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Abstract—Time-Sensitive Networking (TSN) is an enabling
technology for Industry 4.0. Traffic scheduling plays a key role
for TSN to ensure low-latency and deterministic transmission
of critical traffic. As industrial network scales, TSN networks
are expected to support a rising number of both time-triggered
and event-triggered critical traffic (TCT and ECT). In this
work, we present InNetScheduler, the first in-network TSN
scheduling paradigm that boosts the throughput, i.e., number
of scheduled data flows, of both traffic types. Different from
existing approaches that conduct entire scheduling on the server,
InNetScheduler leverages the computation resources on switches
to promptly schedule latency-critical ECT, and delegate the
computational-intensive TCT scheduling to server. The key in-
novation of InNetScheduler includes a Load-Aware Optimizer
to mitigate ECT conflicts, a Relaxated ECT Scheduler to ac-
celerate in-network computation, and End-to-End Determinism
Guarantee to lower scheduling jitter. We fully implement a
suite of InNetScheduler-compatible TSN switches with hardware-
software co-design. Extensive experiments are conducted on both
simulation and physical testbeds, and the results demonstrate
InNetScheduler’s superior performance. By unleashing the power
of in-network computation, InNetScheduler points out a direction
to extend the capacity of existing industrial networks.

Index Terms—Time-Sensitive Networking, Traffic Scheduling,
Time-triggered Critical Traffic, Event-triggered Critical Traffic

I. INTRODUCTION

Time-Sensitive Networking (TSN) has gained significant

attention as a pivotal technology towards Industry 4.0, and

is widely deployed in time-critical scenarios like automated

production lines [1]–[3]. Traffic scheduling is essential to

TSN. It ensures the real-time and deterministic transmission of

critical traffic by strategically planning its forwarding path and

time. The greater number of critical flows an algorithm can

schedule, the more production equipment and manufacturing

tasks can be supported in a production line.

There are two types of critical traffic to be scheduled

in TSN, i.e., time-triggered critical traffic (TCT) and event-

triggered critical traffic (ECT) [4]–[6]. For instance, in a

typical industrial automation production line, actuator devices

require periodic control commands, whereas sensor devices

may trigger shutdown signals to protect the production line

when overheating. In this scenario, the periodic control com-

mands belong to TCT, and the shutdown signals belong to

ECT. Consequently, in practical industrial systems, it is crucial

to concurrently schedule both of the above critical traffic.

� Zheng Yang is the corresponding author.

Fig. 1: A comparison of existing joint scheduling ap-
proaches and our InNetScheduler. (a) Approach1: In CNC,

scheduling all TCT offline before the network deployment

and scheduling ECT online when it arrives. (b) Approach2:

In CNC, modeling ECT as TCT and converting the joint

scheduling task into an offline TCT scheduling problem. (c)

InNetScheduler: scheduling TCT offline in CNC and schedul-

ing ECT online when it arrives in switches.

To increase the network throughput, i.e., the number of

scheduled critical flows, pioneering researches have explored

the joint scheduling of TCT and ECT. All of them conducts

scheduling tasks in TSN’s centralized network configuration

(CNC). As shown in Fig. 1(a), an intuitive approach is to

schedule all TCT offline before the network deployment, and

then schedule ECT online as it arrives during the production

process. Due to the high communication delay between CNC

and TSN switches, this approach is unable to finalize the

scheduling before ECT’s deadline. Another group of studies

shown in Fig. 1(b) first model ECT as TCT, and then convert

the joint scheduling task into an offline TCT scheduling

problem in CNC [7], [8]. Since the scheduling algorithm can

not access ECT’s arrival time, they have to reserve redundant

network resources to ensure ECT’s successful transmission,

sacrificing the network throughput. In summary, given that

two aforementioned approaches are deployed in CNC, they

are unable to get ECT’s arrival time accurately and promptly,

therefore limiting their network throughput.



Granted with multi-core processors and operating systems,

commercial switches nowadays can perform not only pure

packet forwarding but computations as well [9]–[11]. This

trend leads to the birth of a new computational paradigm called

in-network computing [12]. Moreover, switches are located

at the core of the network, making it possible for them to

accurately and promptly obtain the ECT’s arrival information.

Consequently, as Fig. 1(c) illustrates, our key insight is to

leverage in-network computing paradigm to (i) incorporate

both CNC and switches in TSN scheduling; and (ii) exploit

the ECT’s arrival information to improve network throughput.

Albeit inspiring, applying the above intuition in TSN

scheduling is non-trivial and faces the following challenges.

