. However, Widar3.0 still has the capability
of recognizing gestures in 3-D space, as common gestures
remain their uniqueness even within the fixed height. As
shown in the experiments, Widar3.0 is able to recognize
gestures “draw circle” and “draw zigzag”, which both con-
tain vertical velocity components due to the fixed length
of arms. By regarding the person as on an ellipsoid whose
foci are the transceivers of a link, the BVP can be further
generalized to 3-D space. Further work includes optimizing
the deployment of Wi-Fi links to enable calculation of 3-
D BVP and revising the learning model with 3-D BVPs as
input.

Number of Wi-Fi links for gesture recognition. Al-
though three wireless links are sufficient to resolve the
ambiguity with a high probability for BVP generation, six
receivers in total are deployed in the experiments. The
reasons are two folds. First, compared with macro activities,
the reflected signal of micro gestures is much weaker, since
the effective area of hand and arm is much smaller than that
of torso and leg, resulting in less prominent DFS profiles.
Second, gestures with hands and arms may be opportunis-
tically shadowed by other body parts when the user faces
away from the link. For macro activities such as walking,
running, jumping, and falling, it is believed that the number
of Wi-Fi links required for recognition can be reduced. It
is worth noting that Widar3.0 does not require the fixed
deployment of Wi-Fi devices in the environment, as BVP
is the power distribution over absolute velocities.

Applications beyond gesture recognition. While
Widar3.0 is a Wi-Fi-based gesture system, the feature used
in Widar3.0, BVP, can theoretically capture movements over
the whole body of the person, and thus is envisioned to be
used in other device-free sensing scenarios, such as macro
activity recognition, gait analysis, and user identification.
In these scenarios where users are likely to continuously
change their locations and orientations, BVP calculation and
motion tracking approaches can be intermittently invoked
to obtain BVPs along the whole trace, which then may serve
as a unique indicator for the user’s activity or identity.

9 LIMITATIONS AND FUTURE WORK

Widar3.0 takes a significant step towards Wi-Fi-based
environment-independent gesture recognition with zero hu-
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man effort, and there is room for continued research in
various perspectives.

Requirement for Line-of-Sight (LOS). Widar3.0 relies
on the existence of propagation paths going directly from
Wi-Fi transmitter to human and from human to Wi-Fi re-
ceivers (i.e., the LOS between Wi-Fi devices and humans).
This is because Widar3.0 requires the LOS paths to geo-
metrically establish the relationship between signal prop-
agation and the moving speed of reflectors. Even though
the LOS condition is common when performing interaction
with smart devices in smart homes, Widar3.0 will fail to
work when LOS is not guaranteed in some other scenar-
ios. To push Widar3.0 into a broader application prospect,
future works can devise speed estimation algorithms that
are resilient to multipath effect and signal occlusions. For
example, recent works [66], [67] build statistical electromag-
netic signal models that bridge the gap between speed and
CSI measurements for rich-scattering and occluded environ-
ments. Similar ideas can be borrowed to extend Widar3.0 to
NLOS cases.

Constrained user’s presentation. To obtain a distinct
Doppler Spectrum for BVP estimation, Widar3.0 requires the
users to stand within a predefined zone with some flexibil-
ity on locations and facing orientations. This experimental
setup is typical for some application scenarios where the
users stand in front of the devices and perform gestures for
interaction. Even though Widar3.0 has the potential for more
generalized applications, there still exists a gap between cur-
rent evaluation and real-world applicability. Future works
include investigating the capability of BVP for more ubig-
uitous sensing tasks. For example, the maximum sensing
range and valid facing orientations that can be represented
by BVP without ambiguity are interesting research topics.

Loss of vertical resolution. Widar3.0 deploys Wi-Fi de-
vices at the same height during experiments. However, this
setting will abandon the resolution on the vertical direction.
Concretely, the BVP only captures the velocity components
projected in the horizontal plane. Without a vertical reso-
lution, users with different heights will create bias in the
BVP representation and eventually deteriorate system per-
formance. Besides, human gestures are performed in three-
dimensional space and will lose their uniqueness without
vertical resolution. Even though we evaluated the system
performance with 16 users and two distinct sets of gestures,
future works are needed to investigate the representation
capability of BVP to accommodate a more relaxed experi-
mental regime. More importantly, the two-dimensional BVP
can be extended to a three-dimensional BVP by reformulat-
ing the BVP model and repositioning the Wi-Fi devices.

