
E-TSN: Enabling Event-triggered Critical Traffic
in Time-Sensitive Networking

for Industrial Applications
Yi Zhao∗, Zheng Yang∗‡, Xiaowu He∗, Jiahang Wu∗, Hao Cao∗, Liang Dong∗, Fan Dang†, and Yunhao Liu†

∗ School of Software and BNRist, Tsinghua University † Global Innovation Exchange, Tsinghua University
‡ Corresponding author

{zhaoyi.yuan31, hmilyyz, horacehxw, jiahangok, i.haocao}@gmail.com, thdongl@163.com,
dangfan@tsinghua.edu.cn, yunhao@greenorbs.com

Abstract—Time-Sensitive Networking (TSN) is the most
promising network technology for Industry 4.0. A series of
IEEE standards on TSN introduce deterministic transmission
into standard Ethernet. Under the current paradigm, TSN can
only schedule the deterministic transmission of time-triggered
critical traffic (TCT), neglecting the other type of traffic in
industrial cyber physical systems, i.e., event-triggered critical
traffic (ECT). So in this work, we propose a new paradigm for
TSN scheduling named E-TSN, which can provide deterministic
transmission for both TCT and ECT. The three techniques of
E-TSN, i.e., probabilistic stream, prioritized slot sharing, and
prudent reservation, enable the deterministic transmission of
ECT in TSN, and at the same time, protect TCT from the impacts
of ECT. We also develop and make public a TSN evaluation
toolkit to fill the gap in TSN study between algorithm design
and experimental validation. The experiments show that E-TSN
can reduce the latency and jitter of ECT by at least an order
of magnitude compared to state-of-the-art methods. By enabling
reliable and timely delivery of ECT in TSN for the first time,
E-TSN can broaden the application scope of TSN in industry.

Index Terms—Time-Sensitive Networking, Event-triggered
critical traffic, Traffic Scheduling, Cyber physical system.

I. INTRODUCTION

Time-Sensitive Networking (TSN) is considered the most
important technology for future industrial communications
by industry leaders [1]–[3]. It empowers Industry 4.0 by
uniting diverse parts of an enterprise, including Information
Technology (IT) and Operation Technology (OT) sectors.

TSN is an OSI layer 2 technology, which provides de-
terministic communication on standard Ethernet. It ensures
that messages can travel through the network in a fixed and
predictable amount of time. The switches and devices in a TSN
network are time-synchronized. A global schedule controls
when data streams are generated and transmitted by devices
and switches. As a result, the switches can reserve resources
in advance to guarantee the deterministic transmission of
data streams. Such traffic that happens periodically at the
predetermined time is called time-triggered traffic in industrial
communication, such as a sensor reporting pressure every
10ms.

The other main type of traffic in industrial cyber physical
systems is event-triggered traffic. Event-triggered traffic is

Fig. 1: TBM and its operator cabin. The signal of the emer-
gency button is typical event-triggered critical traffic.

initiated by the happening of some event [4]. The fundamental
difference between time- and event-triggered traffic is that the
occurrence time of the latter is uncertain. Both time-triggered
critical traffic (TCT) and event-triggered critical traffic (ECT)
are common in reality. For example, Tunnel Boring Machine
(TBM) is advanced equipment for tunneling, such as subway
tunnels. Fig. 1 shows a TBM and its operator cabin. The
operator closely monitors the status of TBM and gives proper
commands to TBM by pushing the buttons in an emergency.
The operator’s commands and some monitored statuses, such
as cutterhead hazard, are typical ECT data. To ensure that the
operator’s commands are immediately and reliably executed
by the TBM, the operation panel is directly connected to
controlled devices electrically or mechanically. The inability
to deterministically transmit such ECT through networks pre-
vents the digitalization of TBM, e.g., automatically altering
operation parameters to increase cutter life. It also forces
the operator to stay in the tunnel with high temperature and
humidity, and most importantly, security issues. Besides TBM,
ECT is also seen frequently in manufacturing and automotive
systems [4]–[7].

Under the current paradigm, TSN can only support the
deterministic transmission of TCT. The scheduling problem of
TCT has been studied by much previous work [8]–[11]. How-
ever, there is a gap in the research of ECT in TSN. Enabling

D3

D1

D2

SW1

s1

s2

Train Schedule

T.NO From To Arrival Departure

1 City A City D 09:27 14:05

2 City B City D 11:16 13:20

… … … … …

TSN Schedule

train1

train2

T.NO … Departure

… … …

T.NO … Departure

… … …

T.NO … Departure

… … …

S.NO Src Dst Receive Send

1 D1 D3 13us 226us

2 D2 D3 226us 402us

... … … … …

City B

City A

City DCity C
S.NO … Send

… … …

S.NO … Send

… … …

S.NO … Send

… … …

Fig. 2: The schedule of a train system and the schedule of a
TSN network. Three devices (D) and one switch (SW) form
a TSN network on the right. The train system on the left is
an analogy to the TSN network on the right. A TSN schedule
specifies the time when traffic passes each link in the network,
just like a train schedule specifies the time when trains pass
each railway.

deterministic transmission of ECT in TSN is challenging in
three ways: (1) Unpredictable traffic. The occurrence of
events is random and unpredictable. As a result, existing TSN
traffic scheduling based on predetermined timetables cannot
deal with ECT. It is critical to model the different possibilities
of ECT for scheduling. (2) Unguaranteed delay. If we reserve
fixed time-slots for ECT, like what previous work does for
TCT, the ECT needs to wait for the entire interval between
two allocated time-slots in the worst case. (3) Unprotected
encroachment. If we allow ECT to encroach upon TCT’s
resources without protection, the QoS of TCT will degrade
unboundedly.