(1) In-network paradigm causes ECT conflicts: In the in-

network scheduling paradigm, each TSN switches are sup-

posed to independently schedule the passing by ECT. Due

to the unawareness of each other’s scheduling decision, they

might inadvertently make ECT conflicts on the links with

limited time-slot resources, and consequently degrade the

network throughput. (2) Complex scheduling hinders task
computation: To meet the transmission deadline of ECT,

the in-network scheduling needs to be conducted immediately

(typically within 1 millisecond). However, TSN scheduling is

a NP-Hard combinatorial optimization problem, and existing

scheduling methods incur significant computational overhead.

As a result, it is challenging for the resource-constrained

network switches to conduct scheduling tasks on time. (3)
Volatile resources impair scheduling determinism: ECT

scheduling comprises both task computation and critical data

exchange. Since the operating system dynamically allocates

computation resources and other applications occasionally

preempt internal communication channels, the time fluctuation

of in-network scheduling is considerable. This makes it hard

to ensure the completion of ECT scheduling before deadline.

In this work, we present InNetScheduler, the first in-

network TSN scheduling paradigm that improves the through-

put of both TCT and ECT. Specifically, we delegate the

computational-intensive offline TCT scheduling to CNC, and

the latency-sensitive online ECT scheduling to switches. To

tackle the above mentioned challenges, we propose the fol-

lowing three technologies. (1) Load-aware Optimizer: In-

NetScheduler takes the load balancing into account when

making the offline TCT scheduling. This reduces the number

of resource-limited links and thus significantly decreases the

probability of ECT conflicts. (2) Relaxated ECT Scheduler:
In order to meet the deadline, InNetScheduler adopts a dy-

namic programming algorithm of complexity O(n3) to ap-

proximate the NP-Hard ECT scheduling problem. (3) End-to-
End Determinism Guarantee: InNetScheduler incorporates

multiple techniques to ensure the end-to-end determinism of

ECT scheduling on switches, including hardware resource

isolation, software process management, and reliable data

exchange.

The main contributions are as follows:

• We present InNetScheduler, as far as we are aware of, the

first in-network TSN scheduling paradigm that delegates

ECT scheduling to switches. It significantly improves the

network throughput of all critical traffic, enabling produc-

tion lines to support more devices and manufacturing tasks.

• We propose three novel technologies for InNetScheduler:

Load-aware Optimizer mitigates possible conflicts of ECT.

Relaxated ECT Scheduler boosts the in-network computa-

tion of ECT scheduling. End-to-End Determinism Guaran-

tee assures extremely low jitter of scheduling computation

and data exchange.

• We conduct extensive experiments on different topologies

and problem sizes to validate InNetScheduler’s capacity.

Compared with SOTA methods, InNetScheduler improves

the network throughput of TCT and ECT by 7% and 17%,

respectively. In addition, we have implemented a set of

hardware-software co-design TSN testbeds supporting In-

NetScheduler paradigm. The successful operation on a real-

world topology demonstrates InNetScheduler ’s practicality.

II. PRELIMINARY

A. Switch Model of TSN

Fig. 2 highlights the fundamental differences between tradi-

tional Ethernet switch and TSN switch, with the latter demon-

strating superior precision in data packet control by reserving

specific time slots for potentially critical traffic. Leveraging the

precise time synchronization specified in IEEE 802.1AS [13],

all switches within a TSN system can attain nanosecond-level

time synchronization. With the presence of an accurate global

clock, TSN switches can allocate transmission resources for

critical traffic within the system using a Gate Control List

(GCL), which can accurately manage the timing of data packet

transmission for each queue.

Different operating logics of GCL correspond to distinct

traffic shaping mechanisms. The two most prevalent shaping

mechanisms in TSN are Time-Aware Shaper (TAS) [14] and

Cyclic Queuing and Forwarding (CQF) [15]. In TAS, GCL

operates at the granularity of per-packet. Implementing the

TAS mechanism necessitates meticulous consideration of the

sequence and timing of each data packet’s entry and exit from

the queue. As depicted in Fig. 2, the time slot t from 4 to 9

on the TAS switch is specifically reserved for a data packet in

queue q3.

CQF is an updated protocol proposed by TSN working

group. In CQF, GCL manages key traffic at the granularity

of per-queue. As seen in Fig. 2, the parity and odd queues

to alternately perform enqueue and dequeue operations, so

CQF can ensure that data packets are sent from the upstream

node in one time slot, and the data packets are received in the

downstream node in the same time slot, and the data packets

are sent out in the next time slot.

Beyond that, researchers have recently tried to enhance

TSN’s switching capability from various perspectives. Tan et
al. [16] have amalgamated TSN technology with determinism

at the IP layer. Wang et al. [17] have incorporated edge com-



Fig. 2: Comparison of three typical switch models.
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Fig. 3: TSN scheduling example.

puting into the TSN framework. These efforts are orthogonal

to and can be integrated in InNetScheduler.

