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Abstract. Gait, the walking manner of a person, has been perceived
as a physical and behavioral trait for human identification. Compared
with cameras and wearable sensors, Wi-Fi based gait recognition is more
attractive because Wi-Fi infrastructure is almost available everywhere
and is able to sense passively without the requirement of on-body devices.
However, existing Wi-Fi sensing approaches impose strong assumptions
of fixed user walking trajectory and sufficient training data. In this paper,
we present GaitID , a Wi-Fi based human identification system, to over-
come above unrealistic assumptions. To deal with various walking trajec-
tories and speeds, GaitID first extracts target specific features that best
characterize gait patterns and applies novel normalization algorithms to
eliminate gait irrelevant perturbation in signals. On this basis, GaitID
reduces the training efforts in new deployment scenarios by transfer
learning. Extensive experiments have been conducted on the implemen-
tation and the outcomes are satisfying. To the best of our knowledge,
GaitID is the first gait-based identification approach without any restric-
tion on walking trajectory and speed.
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1 Introduction

Various sensor modalities, e.g., cameras [3], inertial sensors on wearables [19]
and Wi-Fi signals [14] emitted by wireless devices [12], have been certificated to
be able to extract gait of a user for person identification. Among these sensors,
video has the risk of privacy leakage and inertial sensors require users to actively
carry mobile devices. In contrast, Wi-Fi signal becomes a more attractive carrier
for gait-based person identification since Wi-Fi infrastructure is ubiquitously
available [13] and able to work without user’s perception.

Current state of Wi-Fi based gait identification approaches [12,17,18], how-
ever, rely on extensive training efforts for every target person in each moni-
toring area. Such cumbersomeness stems from three limitations of the existing
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Fig. 1. System overview. Fig. 2. Challenges of Wi-Fi based gait identifi-
cation.

approaches. First, Wi-Fi signals reflected by a target person not only possess the
gait signature of the person, but also are distorted by the surrounding multi-
path environment. Thus, the recognition model directly trained with raw Wi-Fi
features or their statistics, as WiWho [17], may overfit the environment where
the data is collected and cannot be generalized to new environments without
retraining. Second, besides the effect of environment factors, features related to
the gait of the person in Wi-Fi signals still depend on how the person moves rel-
ative to the Wi-Fi devices. WiFiU [12] derives parameters of gaits from Doppler
Frequency Spectrum (DFS). However, it requires that the target person walks
right towards or away from the Wi-Fi devices on fixed trajectories to ensure the
consistency of the DFS, which limits the practicality of the approach. Third, as
the learning model becomes more and more sophisticated, e.g., in terms of the
number of parameters that need to be trained, a sufficiently large amount of
training data is required when each new person is added.

In this paper, we present GaitID, an ubiquitous Wi-Fi based person identi-
fication framework, which is robust to walking manners and environment vari-
ance, and reduces training efforts significantly as Fig. 1 shows. GaitID has two
key characteristics that enhance the robustness of this system with limited train-
ing samples. On one hand, GaitID is immune to environmental variations and
motion status (e.g., location and velocity) of target persons, and retains promi-
nent generalizability between environments and trajectories. On the other hand,
GaitID is able to transfer the learning model of existing persons to newcomers
with only a small amount of training data collected from the person. To support
these features, we overcome two critical challenges.

The first challenge is to overcome the negative impact of environmental vari-
ations and motion status of target person during walking. GaitID borrows the
idea of body-coordinate velocity profile (BVP) in [20], which represents the veloc-
ities of body parts during walking, and proposes a dedicated feature GBVP
for gait characterization. The GBVP is resilient to scenario factors, including
environmental changes, and the location and orientation of walking trajecto-
ries. To adapt GBVP to realtime gait identification, we propose a bunch of agile
extraction and normalization algorithms to boost its robustness to gait-irrelevant
factors. The designed feature GBVP is theoretically both environment and tra-
jectory independent, which mitigates gait-irrelevant components. The second
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challenge is to effectively train the model with a small quantity of data collected
from each new user. GaitID adopts deep neural networks as the gait identifica-
tion model, which is proved to be effective but has so sophisticated structure
that requires a large amount of data samples to get fully trained. To overcome
the challenge, GaitID exploits transfer learning to avoid retraining of the partial
network which extracts high-level gait features from the input velocity profile
and has the same network parameters shared by all persons.