In this paper, we propose a new paradigm for TSN schedul-
ing named E-TSN, which can provide deterministic trans-
mission for both TCT and ECT. Targeting the three chal-
lenges mentioned above, E-TSN has three novel techniques
that differentiate it from the traditional paradigm of TSN
scheduling: (1) Probabilistic stream. We propose probabilistic
stream to model the different possibilities of ECT, and we
allow a time-slot to be in “superposition state” when frames
of different possibilities are scheduled at the same time-slot.
(2) Prioritized slot sharing. We let ECT share the time-slots
of TCT, so ECT can be immediately transmitted whenever it
occurs. (3) Prudent reservation. We propose a link-level time-
slot reservation algorithm and model the worst-case latency
of TCT to ensure that its requirements are not violated.
We formalize the above techniques and the complete joint
scheduling algorithm as a Satisfiability Modulo Theories [12]
(SMT) problem, and we implement a TSN testbed on FPGA
to evaluate the performance of E-TSN. The contributions of
our work are summarized as follows:
• To the best of our knowledge, this is the first work to

discuss and solve the problem of ECT’s reliable and
timely delivery in TSN. E-TSN also complies with IEEE

Frames

In
...…

Queues

𝑞2

𝑞8

Gate Control List

t 𝑞1 𝑞2 … 𝑞8

0 √ × ×

1 × √ ×

…

Output

Port

Gates

𝑞1

Fig. 3: Output port model of TSN switch. The frames are
dispatched to different queues in the switch. Then the frames in
different queues are selected for transmission based on current
time and the Gate Control List. Xmeans the queue can be
selected for transmission and × means the queue cannot be
selected.

TSN standards. Therefore it can operate in off-the-shelf
TSN switches.

• E-TSN is a new paradigm for TSN scheduling based on
three novel techniques: Probabilistic stream enables the
modeling of unpredictable ECT. Prioritized slot sharing
guarantees the low latency of ECT whenever it happens.
Prudent reservation protects TCT from the impacts of
ECT.

• We develop TSN platform Ziggo1 from scratch to eval-
uate the effectiveness of our method. The platform aims
to fill the gap in TSN study between algorithm design
and experimental validation. It supports major TSN stan-
dards including 802.1AS [13], Qav [14], Qbv [15], and
Qcc [16].

• We evaluate the performance of E-TSN in both testbeds
and simulations. The results show that E-TSN enables
ECT in TSN by providing an order of magnitude lower
latency (423µs over three hops) and jitter (39µs standard
deviation) compared to state-of-the-art methods.

The remaining of the paper is organized as follows. First,
we discuss the preliminaries of TSN in Sec. II. Then we
present the overview and three techniques of E-TSN in Sec. III.
The complete formalization of the scheduling problem is in
Sec. IV. We introduce the implementation of the testbed in
Sec. V and evaluate the performance of E-TSN in Sec. VI. At
last, we discuss the related work in Sec. VII and conclude the
paper in Sec. VIII.

II. PRELIMINARY

In this section, we introduce the preliminaries of TSN and
its scheduling. In Fig. 2, we use a train system as an analogy
to explain what TSN scheduling does. On the left, a simple
train system has four cities connected by three railways. Two
trains travel through this railway network. One train travels
from City A to D, and the other travels from City B to D.
They both go through the railway between City C and D. To
avoid conflicts, the train system manager should schedule the
arrival and departure time at stations properly. This is similar
to what TSN does to data streams. On the right of Fig. 2, three

1TSN platform Ziggo: http://tns.thss.tsinghua.edu.cn/ziggo/

D1-SW1

D2-SW1

SW1-D3

𝒇𝟏
𝒔𝟏 𝒇𝟐

𝒔𝟏 𝒇𝟑
𝒔𝟏

𝒇𝟏
𝒔𝟏 𝒇𝟐

𝒔𝟏 𝒇𝟑
𝒔𝟏

5𝑇

𝒇𝟏
𝒔𝟐

𝒇𝟏
𝒔𝟐

t 1 2 3 4
𝑞𝑠1
𝑞𝑠2

√ √ √
√× × ×
×GCL

t

t

t

4𝑇3𝑇2𝑇𝑇

Fig. 4: An example schedule for the scheduling problem in
Sec. II. fsij is the jth frame of si sent in a period. T is the
time to transmit one frame on a link. GCL can be derived
from the schedule. qsi is the queue for si.

devices and one switch form a simple TSN network. Since at
one time, only one stream can transmit on a physical link.
The sending and receiving time of streams at switches also
need to be scheduled in advance to avoid conflicts and ensure
determinism.

The ability to transmit frames according to predetermined
timetable comes from standard 802.1Qbv [15]. As shown in
Fig. 3, an output port of an 802.1Q [17] switch can have
at most eight queues for frames of different priorities. The
amendment Qbv further defines a gate to each queue that
controls whether the frames in it can be transmitted. The status
of the gate, i.e., open or close, is predetermined in a timetable
called Gate Control List (GCL). The entries in a GCL specify
the status of each queue’s gate in each time-slot in a cycle.
Therefore, when some frames are scheduled to send in a time-
slot, the gate of these frames’ queue will be set to open, and
the gates of the other queues will be set to close.