B. TSN Scheduling Problem and Formulation

Fig. 3 illustrates an example of TSN scheduling. TSN

system under consideration comprises two sensor devices, two

TSN switches, an actuator device and several background

traffic flows. The sensors intermittently or abruptly transmit

critical data flows to the actuator device. Given that each

physical link can accommodate only a single data flow at any

given moment, ensuring real-time and deterministic data flow

involves pre-planning designated forwarding paths and reserv-

ing time slots. This ensures exclusive forwarding resources

at specific temporal and spatial points. Analogous to classic

scheduling dilemmas such as train timetable coordination, the

TSN scheduling issue is an NP-Hard problem.

We represent the network topology as a directed graph

G(V, L), with switches and end nodes serving as the nodes

V , and physical links connection between va, vb ∈ V
can be modeled as bidirectional edges li = (va, vb), lj =
(vb, va) ∈ L. Moreover, we employ a five-dimensional

vector(src, dst, period, len,MD) to denote the critical data

flows requiring scheduling, these five elements represent the

source, destination, period, packet length and maximum allow

delay of critical traffic, respectively. Drawing from prior

research and theoretical computations, we segment continuous

time into discrete time slots for allocation, each slot spanning

250 μs and the length of CQF queue for critical traffic is

10 [15], [18]. In a network environment with a bandwidth

of 1000Mbps, this implies that 120 μs are allocated for the

transmission of critical data frames, and the remaining 130 μs
are dedicated to background traffic.

TSN scheduling is a path and time slot assignment process

with the following constraints: (1) Temporal Constraint: Each

flow should transmit packets in accordance with a specified

period, and the end-to-end delay must not exceed MD; (2)

Queue Resource Constraint: The utilization of resources in

each queue must not surpass the queue’s capacity; (3) Adjacent

Link Constraint: The sequence of time slot indices where a

single flow converges along the forwarding path must be both

incremental and contiguous; (4) Flow Isolation Constraint:

Packets from distinct data flows must not interleave on the

same link. These constraints collectively constitute an NP-

Hard combinatorial optimization problem, which can be rep-

resented as either an Integer Linear Programming (ILP) or

Satisfiability Modulo Theories (SMT) problem.

III. METHOD

A. Overview of InNetScheduler

InNetScheduler tackles the above challenges through soft-

ware and hardware co-design. Fig. 4 sketches the architecture

of InNetScheduler. We have observed that TCT exhibits pre-

dictable and static characteristics, allowing TCT scheduling

operating in CNC offline, to prepare for ECT scheduling and

maximize throughput. On the other hand, ECT is characterized

by random and dynamic occurrences, needed to be calculated

in real time when the traffic arrives.

1) TCT scheduling: As shown in the Fig. 4, TCT schedul-

ing phase takes place in CNC (§III-B). The algorithm has two

key parts: first, all TCT is scored and sorted by a Enhanced

XGBooster Sorter, which uses a gradient boosting strategy

and generates an optimized scheduling order to improve the

throughput of critical traffic (§III-B1); the second part is

Load Balance Module that ensures TCT is evenly distributed

throughout the network, reserving as much balanced resources

as possible for ECT scheduling(§III-B2). The scheduler needs

to meet the various constraints mentioned above. After TCT

scheduling phase, TCT scheduling table is generated, serving

as the basis for subsequent ECT scheduling.

2) ECT scheduling: ECT scheduling is performed in

switches online while traffic arrives. ECT scheduling needs to

consider network throughput as well as real-time performance.

We leverage the latest commercial Xilinx-Zynq7000 [19], a

computing platform launched by Xilinx, to implement In-

NetScheduler through software and hardware co-design. As

seen in Fig. 4, Zynq consists of a processing system (PS, for

software development) and user-programmable logic (PL, for

hardware design) two modules.

Fig. 4 demonstrates the architecture of ECT scheduling.The

inputs to the ECT scheduling are the network topology, the

TCT scheduling table, and ECT flows. The ECT scheduling

consists of two parts: Fast Load Balance Module selects
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Fig. 4: Overview of InNetScheduler.

appropriate links in space, and Max Remaining Resource

Scheduling plans reasonable slots in time. These designs

greatly accelerate the execution of the ECT scheduling and

ensure that the throughput of ECT is maintained at a high

level. (§III-C). To ensure scheduling determinism, we have

made specific hardware designs, to guarantee deterministic

resources for ECT scheduling computation and data exchange

in switches(§III-D).