In summary, we make the following contributions. First, we propose an agile
algorithm to extract gait-specific feature GBVP that is resilient to environment
and trajectory change, and thus relieves restrictions on walking manners. Sec-
ond, the proposed gait identification approach requires little training efforts for
various scenarios and persons, and thus can be easily deployed and extended.
Third, we implement GaitID on COTS Wi-Fi devices and extensive experiments
have demonstrated the effectiveness and robustness of the proposed system.

2 Related Work and Motivation

GaitID attempts to tackle two main challenges in Wi-Fi based gait identification.

Immune to Trajectory and Speed Variance. Both WiWho [17] and WiFiU
[12] try to preserve human-specific information in their extracted features, e.g.,
Doppler frequency shifts, from Wi-Fi signals. Such features, however, are highly
correlated with users’ relative movements to Wi-Fi devices, thus impose strin-
gent restrictions on their monitoring tracks. Widar3.0 [20] proposes a domain-
independent feature BVP, which is mainly designed for in-place activities and
sensitive to the moving speed of the target. As a brief example in Fig. 2(a), gait
samples are collected from two users with different walking manners and a clas-
sifier based on CNN and RNN is trained and tested on datasets from different
walking tracks. While DFS and BVP perform better for the same track, they fail
to hold performance for testing on different tracks. Whereas, GBVP is robust to
track and speed variance.

Reducing Training Data for Newcomers. To fully exploit the spatial and
temporal property of motion features, existing works [2] leverage sophisticated
deep neural networks to achieve high accuracy. However, a more complex struc-
ture usually means more parameters need to be trained, which leads to the
requirement of a massive amount of training data. This problem becomes increas-
ingly conspicuous when new users are added and the network should be re-
trained. Figure 2(b) illustrates the exponential growing trend of required training
samples needed to reach specific accuracy for a typical DNN network.

Lessons Learned. The deficiency of existing gait identification works demand
to be relieved before practical usage is achieved. GaitID is designed to address
these issues.
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Fig. 3. Work flow of GaitID.

3 System Design

Figure 3 shows the work flow of our system.

3.1 GBVP Extraction

Widar3.0 [20] proposed an environment-independent motion feature BVP to
portray human activities, which is resilient to location, orientation and envi-
ronment changes. However, BVP can not be directly used for gait recognition
and the reasons are two-fold. 1) BVP are modeled with in-place activities where
movements of the reflection objects can be ignored, while gait activity involves
meters of torso movements. 2) The complexity of BVP extraction algorithm
is especially high and can hardly be applied into realtime systems. Therefor,
GaitID designed a rigorous and agile feature extraction algorithm to acquire
environment-independent and gait-specific feature GBVP (gait-BVP). In the
following formulations, we establish the coordinates whose origin is the location
of the person and positive x-axis aligns with his/her face orientation.

GBVP Formulation. To formulate GBVP, we first define an operator ⊗:

A ⊗ B �
M∑

i=1

N∑

j=1

A(i,j,∗) · B(i,j), (1)

Where A ∈ RM×N×P and B ∈ RM×N . Hence, the operation result A ⊗ B ∈
RP is equivalent to multiply each element of B with corresponding vector in the
third dimension of A and then sum them up. Using the defined operator, we
formulate GBVP as follows:

[GBV P ] = minG

L∑

i=1

|EMD(D(i)(G), [DFS](i))| + η‖G‖0, (2)