10 CONCLUSION

In this paper, we propose a Wi-Fi-based zero-effort cross-
domain gesture recognition system. First, we model the
quantitative relation between complex gestures and CSI
dynamics, and extract velocity profiles of gestures in body
coordinates, which are domain-independent and act as
unique indicators of gestures. Then, we develop a one-fits-
all deep learning model to fully exploit spatial-temporal
characteristics of BVP for gesture recognition. We imple-
ment Widar3.0 on COTS Wi-Fi devices and evaluate it in

real environments. Experimental results show that Widar3.0
achieves high recognition accuracy across different domain
factors, specifically, 89.7%, 82.6%, 92.4% and 88.9% for user’s
location, orientation, environment and user diversity, re-
spectively. Future work focuses on applying Widar3.0 to
fortify various sensing applications.

11 ACKNOWLEDGEMENT

This work is supported in part by the NSFC under grant
61832010, 61972131.

REFERENCES

[1] G. Gkioxari, R. Girshick, P. Dollar, and K. He, “Detecting and
recognizing human-object interactions,” in Proceedings of IEEE
CVPR, Salt Lake City, UT, USA, 2018.

[2] M. Wang, B. Ni, and X. Yang, “Recurrent modeling of interaction
context for collective activity recognition,” in Proceedings of IEEE
CVPR, Honolulu, HI, USA, 2017.

[3] T.Li Q.Liu, and X. Zhou, “Practical human sensing in the light,”
in Proceedings of ACM MobiSys, Singapore, Singapore, 2016.

[4] A.Bulling, U. Blanke, and B. Schiele, “A tutorial on human activ-
ity recognition using body-worn inertial sensors,” ACM Comput.
Surv., vol. 46, no. 3, pp. 33:1-33:33, January 2014.

[5] S. Shen, H. Wang, and R. Roy Choudhury, “I am a smartwatch
and i can track my user’s arm,” in Proceedings of ACM MobiSys,
Singapore, Singapore, 2016.

[6] Y.Guan and T. Pl6tz, “Ensembles of deep Istm learners for activity
recognition using wearables,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 2, pp. 11:1-
11:28, June 2017.

[71 R. Nandakumar, A. Takakuwa, T. Kohno, and S. Gollakota,
“Covertband: Activity information leakage using music,” Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 1, no. 3, pp. 87:1-87:24, September 2017.

[8] K. Kalgaonkar and B. Raj, “One-handed gesture recognition using
ultrasonic doppler sonar,” in Proceedings of IEEE ICASSP, Taipei,
Taiwan, 2009.

[9] K. Yatani and K. N. Truong, “Bodyscope: A wearable acoustic
sensor for activity recognition,” in Proceedings of ACM UbiComp,
Pittsburgh, PA, USA, 2012.

[10] Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu, “E-
eyes: Device-free location-oriented activity identification using
fine-grained wifi signatures,” in Proceedings of ACM MobiCom,
Maui, HI, USA, 2014.

[11] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Device-free
human activity recognition using commercial wifi devices,” IEEE
Journal on Selected Areas in Communications, vol. 35, no. 5, pp. 1118—
1131, May 2017.

[12] H. Abdelnasser, M. Youssef, and K. A. Harras, “Wigest: A ubiqui-
tous wifi-based gesture recognition system,” in Proceedings of IEEE
INFOCOM, Kowloon, Hong Kong, 2015.

[13] R. H. Venkatnarayan, G. Page, and M. Shahzad, “Multi-user
gesture recognition using wifi,” in Proceedings of ACM MobiSys,
Munich, Germany, 2018.

[14] W.]Jiang, C. Miao, F. Ma, S. Yao, Y. Wang, Y. Yuan, H. Xue, C. Song,
X. Ma, D. Koutsonikolas, W. Xu, and L. Su, “Towards environment
independent device free human activity recognition,” in Proceed-
ings of ACM MobiCom, New Delhi, India, 2018.

[15] J. Zhang, Z. Tang, M. Li, D. Fang, P. T. Nurmi, and Z. Wang,
“Crosssense: Towards cross-site and large-scale wifi sensing,” in
Proceedings of ACM MobiCom, New Delhi, India, 2018.

[16] A. Virmani and M. Shahzad, “Position and orientation agnostic
gesture recognition using wifi,” in Proceedings of ACM MobiSys,
Niagara Falls, NY, USA, 2017.