B. Load-aware Optimizer

The network throughput for critical traffic is a key per-

formance indicator of TSN systems. In practical industrial

settings, scheduling tasks can be exceedingly complex. Based

on our study of glass factories, the critical traffic in an

industrial production line can amount to thousands. Due to

the in-network scheduling paradigm, the ECT scheduling in

switches is independent of each other. Therefore, it is easy

to cause preemption on some key links with few resources,

resulting in scheduling failure. Consequently, throughput of

ECT can not be assured.

To address the aforementioned challenges, we have designed

modules for both TCT and ECT scheduling to ensure a high

network throughput, its core is network load sharing. TCT

scheduling employs a traffic sorter based on gradient boosting

theory, in conjunction with load balancing, to prepare for ECT

scheduling. This approach facilitates the even distribution of

traffic across the network, thereby laying the groundwork for

ECT scheduling. For details on ECT scheduling, please refer

to the §III-C.

1) Enhanced XGBoost Sorter: For any scheduling algo-

rithm that does not completely traverse the solution space,

the input order of the flow is crucial to the number of flow

entries to be solved, and many studies have proved this point.

The XGBoost regressor enhances the predictive accuracy of

the model by iteratively constructing and integrating multiple

decision tree models, where each new model is designed to

rectify the prediction error of its predecessor. The procedure

of gradient boosting in XGBoost is illustrated in Alg. 1:

Algorithm 1: Enhanced XGBoost Algorithm

Input: Massive Regularized Training

Data{(xi, yi)}Ni=1, Loss Function L(y, F (x)),
Weak Learners(Trees) W and Learning Rate α

Initialize Model f̂(0)(x) = argmin
θ

∑N
i=1 L(yi, θ) ;

for m = 1 to M do
// 1.compute gradient & hessians

gradient ĝm(xi) = [∂L(yi,f(xi))
∂f(xi)2

]f(x)=f̂(m−1)(x)
;

hessians ĥm(xi) = [∂
2L(yi,f(xi))
∂f(xi)2

]f(x)=f̂(m−1)(x)
;

// 2.fit next base learner

φ̂m = argmin
φ∈Φ

∑N
i=1

1
2 ĥm(xi)[− ĝm(xi)

ĥm(xi)
− φ(xi)]

2;

f̂m(x) = αφ̂m(x);
// 3.update model

f̂(m)(x) = f̂m(x) + f̂(m−1)(x);
// 4.early stopping
check if to execute early stopping

end
return f̂(M)(x) =

∑M
m=0 f̂m(x) ;

We enhance XGBoost regressors with massive data and take

”early stopping” to prevent overfitting. It’s important to note

that the training data for the XGBoost regressor is derived

from simulations. We inject a substantial volume of traffic

into the virtual network topology and employ a simple greedy

algorithm for scheduling these tasks. Upon the occurrence of

the first unschedulable traffic failure, we record the success or

failure of scheduling of all subsequent traffic. The score for all

traffic is calculated as 100 times the ratio of the schedulable



link length of the traffic to the total path length. This design

aims to adjust the traffic order to increase network throughput.

2) Load Balance Module: The underlying principle of the

load balancing module design is to equalize link loads to

facilitate potential future scheduling. In this study, we utilized

Python Networkx [20] to construct a model that mirrors actual

network characteristics, and based on this, we implemented

a load balancing design for forwarding. The algorithm for

finding the path with the least load can be reduced to the

single-source shortest path algorithm, which can be solved by

Dijkstra Algorithm. The implementation in this paper uses a

Fibonacci heap. The pseudocode for the complex balancing

module is presented in Alg. 2:

Algorithm 2: Load Balance Algorithm

Input: Sorted Flow List L, Network N
Initialization Forward Table T a hash table ;

while there are unprocessed flows in L do
extract a flow f from L;

select the path p with the minimum load for f
based on N ;

T insert {f : p};

update N based on path p;

end
return Forward Table T ;

C. Relaxated ECT Scheduler

In contrast to commercial applications, industrial appli-

cations necessitate a higher degree of real-time responsive-

ness and determinism (e.g., sub-millisecond versus tens of

milliseconds latency and jitter). While Zynq has furnished

specific computational units for executing tasks (e.g., 2 A-

Cores), the intricacy of task scheduling and the relative paucity

of computational resources pose a substantial challenge in

guaranteeing real-time in-network computation.

To address the challenge of real-time computation, we

propose Fast Load Balance Module for path selection and Max

Remaining Resource Scheduling for time slot management.

The design of these two modules is can be fast calculated,

paying great attention to computing efficiency.

1) Fast Load Balance Module: As mentioned in §III-B2,

the computational complexity of normal Load Balance Module

is O(k(m+ nlogn)), where m is the number of paths in the

graph, n is the number of nodes and k is the total flow number.