Where G ∈ RN×N is GBVP. D(i)(G) ∈ RN×N×F is the reconstructed DFS
from GBVP for ith Wi-Fi link. [DFS](i) is the observed DFS on ith link. L is the
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total number of links. N is the number of possible values of velocity components
along x/y axis. F is the number of frequency bins in DFS. EMD(·, ·) is the Earth
Mover’s Distance [8] and || · ||0 is the number of non-zero elements in GBVP. η
is the sparsity coefficient. D(i)(G) is given by:

D(i)(G) = SUB(A(i)) ⊗ G, (3)

Fig. 4. GBVP extraction and normalization

Where A(i) ∈ R(N×N×F ) is the coefficient matrix to map GBVP into DFS on
ith link. The SUB(·) is the operator to cherry-pick the most relevant elements
in the coefficient matrix to reduce the search space of GBVP and eventually
reduce algorithm complexity. We will shortly introduce the algorithm on how to
do that reduction in the Accelerating GBVP extraction part. Each element
in the coefficient matrix can be determined by:

A
(i)
(j,k,m) =

{
1 fm = f (i)(< vj , vk >)
0 else

, (4)

Where < vj , vk > is the corresponding velocity of the < i, j >th element
in GBVP matrix. fm is the mth frequency sampling point in the DFS profile.
f (i)(·) is a mapping function to convert target velocity into DFS observation for
ith link with f (i)(< vx, vy >) = axvx + ayvy. Specifically:

ax =
1
λ

(
xt

‖(xt, yt)‖2 +
xr

‖(xr, yr)‖2 ), ay =
1
λ

(
yt

‖(xt, yt)‖2 +
yr

‖(xr, yr)‖2 ) (5)

Where (xt, yt) and (xr, yr) are the locations of transmitter and receiver and
should be updated whenever the target position changes during walking. We
sanitize CSI with existing works [7] and acquire target user’s torso position and
orientation by existing passive tracking system, e.g., IndoTrack [4] and Widar2.0
[6].

Accelerating GBVP Extraction. For activity recognition tasks with Wi-Fi,
only a few major reflection paths are considered and Widar3.0 [20] leveraged this



GaitID: Robust Wi-Fi Based Gait Recognition 735

sparsity by adding a regular term in target function to recover BVP. However,
this sparsity is not fully exploit and the algorithm is still too cumbersome to be
applicable. Our key insight is that, the spatial correlation embodied in human
motion could potentially be used to reduce the complexity of GBVP extraction
algorithm.

We observe that, during gait activity, the limbs would swing to opposite
sides of the torso with limited speeds and the velocity of all the reflection paths
would cluster around the velocity of torso. This observation can be confirmed
by Fig. 4(a). This profile is constructed with CSI for 4 continuous cycles from
one user. The red curve demonstrates the major energy corresponding to torso
motion and the white curves demonstrate the residual energy corresponding
to limbs motion. It is clearly shown that both sparsity and spatial clustering
phenomenon exist in the reflected signal. Hence, if we can pinpoint the velocity
of torso on GBVP matrix, then the whole body GBVP components can be
searched within a small area centered on torso component.

Based on the above observations, GaitID first identifies the maximum fre-
quency bins in DFS from each Wi-Fi link and formulates the relationship between
frequency bins and velocity with the methods provided in [6]. Solving the equa-
tions from multiple links, GaitID pinpoints the torso velocity on GBVP matrix.
On top of that, GaitID crops the adjacent elements of torso component in the
coefficient matrix described in Eq. 3. The subtracted coefficient matrix is then
used for GBVP recover with Eq. 2. After the above process, the GBVP search
space is hereby reduced. In our experiments, the crop window’s size is empiri-
cally selected and a smaller window would results in shorter running time but
deteriorative accuracy, vice versa. The torso and limbs components as well as
the search zone in GBVP is visualized in Fig. 4(b).

Fig. 5. Gait recognition model.