[17] K. Qian, C. Wu, Z. Yang, Y. Liu, and K. Jamieson, “Widar:
Decimeter-level passive tracking via velocity monitoring with
commodity wi-fi,” in Proceedings of ACM MobiHoc, Chennai, India,
2017.

[18] K. Qian, C. Wu, Y. Zhang, G. Zhang, Z. Yang, and Y. Liu,
“Widar2.0: Passive human tracking with a single wi-fi link,” in
Proceedings of ACM MobiSys, Munich, Germany, 2018.



IN SUBMISSION TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 17

[19]

[20]

[21]

[22]

[23]

[24]

(25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

(35]

[36]

(37]

[38]

[39]

[40]

[41]

Y. Zheng, Y. Zhang, K. Qian, G. Zhang, Y. Liu, C. Wu, and
Z. Yang, “Zero-effort cross-domain gesture recognition with wi-
fi,” in Proceedings of MobiSys, New York, NY, USA, 2019.

X. Li, D. Zhang, Q. Lv, ]J. Xiong, S. Li, Y. Zhang, and H. Mei,
“Indotrack: Device-free indoor human tracking with commodity
wi-fi,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 1, no. 3, pp. 72:1-72:22, September
2017.

F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller, “3d tracking via
body radio reflections,” in Proceedings of USENIX NSDI, Seattle,
WA, USA, 2014.

F. Adib, Z. Kabelac, and D. Katabi, “Multi-person localization via
rf body reflections,” in Proceedings of USENIX NSDI, Oakland, CA,
USA, 2015.

K. Joshi, D. Bharadia, M. Kotaru, and S. Katti, “Wideo: Fine-
grained device-free motion tracing using rf backscatter,” in Pro-
ceedings of USENIX NSDI, Oakland, CA, USA, 2015.

F. Adib, C.-Y. Hsu, H. Mao, D. Katabi, and F. Durand, “Capturing
the human figure through a wall,” ACM Transactions on Graphics,
vol. 34, no. 6, pp. 219:1-219:13, November 2015.

F. Adib and D. Katabi, “See through walls with wi-fi!” in Proceed-
ings of ACM SIGCOMM, Hong Kong, China, 2013.

X. Li, S. Li, D. Zhang, J. Xiong, Y. Wang, and H. Mei, “Dynamic-
music: Accurate device-free indoor localization,” in Proceedings of
ACM UbiComp, Heidelberg, Germany, 2016.

C. Wu, E Zhang, Y. Fan, and K. J. R. Liu, “Rf-based inertial
measurement,” in ACM SIGCOMM, 2019.

J. Wang, H. Jiang, J. Xiong, K. Jamieson, X. Chen, D. Fang, and
B. Xie, “Lifs: Low human-effort, device-free localization with fine-
grained subcarrier information,” in Proceedings of ACM MobiCom,
New York City, NY, USA, 2016.

M. Bocca, O. Kaltiokallio, N. Patwari, and S. Venkatasubramanian,
“Multiple target tracking with rf sensor networks,” IEEE Transac-
tions on Mobile Computing, vol. 13, no. 8, pp. 1787-1800, August
2014.

W. Wang, A. X. Liu, and M. Shahzad, “Gait recognition using wifi
signals,” in Proceedings of ACM UbiComp, Heidelberg, Germany,
2016.

Y. Zeng, P. H. Pathak, and P. Mohapatra, “Wiwho: Wifi-based
person identification in smart spaces,” in Proceedings of ACM/IEEE
IPSN, Vienna, Austria, 2016.

D. Huang, R. Nandakumar, and S. Gollakota, “Feasibility and
limits of wi-fi imaging,” in Proceedings of ACM MobiSys, Bretton
Woods, NH, USA, 2014.

B. Fang, N. D. Lane, M. Zhang, A. Boran, and F. Kawsar,
“Bodyscan: A wearable device for contact-less radio-based sensing
of body-related activities,” in Proceedings of ACM MobiSys, Singa-
pore, Singapore, 2016.

B. Fang, N. D. Lane, M. Zhang, and F. Kawsar, “Headscan: A
wearable system for radio-based sensing of head and mouth-
related activities,” in Proceedings of ACM/IEEE IPSN, Vienna, Aus-
tria, 2016.

H. Li, W. Yang, ]. Wang, Y. Xu, and L. Huang, “Wifinger: Talk to
your smart devices with finger-grained gesture,” in Proceedings of
ACM UbiComp, Heidelberg, Germany, 2016.