But such complexity is also a burden for switches. So we adopt

the idea of exchanging space for time, and record all possible

situations, and do not update the ECT traffic in real time, so

as to achieve the algorithm complexity of O(1).
2) Max Remaining Resource Scheduling: Algorithm sched-

ule traffic line by line. Fig. 5 presents a schematic repre-

sentation of Max Remaining Resource Scheduling for single

flow. The figure illustrates a basic topology along with a

straightforward demand for ECT. The traffic will pass through

Fast Load Balance Module, where we find the optimal path.

We need to transmit the traffic packet from the src to dst

Fig. 5: Max Remaining Resource Scheduling Diagram.

within the deadline, which is assumed to be five time slots.

During the transmission process, the traffic passes through

three links. The available resources for each link in these five

time slots are shown in the figure. For example, the five time

slots for link1 are (2, 5, 1, 1, 4). We then reduce this problem

to finding the maximum remaining resources, and we use

dynamic programming (DP) for quick solution. This leads to

a relaxed solution. It should be noted that the time slot of the

previous link we choose must be earlier than the subsequent

continuous time slots. Alg. 3 shows the specific process of DP.

We can simply analyze the complexity of the algorithm to be

O(ktl), where k represents the number of traffic flows, t is

the deadline time and l is the path length.

Importantly, we have made specific modify to the IEEE

802.1 Qch standard to optimize throughput, as the time slots

for ECT on adjacent links are not sequential. Specifically, we

have engineered buffer queues in hardware to accommodate

those ECT that does not require immediate transmission.

Despite these modifications, the updated switch remains com-

pliant with the TSN shaping mechanism.

Algorithm 3: Max Remaining Resource Scheduling

Input: Resource Matrix R
Output: max sum and optimal path
Define dp and path as two-dimensional arrays with

the same size as Resource Matrix;

for each column j from 1 to columns do
for each row i from 0 to rows do

dp[i][j] ← max val +matrix[i][j];
path[i][j] ← max index;

end
end
max sum ← max(dp[−1]);
max row ← maxIndex(dp[−1]);
Define optimal path ← [] ;

Append max row to optimal path;

for each column j from columns-1 to 1 (backward) do
max row ← path[max row][j];
Append max row to optimal path;

end
Reverse optimal path;

return max sum and optimal path;
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D. End-to-End Determinism Guarantee

The TSN system strives for ultimate determinism, necessi-

tating that each of its components, including the scheduling

algorithm, must exhibit deterministic behavior. Given the

inherent resource management and task scheduling logic of the

operating system, merely integrating the scheduling algorithm

within the operating system does not assure determinism.

Furthermore, data exchange between the PS and PL via the

network port can induce substantial latency and jitter.

In InNetScheduler, we tackle the above challenge and ensure

the determinism of scheduling tasks through handcrafted and

detailed resource and computation management. As seen in

Fig. 6, we categorize the end-to-end delay determinism into the

ECT scheduling computation determinism, data exchange de-

terminism and traffic determinism. For these parts, we propose

isolated core for ECT scheduling computation determinism,

bypassing uncertain OS scheduling, and Twin DMA to ensure

data exchange determinism. TSN Traffic Shaping Mechanism

ensures the traffic determinism in the network.
1) ECT Scheduling Computation Determinism Guarantee:

Guaranteeing the execution latency of time-sensitive tasks

operating on Linux OS poses a challenge. Given the diversity

of computational tasks, OS on the TSN chip frequently opts for

TSOS (Time Sharing Operating System, i.e., Debian), thereby

introducing an element of uncertainty into the computation.

This is primarily due to numerous background processes

concurrently running and vying for computational resources

with time-sensitive tasks within the operating system. To

mitigate the influence of these processes, we have reserved

one A-Core (indicated by the blue box in Fig. 6) for the exe-

cution of each time-sensitive task. In our implementation, we

achieved A-Core isolation by employing the boot parameter

isolcpus=<cpu number> during the construction of the

Linux OS.
2) Data Exchange Determinism Guarantee: We employ

Direct Memory Access (DMA) technology to manage the

process of intermediate data exchange. In contrast to existing

techniques, such as the PL-PS Ethernet interface-based solu-

tion [21], our proposed Twin DMA provides a dedicated data

transmission channel for the scheduling data of ECT, thereby

ensuring deterministic internal PL-PS data exchange within

the switch. Additionally, the utilization of the DMA channel

facilitates data transfer to or from the device, resulting in

Fig. 7: Architecture of TSN testbeds.

significantly less CPU overhead compared to network-based

solutions. Should DMA not be utilized for data transmission,

the task would fall entirely to the CPU. However, the CPU’s

speed in accessing memory does not match that of DMA,

and it would be unable to execute other computational tasks

concurrently.