GBVP Normalization. While GBVP is theoretically only related to the gait
of the target, it requires extra normalization to increase the stability as gait indi-
cator. The reasons are three-fold. First, literature [16] has proven that the torso
movement contains little information of gait patterns and need to be removed.
Second, the reflected signal power is correlated with torso position relative to
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transceivers. Third, different walking speeds correspond to different limbs swing
speeds, which results in variation of the number of GBVP frames and value
floating within each GBVP matrix.

Thereafter, GaitID first compensates the torso speed by applying transla-
tion and rotation on GBVP. The translation displacement is ‖vtorso‖2 and the
rotation angle is ∠vtorso − ∠vref where vref is the manually selected refer-
ence orientation. This transformation procedure is similar to moving the target
human to a treadmill, on which the target performs fixed-speed walking.

GaitID then normalizes the sum of all elements in each GBVP to 1. It is
based on the observation that the absolute reflection power contains environment
information while the relative power distribution over physical velocities doesn’t.
Lastly, GaitID scales each single GBVP with a scaling ratio vob

vtg
, where vob is

the observed walking speed and vtg is the target walking speed. GaitID then
resamples GBVP series over time with a resampling ratio of vtg

vob
, which is based

on the hypothesis that the total displacement of the limbs relative to the torso
is analogous across different walking speeds.

After normalization, only human identity information is retained while gait-
irrelevant factors are removed. The normalized GBVP is visualized in Fig. 4(c),
where torso speed is compensated and walking direction is normalized to a fixed
direction.

3.2 Recognition Mechanism

Fundamental Model. Generally speaking, each single GBVP captures limbs’
velocity distribution relative to the torso, and GBVP series exhibit how the
distribution varies over time. As shown in the upper half of Fig. 5, we adopt a
deep neural network (DNN) to best depict the characteristics of GBVP.

Fig. 6. Network weights trained from two datasets (lower layers share commonalities).

The input of the fundamental DNN model is of size 20× 20 × 30, as velocity is
quantized into 20 bins along the axis of the body-coordinate system, and GBVP
series is adjusted to 30 snapshots after normalization. GaitID first applies 3D
CNN onto the GBVP series for spatial feature compression and time redundancy
reduction. Convolution operations along the time domain also alleviate single
GBVP estimation error. 16 convolutional filters of size 5× 5 × 5 output 16 3D
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matrices of size 16 × 16 × 26. Then the max-pooling layer is applied to down-
sample feature maps to the size of 8 × 8 × 26. By flattening the feature maps
except for the time dimension, we obtain a vector series of size 1024 × 26. And
a fully connected (FC) layer is appended.

Recurrent layers are also incorporated into the model to model the temporal
dynamics of the vector series. Considering the long-term characteristics of GBVP
as a gait cycle always lasts for a duration of more than one second [5], regular
RNN suffers from the vanishing gradient problem [9], which hinders them from
being used for long-term information extraction. Thus, instead of regular RNN,
we adopt a better variation of RNNs: Long Short Term Networks (LSTM) [10].
The output of LSTM is then encoded with the softmax layer to do multiclass
classification.

Transfer Learning for Reducing Training Efforts. Despite the fact that the
structure of the fundamental model is not that sophisticated, the DNN model
still demands enormous training data to converge. And when a new user is
added into the human identification system, he/she must perform massive gait
activities. Evaluation results in Sect. 4 shows that there will be a rapid reduction
in recognition accuracy even if the amount of training data decreases slightly.

Our solution was inspired by the observation that neural networks trained
on similar datasets often share commonalities, i.e., the model trained on sim-
ilar datasets undergo analogous convergence procedure to some extent [11,15].
This characteristic is exploited in a well-known research realm called Transfer
Learning.

To testify the validity of Transfer Learning in gait recognition, we tune the
fundamental model from scratch on two independent datasets separately, each
of which is composed of GBVP series from two different users. We visualize and
compare the network weights from the two converged models. As can be seen
from Fig. 6, the lower layers of the neural network have an analogous distribution
of weights while the upper layers vary a lot. This phenomenon paves the way
to transfer the information learned from different datasets and alleviate data
collection effort.