Y. Ma, G. Zhou, S. Wang, H. Zhao, and W. Jung, “Signfi: Sign
language recognition using wifi,” Proceedings of the ACM on Inter-
active, Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 1, pp.
23:1-23:21, March 2018.

K. Niu, FE. Zhang, J. Xiong, X. Li, E. Yi, and D. Zhang, “Boosting
fine-grained activity sensing by embracing wireless multipath
effects,” in Proceedings of ACM CoNEXT, Heraklion/Crete, Greece,
2018.

M. Zhao, Y. Tian, H. Zhao, M. A. Alsheikh, T. Li, R. Hristov,
Z. Kabelac, D. Katabi, and A. Torralba, “Rf-based 3d skeletons,” in
Proceedings of ACM SIGCOMM, Budapest, Hungary, 2018.

M. Zhao, T. Li, M. Abu Alsheikh, Y. Tian, H. Zhao, A. Torralba,
and D. Katabi, “Through-wall human pose estimation using radio
signals,” in Proceedings of IEEE CVPR, Salt Lake City, UT, USA,
2018.

K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Recognizing
keystrokes using wifi devices,” IEEE Journal on Selected Areas in
Communications, vol. 35, no. 5, pp. 1175-1190, May 2017.

K. Qian, C. Wu, Z. Zhou, Y. Zheng, Z. Yang, and Y. Liu, “In-
ferring motion direction using commodity wi-fi for interactive
exergames,” in Proceedings of ACM CHI, Denver, CO, USA, 2017.

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]
[61]
[62]

[63]

[64]

[65]

[66]

[67]

Q. Pu, S. Gupta, S. Gollakota, and S. Patel, “Whole-home gesture
recognition using wireless signals,” in Proceedings of ACM Mobi-
Com, Miami, FL, USA, 2013.

Y. Zhang, Y. Zheng, G. Zhang, K. Qian, C. Qian, and Z. Yang,
“Gaitid: Robust wi-fi based gait recognition,” in Proceedings of
Springer WASA, 2020.

J. Wang, Y. Chen, L. Hu, X. Peng, and P. S. Yu, “Stratified transfer
learning for cross-domain activity recognition,” in Proceedings of
IEEE PerCom, Big Island, HI, USA, 2017.

Z. Zhao, Y. Chen, J. Liu, Z. Shen, and M. Liu, “Cross-people
mobile-phone based activity recognition,” in Proceedings of IJCAI,
Barcelona, Spain, 2011.

K. Chen, L. Yao, D. Zhang, X. Chang, G. Long, and S. Wang, “Dis-
tributionally robust semi-supervised learning for people-centric
sensing,” in Proceedings of AAAI, New Orleans, LA, USA, 2018.

R. Shu, H. H. Bui, H. Narui, and S. Ermon, “A dirt-t approach to
unsupervised domain adaptation,” in Proceedings of ICLR, Vancou-
ver, Canada, 2018.

Z.Yang, Z. Zhou, and Y. Liu, “From rssi to csi: Indoor localization
via channel response,” ACM Comput. Surv., vol. 46, no. 2, pp. 25:1-
25:32, November 2013.

D. L. Donoho, “Compressed sensing,” IEEE Transactions on Infor-
mation Theory, vol. 52, no. 4, pp. 1289-1306, April 2006.

Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance
as a metric for image retrieval,” International Journal of Computer
Vision, vol. 40, no. 2, pp. 99-121, November 2000.

S.Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “Deepsense:
A unified deep learning framework for time-series mobile sensing
data processing,” in Proceedings of ACM WWW, Perth, Australia,
2017.

C. Liu, L. Zhang, Z. Liu, K. Liu, X. Li, and Y. Liu, “Lasagna: To-
wards deep hierarchical understanding and searching over mobile
sensing data,” in Proceedings of ACM MobiCom, New York City, NY,
USA, 2016.

J. Chung, C. Giilgehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,”
CoRR, vol. abs/1412.3555, 2014.

J. Chung, S. Ahn, and Y. Bengio, “Hierarchical multiscale recurrent
neural networks,” CoRR, vol. abs/1609.01704, 2016.

C. M. Bishop, “Novelty detection and neural network validation,”
IEE Proceedings - Vision, Image and Signal Processing, vol. 141, no. 4,
pp- 217-222, 1994.

H. Choi, E. Jang, and A. A. Alemi, “Waic, but why? generative
ensembles for robust anomaly detection,” 2018.

E. Nalisnick, A. Matsukawa, Y. W. Teh, D. Gorur, and B. Laksh-
minarayanan, “Hybrid models with deep and invertible features,”
2019.