IV. IMPLEMENTATION

To validate the accuracy, real-time responsiveness, and

determinism of InNetScheduler, we employed a Xilinx 7000

FPGA board to develop a suite of TSN switches and evaluation

devices with hardware-software co-design, and incorporating

InNetScheduler into the system. As shown in Fig. 7, the

hardware component comprises modules for gating and high-

precision packet transmission, while the software compo-

nent encapsulates complex processing logic, such as time

synchronization and user configuration. Our system supports

802.1Qch, 802.1Qbv, 802.1Qcc [22], and 802.1AS. Precise

time stamper and GCL were executed on the hardware. So it

can facilitated time synchronization at the nanosecond level as

well as sub-microsecond-level packet jitter. This TSN system

also supports the collection, statistics, and analysis of data

packets, meeting the system’s network detection and perfor-

mance evaluation needs. This work bridges the gap between

theoretical understanding and practical application of TSN.

V. EVALUATION

A. Experiment Setup

1) Network Topology: We select three typical topologies to

represents complex use cases in industrial scenarios:

A380 topology is a simplification of the control network

of the Airbus A380 [23]. The network topology consists of 9

switches and 8 devices.

CEV topology is an abstraction of the control network of

the Orion spacecraft, a Crew Exploration Vehicle from NASA,

consisting of 9 switches and 9 devices [24].

Ring6 topology is also common in industrial control net-

works [25], [26]. It consists of 6 switches and 6 devices.

The aforementioned three representative topologies are

shown in Fig. 9, where the ellipses represent switches and

the rectangles represent devices.



(a) Scheduled Flow Rate on A380 (b) Scheduled Flow Rate on CEV (c) Scheduled Flow Rate on Ring6

(d) Run time on A380 (e) Run time on CEV (f) Run time on Ring6

Fig. 8: Overall performance of InNetScheduler on different network topologies.

Fig. 9: Topologies under test.

2) Flow Requirement: The requirements for TSN flows

are generated randomly in compliance with the IEC/IEEE

60802 [27], the TSN profile designated for industrial automa-

tion. We randomly select two devices for each flow as the

source and destination. TCT’s period and maximum end-to-

end delay are random chosen from {8ms, 16ms}. ECT is

non-periodic, and its maximum end-to-end delay are random

chosen from {4ms, 8ms, 16ms}. The payload length is

uniformly distributed between 1 and 2 packets.

3) Resource Setting: We choose CQF as the traffic shaping

protocol. Resource settings in our experiments include link

bandwidth, queue length, and global time slot size. Similar

to most studies, we set the link bandwidth to 1000Mb/s, the

length of each CQF queue to 10 and time slot size to 250 μs.

4) Metrics: We employ scheduled flow rate, defined as

the proportion of successfully scheduled traffic in a given

set of flows, as a metric to evaluate the efficacy of the

scheduling algorithm. Additionally, we measure the run time

of scheduling algorithm on a real TSN switch to assess its

real-time and deterministic performance.

5) Baselines: We compare the InNetScheduler ’s perfor-

mance with two most relevant state-of-the-art schedule algo-

rithm, E-TSN [7] and Tabu-ITP [18], to evaluate the algorithm

performance. E-TSN models ECT as TCT, and reserves some

resources for ECT based on the model when scheduling in

CNC. For comparison purposes, we use Tabu-ITP, which use

both Tabu Search for TCT scheduling in CNC and ECT

scheduling in TSN switch, and also include End-to-End De-

terminism Guarantee technology for Tabu-ITP.

B. Overall Performance
Fig. 8 demonstrates the overall performance of InNetSched-

uler. For each experiment, we randomly generate 100 schedul-

ing problems and then record the scheduled flow rate and

run time on a TSN switch among different methods. Each

scheduling problem consists of {2000, 3000, 4000} TCT and

100 ECT. To sum up, InNetScheduler achieves the highest

scheduled flow rate among the counterparts and ensures real-

time and deterministic performance which is not guaranteed

by other methods.
Fig. 8a, 8b, 8c display the scheduled flow rate of different

method. At the highest load of the three topologies, the TCT

scheduled flow rate of InNetScheduler is on average 7.0%

higher than E-TSN and 6.7% higher than Tabu-ITP. When

comparing ECT flow schedules, the advantage of InNetSched-

uler is more pronounced, with its scheduled flow rate at the

highest load being 17.3% and 28.5% higher than E-TSN

and Tabu-ITP, respectively. It is noteworthy that all three

methods exhibit relatively subpar performance on the Ring6

topology. This is attributed to the fact that the Ring6 topology,

comprising merely six switches, is incapable of managing

a load exceeding 3000 flows. E-TSN and Tabu-ITP each

exhibit unique strengths regarding the scheduling capabilities

for TCT and ECT. For TCT, E-TSN sacrifices a degree of

scheduled flow rate due to its reservation of resources for ECT.