At last, we explain in more detail how TSN scheduling
works from the link-time perspective as shown in Fig. 4.
Assume stream s1 and s2 on the right of Fig. 2 are two TCT
streams. s1 is from D1 to D3 and s2 is from D2 to D3. s1
sends three frames in one cycle and s2 sends one. The cycle
time is both 5T , where T is the time to transmit one frame.
And the maximum allowed latency of two streams is also 5T .
Fig. 4 shows a schedule of these two streams on three links.
From t=3T to 4T , the frame of s2 is transmitted from D2 to
SW1. Then from t=4T to 5T , the frame is transmitted from
SW1 to D3. Thus the latency of s2 is 2T , under its maximum
allowed latency. Here we use a simple example to explain how
scheduling works. In a large network, the scheduling problem
can be rather complex.

III. DESIGN OF E-TSN

A. Overview

Fig. 5 shows the overview of E-TSN and its position in the
framework of TSN. 802.1Qcc [16] defines four main compo-
nents in a TSN network, including end devices, switches, Cen-
tralized User Configuration (CUC), and Centralized Network
Configuration (CNC). CUC discovers the end devices in the
network, retrieves their stream requirements, and configures
their TSN features such as the sending time of data. CNC is

Centralized Network Configuration (CNC)

ECT Device TCT DeviceSwitch Switch

Centralized User Configuration (CUC)

Probabilistic
Streams §III-B

Prioritized Slot
Sharing §III-C

Prudent
Reservation §III-D

SMT Formulation §IV
Time Cons. Frame Overlap Cons.

Priority Cons. Adjacent Link Cons.

E-TSN

Fig. 5: Overview of E-TSN and its position in the framework
of TSN.

aware of the physical topology of the network and receives
stream requirements from CUC. E-TSN works inside CNC
to calculate a schedule for the TSN network. Then CNC
distributes this schedule to switches and end devices. Inside
E-TSN, we propose three novel techniques, i.e., probabilistic
stream, prioritized slot sharing, and prudent reservation. These
techniques and the complete scheduling problem are formal-
ized as an SMT problem. The formalization is divided into four
types of constraints, namely time constraints, frame overlap
constraints, priority constraints, and adjacent link constraints.

E-TSN is fully compatible with current TSN standards
and frameworks. ECT can be described by the user/network
configuration information defined in Qcc 46.2. The three novel
techniques to enable ECT in TSN can be implemented by
configuring the GCL defined in Qbv.

In the rest of this section, we will present the three tech-
niques of E-TSN.

B. Probabilistic Stream

The occurrence time of TCT is deterministic, which is
predetermined by the scheduling algorithm. However, the
occurrence of ECT is stochastic. It may arrive at any time
when the system runs. This is their fundamental difference
and makes it impossible for previous scheduling algorithms to
model ECT.

In E-TSN, we propose the concept of probabilistic stream
to model the different possibilities of ECT. We explain the
idea of probabilistic stream using the network example on
the right of Fig. 2. Now we assume that s2 becomes an
ECT stream, instead of TCT. The minimum time between
consecutive events of s2 is 5T . This is a common property of
ECT [5]. The period and maximum allowed latency of s1 are
5T . The maximum allowed latency of s2 is also 5T . s1 sends
three frames in one period, and s2 sends one frame at a time.
Stream s2 can start to transmit at any time at D2. We create
N probabilistic streams, ps21, ps22, ..., ps2N to represent the
different possibilities of stream s2. N is a parameter specified
by the user. ps2i is a time-triggered periodic stream that starts

D1-SW1

D2-SW1

SW1-D3

𝒇𝟏
𝒔𝟏 𝒇𝟐

𝒔𝟏 𝒇𝟑
𝒔𝟏

𝒇𝟏
𝒑𝒔𝟐𝟏 𝒇𝟏

𝒑𝒔𝟐𝟐 𝒇𝟏
𝒑𝒔𝟐𝟑 𝒇𝟏

𝒑𝒔𝟐𝟒 𝒇𝟏
𝒑𝒔𝟐𝟓

𝒇𝟏
𝒔𝟏 𝒇𝟐

𝒔𝟏 𝒇𝟑
𝒔𝟏 𝒇𝟏

𝒑𝒔𝟐𝟒/𝟐𝟓
𝒇𝟏
𝒑𝒔 Τ𝟐𝟏 𝟐𝟐/𝟐𝟑

5𝑇

5𝑇

5𝑇

t

t

t

4𝑇3𝑇2𝑇𝑇

4𝑇3𝑇2𝑇𝑇

4𝑇3𝑇2𝑇𝑇

Fig. 6: An example schedule for the scheduling problem in
Sec. III-B. fs1j represents the jth frame of s1. ps2i represents
the probabilistic streams of s2. fps2ij represents the jth frame
of ps2i. T is the time to transmit one frame on a link.

to transmit at (i − 1)(5T/N). It has the same source and
destination as s2. Its period is set to 5T , i.e., the minimum
interevent time of the stream. If s2 happens between psi−1 and
psi, it can be delayed for at most 5T/N to become psi. So its
maximum allowed latency is set to 5T -5T/N . Therefore, the
set of probabilistic streams can represent all the possibilities of
the ECT stream. If a schedule satisfies the latency requirements
of all the probabilistic streams, it will satisfy the requirements
of the ECT no matter when it happens.