To leverage this generalizability between datasets, GaitID first trains a model
on the pre-collected large-scale dataset, which consists of GBVP from n class 1
persons. Then GaitID replaces the softmax layer in the fundamental model with
a different shape of n class 2 and initiates it randomly. The remaining weights
of the model are initialized with the weights copied from the pre-trained model.
The lower half of Fig. 5 shows how transfer learning is applied in GaitID. We
will demonstrate that starting from the transferred structure and weights, our
model can converge on the new dataset with significantly fewer data instances
in Sect. 4.
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4 Evaluation

4.1 Experimental Methodology

GaitID is implemented on one Wi-Fi sender and six Wi-Fi receivers, each of
which is equipped with Intel 5300 wireless NIC and Linux CSI Tool [1]. We
conduct experiments under two different indoor environments illustrated in
Fig. 7(a). We designed four linear tracks, including two perpendicular lines to
both axes and two diagonal lines shown in Fig. 7(b). Each of these tracks has
enough length for five steps and users can walk on both ways.

We recruited 11 volunteers(4 females and 7 males) to participate in our exper-
iments, covering the height 155 cm to 186 cm and weight 44 kg to 75 kg and age
from 20 to 28 years old. These volunteers were asked to walk normally with
different speeds on those tracks and each data sample contains five steps. Specif-
ically, 10 of the volunteers were asked to walk on each direction of four tracks
50 times in Hall, contributing 10 users × 4 tracks × 2 directions × 50 instances
for datasets. 3 of the volunteers in the Discussion Room contributed 3 users
× 4 tracks × 2 directions × 25 instances in the dataset. All experiments were
approved by our IRB.

Fig. 7. Experiment setup. Fig. 8. Overall accuracy.

4.2 Overall Performance

Figure 8(a) shows the confusion matrix (CM) for all of the 11 users. The overall
identification accuracy is 76.2%. From the confusion matrix, most users experi-
ence an accuracy over 75% except for user E, H and J, which may be attributed to
their walking manner of putting hands in pockets, leading to infrequent motion
on arms and induce less features in GBVP. User J and F are likely to be confused,
which may be caused by their similarities in body shape.

Figure 8(b) further shows the identification accuracy for different user num-
bers. Basically, the identification accuracy declines with more users involved,
which is intuitive because more categories would lead to more crowded feature
clusters in feature space. The accuracy for two users is above 99%, meaning that
the extracted gait features are distinct for identification. It’s notable that GaitID
holds its accuracy above 93.2% for about 5 users, demonstrating its potential for
smart home applications where there are only a few users in indoor scenarios.
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4.3 Generalizability Evaluation

Accelerating Performance. The process of GBVP extraction is accelerated
by the novel acceleration algorithm. To validate the efficiency and effective-
ness of GBVP over BVP, we collect 400 samples of CSI from three volunteers
and each corresponds to 4 steps. We then extract BVP as well as GBVP with
different accelerating windows sizes (as described in Sect. 3.1). The system is
running on a server with 32 cores of Intel Xeon CPU E5-2620 v4 @ 2.10 GHz
and Matlab2016b installed. The system running delay and recognition accuracy
are demonstrated in Fig. 9(a). As can be seen, even with 2 s of CSI as input,
the BVP extraction would last for unbearably 78 s. However, with our proposed
accelerating algorithm, the feature extraction speed can be accelerated 156 times
while maintaining the recognition accuracy to some extent. The GBVP extrac-
tion delay is 0.5 s with a window size of 5× 5 and the accuracy holds above
83%, which enables the system responds in real-time. We believe the proposed
accelerating algorithm would push the BVP to a broader application prospect
on other motion recognition scenarios.