However, these reserved time slots prove to be pivotal in ECT

scheduling, making E-TSN significantly more effective than
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Fig. 10: ablation study

Tabu-ITP in this aspect. Thus, a trade-off exists between E-

TSN and Tabu-ITP in this context.

Fig. 8d, 8e, 8f illustrates the run time results in different

topologies. Given that E-TSN takes a modeling approach and

totally deploy in CNC, its scheduling run time for ECT is

not taken into account. We also based on the CQF proto-

col, the deadline for ECT computation can be determined:

250μs − 10 ∗ 1500B
1000Mb/s = 130μs (Maximum Transmission

Unit size is 1500B). That is, the lower time limit for sending

background traffic. If the scheduling time is within 130 μs,
then the next forwarding result is computed in every time

slot, and the real-time nature of the scheduling ensures deter-

ministic data forwarding. InNetScheduler consistently meets

the requirements for ECT scheduling computation. However,

a significant portion of computational tasks in the Tabu-ITP

method fails to complete within the specified time, potentially

causing critical data frame to miss a time slot, so can’t be used

in actual production.

In comparison to Tabu-ITP, InNetScheduler demonstrates

superior deterministic performance, with jitter confined within

10 μs, thus marking an improvement by an order of magni-

tude over Tabu-ITP, whose jitter is above 180 μs. Between

A380, CEV and Ring6 topology, the median scheduling run

time for Tabu-ITP roughly exhibits a decreasing relationship.

Meanwhile, the jitter of Tabu-ITP’s run time for ECT is also

a similar relationship. This may be due to the algorithmic

decision of Tabu search, which requires frequent domain

selection and movement when the topology is complex and the

number of feasible solutions is low, resulting in a prolonged

and fluctuating computation time. In contrast, the complexity

of our algorithm is completely determined by the path length

of the flow, the maximum allow delay, and the number of

flows, so run time of our algorithm is highly deterministic.

C. Ablation Study

We conduct several experiments to understand the effective-

ness of each module in InNetScheduler.

1) Software: We conducted experiments by separately elim-

inating Load-aware Optimizer (LO) from the TCT scheduling

and Relaxated ECT Scheduler (RES) from ECT scheduling,

both are replaced with greedy scheduling. Fig. 10a illustrates

the efficacy of the two component. The findings reveal that

the removal of the sorter results in a decrease in the scheduled

flow rate of TCT by 12.2%, 11.1%, and 12.4% across the three

(a) Comparison on TCT (b) Comparison on ECT

Fig. 11: Scheduled flows on the same set of problems.

topologies. Conversely, the elimination of the RES component

leads to a reduction in the scheduled flow rate of ECT

by 30.5%, 21.8%, and 35.3%. These results underscore the

significant role of software algorithm design in enhancing

the scheduled flow rate of the TSN system. Similar to the

overall experimental results in §V-B , after removing RES we

designed, ECT on Ring6 topology is almost unschedulable.

2) Hardware: We evaluate the run time of InNetScheduler’s

ECT scheduling with and without End-to-End Hardware Guar-

antee. As a control group, we replace the sensing DMA with

a PS-PL Ethernet interface and turn off the core isolation,

put the interface and CPU at 50% load. Fig. 10b indicates

a significant increase in computational delay and jitter in

the control group’s experiment, potentially compromising the

overall system availability. Given the previously established

benchmark of 130μs, approximately 26% of the data fails to

complete computation within the allotted time. The reason for

these task failures is likely to be due to the lack of exclusive

resources, which caused the transmission between PS-PL to

be blocked or waited for a long time before the CPU’s time

slice. This underscores the efficacy of the hardware module in

ensuring the determinism of ECT scheduling.

D. Deep Dive of InNetScheduler

To better understand the scheduled flow rate of InNetSched-

uler, we conduct a more detailed analysis of scheduling results.

We conduct an experiment using a representative scheduling

task, consisting of 4000 TCT and 100 ECT, and record the

scheduling results on InNetScheduler and E-TSN .