In traditional TSN scheduling, two frames transmitted on the
same link cannot overlap in time since a link can only transmit
one frame at a time. For example, in Fig. 4, scheduling
fs21 and fs13 to transmit at the same time on link SW1-D3

is invalid. This constraint is rooted in the determinism of
TCT. However, this is not true after we introduce probabilistic
streams. At one time, at most one of ps21, ps22, ..., ps2N can
actually happen. So we rethink this fundamental constraint in
our scheduling algorithm. If two frames belong to different
probabilistic streams derived from the same ECT stream, we
allow them to overlap in time.

Fig. 6 illustrates an example schedule for TCT s1 and ECT
s2. We use five probabilistic streams for s2: ps21, ps22, ...,
ps25. A time slot on link SW1-D3 between fs12 and fs13 is
reserved for 3 overlapped frames: fps211 , fps221 and fps231 . It
ensures that the latency requirements of ps21, ps22 and ps23
are fulfilled. fps241 and fps251 are scheduled at the same time
slot after fs13 . This satisfies the requirements of ps24 and ps25.
As a result, all possibilities of s2 will meet their transmission
deadline. The above two time-slots are in “superposition state”.
The first one may transmit fps211 or fps221 or fps231 . There are
multiple possibilities during scheduling, but only one of them
can happen when the network is in operation.

C. Prioritized Slot Sharing

Probabilistic stream enables us to model ECT in the
scheduling algorithm. However, reserving dedicated time-slots
for ECT is inefficient. For example, Fig. 7a shows a schedule
for a link. In this schedule, a slot is reserved exclusively for
ECT every 6T period, and the other five slots are reserved
for a TCT stream. In the worst case, when the event-triggered
frame (fe1) appears just after its reserved slot, it has to wait for

𝒇𝟏
𝒕 𝒇𝟐

𝒕 𝒇𝟒
𝒕𝒇𝟑

𝒕 𝒇𝟓
𝒕

t

𝒇𝟏
𝒆

𝒇𝟏
𝒆

Worst case: If 𝑓1
𝑒 comes at t=0. It has to wait for 5T.

Slot for TCT Slot for ECT

(a) Reserving dedicated time-slots.

𝒇𝟏
𝒕 𝒇𝟐

𝒕 𝒇𝟒
𝒕𝒇𝟑

𝒕 𝒇𝟓
𝒕

t

𝒇𝟏
𝒆

𝒇𝟏
𝒆

Case #1: If 𝑓1
𝑒 comes at t=0.

Prioritized Shared Slot

𝒇𝟏
𝒕 𝒇𝟐

𝒕 𝒇𝟒
𝒕𝒇𝟑

𝒕 𝒇𝟓
𝒕

t

𝒇𝟏
𝒆

𝒇𝟏
𝒆

Case #2: If 𝑓1
𝑒 comes at t=3T.

Prioritized Shared Slot

(b) Prioritized shared time-slots.

Fig. 7: Example schedule on a link with five TCT frames (f ti)
and one ECT frame (fe1).

an entire period of 5T to be transmitted. This is unacceptable
for critical traffic that needs low latency, and it also increases
the jitter of ECT.

To tackle this problem, we propose prioritized slot sharing.
ECT can transmit with a higher priority in the time-slots
reserved for TCT. As shown in Fig. 7b, 5+1 time-slots are
reserved for TCT. These time-slots are shared with ECT. So
whenever fe1 comes, it can be transmitted immediately. The
remaining frames of TCT are delayed accordingly. To ensure
that the delayed frames are also transmitted, we need to reserve
some extra time-slots for TCT, such as the +1 time-slot in
this example. As a result, with prioritized slot sharing, we can
ensure the fast transmission of ECT whenever it happens. This
significantly reduces the network latency and jitter.

D. Prudent Reservation

In prioritized slot sharing, we reserve extra shared time-slots
rather than dedicated time-slots for ECT. To protect TCT from
the encroachment of ECT on shared time-slots, we need to
reserve extra time-slots for TCT and ensure that TCT’s worst-
case latency will not exceed the limit. Previous scheduling
algorithms take it as a fundamental assumption that the length
(number of frames) of the stream is constant along its path.
However, reserving extra time-slots at the stream level can
cause resource waste. Taking the network in Fig. 2 as an
example again, assume that TCT stream s1 shares its time-
slots with ECT stream s2. Reserving extra time-slots along the
entire path of s1 is unnecessary since s1 and s2 only overlap
on link SW1-D3. To minimize the extra reserved time-slots,

SWa-SWb

SWb-SWc

𝒇𝟐 𝒇𝟑 𝒇𝟒𝒇𝟏

𝒇𝟐 𝒇𝟑𝒇𝟏

Latest possible slots that transmit the same frame

t

t

Fig. 8: Schedule the time-slots on SWb-SWc after the latest
time-slot on SWa-SWb that may transmit the same frame.

we design a prudent reservation algorithm at link level. The
algorithm is shown in Alg. 1. The inputs are the set of shared
TCT streams and the set of ECT streams, and the outputs are
the expanded TCT streams. For every link along a stream’s
path, we find all the ECT streams that pass this link and
calculate the number of needed extra time-slots based on the
length (se.l, st.l) and minimum interevent time (se.T) of the
streams. T is the time to transmit one frame.