Normalization Performance. For walking tracks independence, we randomly
select two users’ data from all the datasets, using one track as test and the
remaining three tracks to train our model, ignoring their walking speed. As is
shown in Fig. 9(b), the overall accuracy with normalized GBVP is significantly
above that without normalization. The second track benefits least from normal-
ization because we selected its direction as the reference direction and the GBVP
from other tracks are rotated to match this orientation. For walking speed inde-
pendence, we classify all the collected data into 6 categories, each with quantized
speed. We then select one category as test and the others to train the model.
Figure 9(c) demonstrates the remarkable improvements with normalization. The
fifth category benefits the least from normalization because we selected its speed
as the reference speed and GBVP with other speeds are normalized to this case.

Fig. 9. Experimental results of GaitID.
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Transfer Learning Performance. Transfer learning needs fewer data to
retrain the model. To verify the number of samples needed for convergence, we
randomly selected four([A,B,C,D]) users’ data with 4 × 400 samples containing
all the tracks and speeds. These samples are feed into a pre-trained model that
has already been tuned on users [A,E]. Results can be found in Fig. 9(d). With
transferred model structure and weights, only 12.5% of the data samples are
needed to keep accuracy above 80%. But when training from scratch, accuracy
can hardly exceed above 60%. We also evaluated the transformation between dif-
ferent user pairs. Figure 9(e) exhibits a consistency in generalizability between
different user set pairs. The slight degradation of accuracy for user pair (A,B)-
(C,D,E,F,G) may attributes to user G’s great similarities in gait patterns with
the other users.

4.4 Parameter Study

Impact of Gait Instances. To evaluate the impact of gait instances on identi-
fication accuracy, we randomly select four users and let them to perform 5 steps
of walk. We then manually split steps into different numbers by DFS peaks and
valleys. Results can be found in Fig. 9(f). The performance falls slightly from
5 steps to 2 steps but tumbles to below 78% with a single step. The reason is
that a full gait cycle contains 2 consecutive steps, each of which is insufficient
for representations of identity. Meanwhile, gait is a periodic motion and the rep-
etition of gait cycles introduces trivial extra information for gait characteristics.
Result from temporal memorability of LSTM in our model, GaitID is capable of
retaining distinctions from single gait cycles. Hence, we claim that 2 consecutive
steps are sufficient for human identification. In practice, we suggest to use four
steps for a more robust performance.

Impact of Link Numbers. In the formulation of extracting GBVP for gait, we
adopted 6 Wi-Fi links, which potentially contains redundancy. In this section, we
evaluate the impact of link numbers to the performance. We randomly selected
four users for classification and randomly prune partial links to reduce link
numbers. Results can be found in Fig. 9(g).The accuracy gradually slides when
involved Wi-Fi links reduced. This is because less links captures less reflection
paths caused by human body, and theoretically at least 3 links are necessary to
recover valid GBVP. With only 2 links, accuracy drops to below 80% and are
hardly beyond research usage.

Impact of Orientation Error. In the GBVP normalization process, we rotate
GBVP to identify with the reference orientation, which demands a precise esti-
mation of walking direction. However, orientation extracted from state-of-the-art
motion tracking techniques contains prominent errors. To evaluate the impact
of orientation error on human identification accuracy, we generated training and
testing set by manually providing trace orientation, and added controllable ori-
entation disturbance to testing set. Results can be found in Fig. 9(h). As the
illustration shown, an orientation error within 50◦ doesn’t noticeably deterio-
rate accuracy, while an orientation error above 50◦ witnesses an unacceptable
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dilution in identification accuracy. Hence, the four tracks with eight orienta-
tions designed in our evaluation implementation are sufficient to represent more
complicated walking traces.

5 Conclusion

In this paper, we present GaitID, a Wi-Fi based person identification frame-
work which is robust to walking trajectory with few training efforts. GaitID first
proposes an enhanced gait-specific feature, which is theoretically environment,
trajectory and speed independent, and then reduces the training efforts for new
users by transfer learning technique.
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