Fig. 11a and Fig. 11b depict the relationships between

the sets of scheduled flows for both TCT and ECT. In the

comparison of scheduled flow rate between these two types of

flows, InNetScheduler’s scheduled flow set fully encompasses

that of E-TSN. This implies that all flows solvable by E-TSN

can invariably be resolved by InNetScheduler, and issues that

InNetScheduler cannot address are likewise unsolvable by E-

TSN, indicating that InNetScheduler fully covers the capacity

of E-TSN. Following similar experiments, we discovered that

InNetScheduler also fully encompasses the capacity of Tabu-

ITP. Consequently, InNetScheduler can replace other existing

methods in industrial networks without any adverse effects.

E. Testbed Deployment

To verify the schedule calculated by InNetScheduler, we

deploy its TCT scheduling into CNC and ECT scheduling

into switches. We configured the switches and devices in the

previously mentioned Ring6 topology as shown in Fig. 12a
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Fig. 12: Testbed deployment results.

and performed real scheduling tests. The comparative scheme

involved normal traffic, where we opted to transmit all critical

traffic as normal traffic at a lower priority. During each

cycle, we dispatched 20 specific data frames, accompanied

by background traffic at rates of 250Mb/s, 500Mb/s, and

750Mb/s. For each set of conditions, we tested data over 1000

cycles and documented the bias (difference between scheduled

delay) and jitter (delay’s variation).

Fig. 12b illustrates the cumulative distribution function of

traffic bias under different network loads. Across the three

scales of background traffic, the average delay is 2.5%, 4.9%,

and 8.0% lower than that of regular traffic. Furthermore,

6.3%, 13.9%, and 21.4% of data frames within the regular

traffic are delayed due to the background traffic. Fig. 12c

illustrates the jitter associated with the transmission of two

types of traffic data. Experimental results indicate that the

critical traffic, managed by the scheduling algorithm, remains

entirely undisturbed by the background traffic. The network

jitter for the scheduled critical traffic is confined within 1μs,
whereas it reaches up to 18μs for normal traffic. The ex-

periment demonstrates that both types of critical traffic, when

scheduled via InNetScheduler, can ensure a transmission delay

at the microsecond level and transmission jitter at the sub-

microsecond level.

VI. RELATED WORK

The issue of TSN scheduling has been extensively re-

searched. Existing scheduling algorithms can be categorized

into two types based on whether computation commences be-

fore the arrival of traffic: Offline and Online Scheduling. From

this perspective, InNetScheduler is equivalent to an offline-

online fusion algorithm, where TCT scheduling belongs to

offline and ECT scheduling belongs to online.

A. Offline TSN Scheduling
Offline Scheduling necessitates the assumption that both the

network topology and critical traffic information are static.

Conventional Offline Scheduling algorithms typically model

the scheduling problem as a standard Satisfiability Modulo

Theories (SMT) [28]–[30] or Integer Linear Programming

(ILP) problem [31], [32]. which are then solved using a

solver, as demonstrated in the research conducted by scholars

such as Craciunas et al. [33]. While the use of SMT or ILP

provides the highest network throughput, it often requires

a comprehensive exploration of the entire solution space,

resulting in slower execution speeds. The second category of

commonly used algorithms includes heuristic algorithms, such

as Tabu Search and Genetic Algorithms [18], [34], [35]. These

algorithms enhance execution speed by trimming the solution

space using artificial rules, albeit at the expense of some

network throughput. With the advancement of Deep Learning,

numerous methods for addressing scheduling problems have

emerged [36]–[38]. This type of method also adopts the cutting

of the solution space, but the cutting is carried out by the

knowledge learned by the neural network.

B. Online TSN Scheduling
In certain instances, both the network topology and data

transmission requirements are subject to dynamic changes.

Consequently, scheduling algorithms must incorporate newly

emerged data flows into the existing timetable as swiftly as

possible. Some approaches rely on specific network character-

istics and application scenarios to design algorithms [39]–[41].

For instance, Huang et al. proposed an Online Scheduling and

routing method specifically designed for industrial automation

scenarios [42]. Other approaches employ heuristic search to

maximize the quantity of data flows that can be added to the

entire network [43], [44]. However, these approaches also face

the challenge of overly stringent assumptions about sequential

data flow emergence, resulting in lower network throughput

compared to offline methods.

VII. CONCLUSION

In this work, we propose InNetScheduler, a novel paradigm

for TSN scheduling. InNetScheduler decomposes the ECT

scheduling task from the CNC and places it to TSN switches.

By reducing potential ECT conflicts, the Load-aware Opti-

mizer ensures efficient operations. With the Relaxated ECT

Scheduler, in-network computation for ECT scheduling is ac-

celerated, and the End-to-End Determinism Guarantee assures

low jitter for reliable performance. The evaluations demon-

strate that InNetScheduler is fast and scalable, and improves

network throughput significantly. We envision InNetScheduler

as a critical step on TSN practice in the real industrial

production.
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