Algorithm 1: PRUDENTSLOTRESERVATION

Input: Set of Shared TCT streams S1

Set of ECT streams S2

Output: Expanded Sexp
1 with extra frames added

forall st of S1 do
forall link of st.path do

forall se of S2 do
if se passes link then

n← se.l × dst.l × T/se.T e;
Reserve n extra frames on link for st;

return S1

As a result of prudent slot reservation, the number of
scheduled frames on adjacent links can be different. A frame’s
reserved time-slot on the downstream link should be after its
time-slot on the upstream link. Due to the uncertainties of
ECT, the correspondence of time-slots on adjacent links is
indefinite. To ensure that a TCT frame won’t miss its time-
slot, we need to schedule the time-slots on the downstream
link after the latest time-slot on the upstream link that may
transmit the same frame. An example is shown in Fig. 8, the
stream overlaps with an ECT stream on link SWa-SWb, but
not on the downstream link SWb-SWc. So the stream reserves
one more time-slot on link SWa-SWb. Then the time-slot of
fi on the downstream link should be scheduled after fi+1 on
the upstream link, instead of fi. After applying this rule along
the entire path of the stream, we can model its worst-case
latency as the time between the receiving on the last link and
the sending on the first link.

IV. SMT FORMULATION

A. Network and Traffic Notation

We abstract the network topology as a directed graph
G(V,E), where graph vertices (V) represent switches and
devices, and graph edges (E ⊆ V × V) represent the links

between them. If two network nodes va and vb are connected,
two edges, 〈va, vb〉 and 〈vb, va〉, will be added into E to
represent the full-duplex link between them. An edge has three
attributes:

(〈va, vb〉 .b, 〈va, vb〉 .d, 〈va, vb〉 .tu)

b is the bandwidth of the link. d is the propagation delay.
tu is the smallest time unit for the operations on the link. It
determines the time granularity of the scheduling.

Next, we introduce the notation of streams. Without loss of
generality, we only consider unicast streams to simplify the
descriptions [8], [18]. A stream s can be characterized by 8
attributes:

(s.path, s.e2e, s.p, s.l, s.T, s.type, s.share, s.ot)

s.path=[〈v1, v2〉, 〈v2, v3〉..., 〈vn−1, vn〉] is the path of the
stream through the networks. s.e2e, s.p, and s.l denote the
maximum allowed end-to-end latency, priority, and length
in bytes of the stream respectively. For TCT streams, s.T
is the period. For probabilistic streams derived from ECT
streams, s.T is the minimum interevent time. s.type is the
type of the stream: Deterministic(Det) for TCT streams or
Probabilistic(Prob) for probabilistic streams. s.share is only
valid for TCT streams and indicates whether s shares its time-
slots with ECT. s.ot is only valid for probabilistic streams,
which is its occurrence time, i.e., when it starts to transmit at
the source device. We denote the set of streams to schedule
as S=〈s1, s2, s3, ..., sN 〉, including both TCT streams and the
probabilistic streams derived from ECT.

At last, we introduce the notation of frames. We denote the
set of frames on link 〈va, vb〉 that belong to stream si as

Fsi,〈va,vb〉 =
[
f
si,〈va,vb〉
1 , f

si,〈va,vb〉
2 , ..., f

si,〈va,vb〉
last

]
Fsi,〈va,vb〉 includes the frames added by Alg. 1. Each frame
has 3 attributes:〈

f
si,〈va,vb〉
j .φ, f

si,〈va,vb〉
j .T, f

si,〈va,vb〉
j .L

〉
φ is the start time of the scheduled time slot for the frame.
T is the period or minimum interevent time. L is the time to
transmit this frame on link 〈va, vb〉. All of them are in units
of 〈va, vb〉 .tu.

B. Formulation

Based on the notation defined above, we present the com-
plete SMT formulation of our scheduling algorithm, including
how we implement the three techniques in Sec. III.

1) Time Constraints: First of all, the scheduled time for
frames cannot have negative values, and the transmission of
the frames should fit in their periods. Thus we have:

∀si ∈ S, ∀ 〈va, vb〉 ∈ si.path,∀fsi,〈va,vb〉j ∈ Fsi,〈va,vb〉 :(
f
si,〈va,vb〉
j .φ > 0

)
∧(

f
si,〈va,vb〉
j .φ+ f

si,〈va,vb〉
j .L 6 f

si,〈va,vb〉
j .T

) (1)

Specially, for a probabilistic stream, the scheduled φ for its
first frame on the first link should be after its occurrence time:

∀si ∈ S if si.type = Prob :

f
si,si.path[0]
1 .φ > si.ot

(2)

where “if” means adding constraints to SMT conditionally.
Secondly, the frames of the same stream should be sent in

sequence through a link:

∀si ∈ S, ∀ 〈va, vb〉 ∈ si.path,∀fsi,〈va,vb〉j ∈ Fsi,〈va,vb〉 :

if fsi,〈va,vb〉j is not fsi,〈va,vb〉last :

f
si,〈va,vb〉
j .φ+ f

si,〈va,vb〉
j .L 6 f

si,〈va,vb〉
j+1 .φ

(3)

Additionally, the streams’ end-to-end latency requirements
should be satisfied:

∀si ∈ S :

if si.type = Det :

f
si,si.path[last]
last .φ− fsi,si.path[0]1 .φ 6 si.e2e

else :

f
si,si.path[last]
last .φ− si.ot 6 si.e2e

(4)

Looping over all the probabilistic streams of an ECT stream,
(4) ensures that no matter when the ECT stream occurs, the
TSN network can deliver its frames before the deadline.