D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release:
Gathering 802.11n traces with channel state information,” ACM
SIGCOMM Computer Communication Review, vol. 41, no. 1, pp. 53—
53, January 2011.

Y. Zheng, C. Wu, K. Qian, Z. Yang, and Y. Liu, “Detecting radio
frequency interference for csi measurements on cots wifi devices,”
in Proceedings of IEEE ICC, Paris, France, 2017.

F. Chollet et al., “Keras,” https:/ / github.com/fchollet/keras, 2015.
D. Hendrycks and K. Gimpel, “A baseline for detecting misclassi-
fied and out-of-distribution examples in neural networks,” 2016.
S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-
distribution image detection in neural networks,” 2017.

J. An and S. Cho, “Variational autoencoder based anomaly detec-
tion using reconstruction probability,” SNU Data Mining Center,
Tech. Rep, pp. 1-18, 2015.

J. Ren, P. J. Liu, E. Fertig, ]. Snoek, R. Poplin, M. A. DePristo, J. V.
Dillon, and B. Lakshminarayanan, “Likelihood ratios for out-of-
distribution detection,” 2019.

Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin,
“Variational autoencoder for deep learning of images, labels and
captions,” in Proceedings of NIPS, 2016.

F. Zhang, C. Chen, B. Wang, and K. J. R. Liu, “Wispeed: A
statistical electromagnetic approach for device-free indoor speed
estimation,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 2163-
2177, 2018.

C. Wu, E. Zhang, Y. Hu, and K. J. R. Liu, “Gaitway: Monitoring
and recognizing gait speed through the walls,” IEEE Transactions
on Mobile Computing, pp. 1-1, 2020.



IN SUBMISSION TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Yi Zhang received the BE degree from the
School of Information and Communication En-
gineering, Beijing University of Posts and
Telecommunications, in 2017. He is currently
working toward the PhD degree in the School of
Software, Tsinghua University. He is a member
of the Beijing National Research Center for In-
formation Science and Technology. His research
interests include wireless sensing, mobile com-
puting and artificial intelligence. He is a student
member of the IEEE.

Yue Zheng received the BE degree from Depart-
ment of Electronic Engineering, Tsinghua Uni-
versity, Beijing, China, in 2015. She is currently
a PhD student in Department of Electronic En-
gineering and School of Software at Tsinghua
University. She is a member of the Beijing Na-
tional Research Center for Information Science
and Technology. Her research interests include
wireless networks and mobile computing.

Kun Qian received the BE degree from the
School of Software, Tsinghua University, in
2014. He is currently working toward the PhD
degree in the School of Software, Tsinghua Uni-
versity. He is a member of the Beijing National
Research Center for Information Science and
Technology. His research interests include wire-
less networks and mobile computing. He is a
student member of the IEEE.

Guidong Zhang received the BE degree from
the Department of Electronic Engineering and
Information Science, University of Science and
Technology of China, in 2018. He is currently
working toward the PhD degree in the School
of Software, Tsinghua University. His research
interests include wireless sensing and mobile
computing. He is a student member of IEEE and
ACM.

Yunhao Liu received the B.S. degree from Au-
tomation Department, Tsinghua University, and
the M.S. and Ph.D. degrees in computer science
and engineering from Michigan State Univer-
sity. He is currently an MSU Foundation Profes-
sor and the Chairperson of the Department of
Computer Science and Engineering, Michigan
State University. His research interests include
sensor network and the loT, localization, RFID,
distributed systems, and cloud computing. He is
a Fellow of the ACM.

18

Chenshu Wu is currently an Assistant Professor
in the Department of Computer Science, The
University of Hong Kong. He is also the Chief
Scientist at Origin Wireless Inc. He received his
B.E. degree in the School of Software in 2010
and Ph.D. degree in Computer Science in 2015,
both from Tsinghua University, Beijing, China.
His research focuses on wireless AloT systems
at the intersection of wireless sensing, ubiqui-
tous computing, digital health, and the Internet
of Things. He is a Senior Member of the |IEEE

and a member of the ACM.

Zheng Yang received the BE degree in com-
puter science from Tsinghua University, in 2006
and the PhD degree in computer science from
the Hong Kong University of Science and Tech-
nology, in 2010. He is currently an associate
professor with Tsinghua University. His main re-
search interests include wireless ad-hoc/sensor
networks, and mobile computing. He is a mem-
ber of the IEEE and the ACM.