2) Frame Overlap Constraints: A link can only transmit
one frame at a time, so when scheduling TCT solely, the
scheduled time-slots for two frames cannot overlap. However,
in our algorithm, there are two conditions when the time-
slots of frames can overlap: (1) when two frames belong to
different probabilistic streams derived from the same ECT
stream, since only one of them will actually exist as we
discussed in Sec. III-B. (2) when one is a probabilistic stream,
and the other is a TCT stream that shares time-slots, since the
TCT stream’s reserved time-slots have already been expanded
in Alg. 1. These can be formalized as follows:

∀ 〈va, vb〉 ∈ E :

∀Fsi,〈va,vb〉, Fsj ,〈va,vb〉, i 6= j :

if si and sj can not overlap :

∀fsi,〈va,vb〉k ∈ Fsi,〈va,vb〉, f
sj ,〈va,vb〉
l ∈ Fsj ,〈va,vb〉 :

Thyper ← lcm (si.T, sj .T)

∀x ∈ {0, 1, ..., Thyper/si.T − 1} :
∀y ∈ {0, 1, ..., Thyper/sj .T − 1} :
(f

si,〈va,vb〉
k .φ+ x× fsi,〈va,vb〉

k .T >

f
sj ,〈va,vb〉
l .φ+ y × fsj ,〈va,vb〉l .T + f

sj ,〈va,vb〉
l .L)∨

(f
sj ,〈va,vb〉
l .φ+ y × fsj ,〈va,vb〉l .T >

f
si,〈va,vb〉
k .φ+ x× fsi,〈va,vb〉k .T + f

si,〈va,vb〉
k .L)

(5)

where lcm(si.T, sj .T) calculates the least common multiple
of si.T and sj .T , i.e., the hyperperiod of the two streams.

3) Priority Constraints: The priority determines in which
queue the frames wait to be transmitted. This enables the
spatial isolation of streams in switches. A TSN network can
have at most eight priorities. We reserve one of them for ECT
(EP), then divide the remaining priorities into two groups.
One group, from SH PL to SH PH , is for TCT that shares
time-slots. The other group, from NSH PL to NSH PH ,
is for TCT that does not share time-slots:

∀si ∈ S :

(si.type = Prob ∧ si.p = EP)∨
(si.type = Det ∧ si.share = False

∧ si.p > NSH PL ∧ si.p 6 NSH PH)∨
(si.type = Det ∧ si.share = True

∧ si.p > SH PL ∧ si.p 6 SH PH)

(6)

ECT is not always prioritised w.r.t. TCT. TCT streams that
have tight latency bounds can be assigned a priority in the
second group, i.e., from NSH PL to NSH PH , so they
won’t be affected by ECT.

The attribute si.share can be specified manually according
to the importance of the streams. It can also be a variable, thus
let the algorithm determine if si can share time-slots based on
the overall scheduling requirements.

4) Adjacent Link Constraints: In Sec. III-D, we have dis-
cussed that the time-slots on the downstream link should be
scheduled after the latest slot on the upstream link that may
transmit the same frame. This can be formalized as:

∀si ∈ S, ∀〈va, vb〉, 〈vb, vc〉 ∈ si.path :

o←Max(
∣∣Fsi,〈va,vb〉

∣∣− ∣∣Fsi,〈vb,vc〉
∣∣ , 0)

∀fsi,〈vb,vc〉
j ∈ Fsi,〈vb,vc〉 :

f
si,〈vb,vc〉
j .phi× 〈vb, vc〉 .tu− 〈va, vb〉 .d >

(f
si,〈va,vb〉
j+o .phi+ f

si,〈va,vb〉
j+o .L)× 〈va, vb〉 .tu

(7)

(7) also guarantees that (4) models the worst-case latency of
the TCT streams.

The constraints in this section formulate the joint scheduling
of ECT and TCT as an SMT problem. It can then be solved
by SMT solver like z3 [19].

V. TESTBED IMPLEMENTATION

To support the evaluation of E-TSN and further TSN studies,
we develop TSN platform Ziggo from scratch, which includes
both TSN switches and evaluation toolkits. Ziggo complies
with IEEE TSN standards and can help fill the gap between
algorithm design and experimental validation in TSN study.
Both switches and toolkits are implemented on Xilinx ZYNQ-
7000 SoC [20] (board model AX7021 [21]). ZYNQ-7000
SoC integrates the software programmability of an ARM
processor (a.k.a PS, processor system) with the hardware
programmability of an FPGA (a.k.a. PL, programmable logic).

The overview of TSN switches and evaluation tools’ design
is illustrated in Fig. 9. The TSN switches and evaluation
toolkits support 802.1Qbv [15], 802.1AS [13], as well as
802.1Qcc [16]. The timestamps are obtained in hardware to

TSN Switch Evaluation Toolkit

NETCONF
Server

YANG Model
Storage

GCL
t 𝑞1 𝑞2
1 √ ×
…

IN

PORTi

Time Sync
State Machine

PS Part

PL Part

OUT

PS-PL Communication

Time
Stamper

Switch
Fabric

Time
Stamper

Local
Clock

C
lo

ck
U

p
d

a
te

Sy
n

c
Fr

a
m

e

…
…

Data
Frame

Queues
& Gates

OUT

PORTj

IN

PS-PL Communication

Time Sync
State Machine

C
lo

ck
U

p
d

a
te

Sy
n

c
Fr

a
m

e

Local
Clock

Time
Stamper

Time
Stamper

Sy
n

c
Fr

a
m

e

D
a

ta
Fr

a
m

e

Packet
Generator

Generation
Planning

Statistics
Analysis

Pa
ck

et

P
la

n

Q
cc

Fr
a

m
e

Q
cc

Fr
a

m
e

Sy
n

c
Fr

a
m

e

Fig. 9: Overview of TSN switch and evaluation tools’ design.

Fig. 10: TSN Testbed with two switches and four devices

achieve 10ns accuracy. The frames of TSN configuration (Qcc)
and time synchronization (802.1AS) are forwarded from PL
to PS through Direct Memory Access (DMA). Other frames
are transmitted by hardware logic without CPU processing.
Modules like gate control list, switch fabric, and transmission
queue selection are also implemented in pure hardware. The
Precision Time Protocol (802.1AS), NETCONF protocol, and
YANG model (Qcc) are implemented in software, and they
access hardware components via DMA or memory-mapped
registers.

Fig. 10 shows our testbed with two switches and four
devices (evaluation toolkit). We will compare the performance
of E-TSN and other methods in this testbed in Sec. VI-B.

VI. EVALUATION

We compare the performance of E-TSN and other methods
in a TSN testbed and a TSN simulation tool. The experiments
are done with different network load and traffic settings. We
measure the latency and jitter of ECT, as well as its impact
on TCT. Our experiments reveal the following key findings.

• Both in testbeds and simulations, E-TSN achieves at least
one order of magnitude lower latency and jitter for ECT
streams compared to other methods. E-TSN can provide
515us worst-case latency in a 3-hops TSN testbed.

• The performance of E-TSN is robust in various settings,
including different network loads and different payload
lengths.

• E-TSN allows ECT streams to share the time-slots of
TCT streams. E-TSN is aware of this impact and can
always guarantee that the network requirements of TCT
streams are satisfied even in the worst case.

• When there are multiple ECT streams, E-TSN can pro-
vide an order of magnitude lower latency and jitter to all
the streams.

In the following, we first introduce the evaluation methodology
in Sec. VI-A. Then we report the results in the testbed in
Sec. VI-B. At last, we analyze the performance of E-TSN
theoretically in Sec. VI-C.

A. Methodology

1) Evaluation Setting: We compare E-TSN with other
methods in both a TSN testbed and a TSN simulation platform.
The simulation is to validate the performance of E-TSN in a
larger scale network and its compatibility with TSN standards.
The testbed has been introduced in Sec. V. The simulator we
use is NeSTiNg [22], which is based on OMNeT++ [23]. It is
also used by IEEE 802.1 Working Group for the development
of new standards [24]. The network topology, traffic specifi-
cations, and evaluation results of testbeds and simulations will
be reported in Sec. VI-B and Sec. VI-C.

2) Comparing Methods: Since there is no previous work on
enabling ECT in TSN, we compare E-TSN with two methods
that are based on state-of-the-art traditional TSN scheduling
algorithms:
• PERIOD: An intuitive idea is to treat ECT as TCT,

then solve the scheduling problem using TCT scheduling
algorithm such as [8]. We allow PERIOD to schedule
ECT with a period smaller than its minimum interevent
time to achieve lower latency. We make PERIOD use as
many time-slots as E-TSN if not otherwise stated.

• AVB: Another solution is to transmit ECT as Audio-
Video-Bridge traffic defined in 802.1Qav [14]. This
means that ECT can only transmit in unallocated time-
slots but with a higher priority than background traffic.

3) Evaluation Metrics: We measure the latency of both
ECT and TCT. The latency is defined as the time between
the receiving of the last frame and the sending of the first
frame. We compare the average latency, worst-case latency,
and standard deviation of latency (jitter) of different methods.

B. Testbed Results

The network topology of the testbed is shown in Fig. 10, and
the link speed is 100Mbps. The network traffic is randomly
generated in accordance with IEC/IEEE 60802 [25], which is
the TSN profile for industrial automation. We generate ten pe-
riodic TCT streams. The source and destination are randomly
chosen from the four devices. The period is randomly chosen
from the set {4ms, 8ms, 16ms}. The payload length of the
streams is adjusted to form different network load status. We
send an ECT stream from Device 2 to Device 4 in Fig. 10, and
assume that it can share the time-slots of all the TCT streams.
The length of the message is one Ethernet MTU (Maximum
Transmission Unit). The minimum interevent time is 16ms.

0 2 4 6 8
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

E-TSN
PERIOD
AVB

(a) 25% Network Load

0 2 4 6 8
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

E-TSN
PERIOD
AVB

(b) 50% Network Load

0 5 10 15 20
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

E-TSN
PERIOD
AVB

(c) 75% Network Load

Fig. 11: CDFs of ECT streams’ latency using different scheduling algorithms and under different network loads. The network
load means how much bandwidth is consumed by TCT in the network.

1 2 3 4 5 6 7 8
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F E-TSN

PERIOD
PERIOD_double
PERIOD_quad
PERIOD_octa

Fig. 12: CDFs of ECT streams’ latency. PERIOD, PE-
RIOD double, PERIOD quad, PERIOD octa reserve 1, 2, 4,
and 8 times as many time-slots as E-TSN.

Switch 1 Switch 2

D1

Switch 3 Switch 4

D2 D3

D4 D5 D6

D7 D8 D9

D10 D11 D12

Fig. 13: Simulation network topology with four switches and
twelve devices

The occurrence time of this stream is stochastic, in line with
uniform distribution.

In the first experiment, we measure the latency of ECT
under different methods’ schedules, and the results are shown
in Fig. 11. The network load means how much bandwidth
is consumed by TCT in the network. The CDFs show that
E-TSN can provide much lower latency and jitter to ECT.
With 75% network load, the average latency of E-TSN is
423µs, which is 88% lower than that of PERIOD and 97%
lower than that of AVB. The worst-case latency of E-TSN
is 515us, which is more than an order of magnitude lower
than that of PERIOD and AVB. We measure jitter using the
standard deviation of latency. E-TSN’s jitter is 39µs, which
is two orders of magnitude lower than that of the other two
methods. E-TSN allows ECT to transmit immediately when
they occur. PERIOD allocates dedicated time-slots for ECT.

Since the message can arrive at any time, PERIOD may need
the message to wait for an entire period to transmit in the
worst case.

Another observation is that under different network loads,
the performance of E-TSN and PERIOD is stable. This is be-
cause that E-TSN allows ECT to share the time-slots of TCT,
and the exclusive time-slots in PERIOD are not influenced by
the other traffic. However, the performance of AVB decreases
rapidly with increasing network loads. From 25% network load
to 75%, the average latency of AVB rises fivefold. This is
because that AVB only allows ECT to transmit in unallocated
time-slots. And the unallocated time slots may not be aligned
between switches. So when the bandwidth allocated to TCT
increases, AVB’s performance decreases rapidly.

In the second experiment, we compare the resource cost of
E-TSN compared to PERIOD. We allow PERIOD to reserve
two to eight times as many time-slots as E-TSN for ECT.
The results are shown in Fig. 12. Even with eight-times time-
slots, the worst-case latency of PERIOD is still three times
that of E-TSN. In this case, PERIOD consumes over 90%
network bandwidth solely to transmit the ECT stream, which
is impractical.

C. Simulation Results

The network topology for simulation is shown in Fig. 13,
and the link speed is also 100Mbps. It consists of 4 switches
and 12 devices. Forty TCT streams are generated based on
IEC/IEEE 60802. The period is chosen from {5ms, 10ms,
20ms}, and the payload is adjusted to form different network
loads. An ECT stream is sent from Device 1 to Device 12.
Its minimum interevent time is 10ms. Its occurrence time is
in line with uniform distribution. We assume that it can share
the time-slots of all the TCT streams, except in Sec. VI-C2.

1) Latency and jitter of ECT streams: Like in Sec. VI-B,
we first measure the latency of ECT with different network
loads. We also change the length of the ECT stream from one
MTU to five MTU to see its impact on the latency and jitter. As
shown in Fig. 14(a)(b)(c), the latency of E-TSN is consistently
the lowest under different settings. It is not affected by the
network load or the message length. On average, the latency
of E-TSN is 83.8% lower than PERIOD, and 83.1% lower

30 40 50 60 70
Network Load (%)

0

5

10

15

20
Av

g.
 L

at
en

cy
 (m

s) E-TSN
PERIOD
AVB

(a) Latency of 1 MTU Message

30 40 50 60 70
Network Load (%)

0

5

10

15

20

Av
g.

 L
at

en
cy

 (m
s) E-TSN

PERIOD
AVB

(b) Latency of 3 MTU Message

30 40 50 60 70
Network Load (%)

0

5

10

15

20

Av
g.

 L
at

en
cy

 (m
s) E-TSN

PERIOD
AVB

(c) Latency of 5 MTU Message

25 50 75
Network Load (%)

0

2

4

6

Jit
te

r (
m

s)

E-TSN PERIOD AVB

(d) Jitter of 1 MTU Message

25 50 75
Network Load (%)

0

2

4

6

Jit
te

r (
m

s)

E-TSN PERIOD AVB

(e) Jitter of 3 MTU Message

25 50 75
Network Load (%)

0

2

4

6

Jit
te

r (
m

s)

E-TSN PERIOD AVB

(f) Jitter of 5 MTU Message

Fig. 14: (a)(b)(c) show the latency of ECT with different network loads and message length. (d)(e)(f) show the respective jitter.
Jitter is calculated as the standard deviation of the latency.

st1 st2 st3 st4 st5 st6
Stream

0
1
2
3
4
5

Av
g.

 L
at

en
cy

 (m
s) 1st run: No ECT sent

Max Allowed Latency
2nd run: Randomly send ECT

Fig. 15: st4, st5, and st6 share their time-slots with ECT, while
st1, st2, and st3 do not. In the first run, we do not transmit ECT,
and in the second run, we generate ECT randomly. The error
bar is from the minimum latency to the maximum latency.

than AVB; the worst-case latency of E-TSN is 88.5% lower
than PERIOD, and 91.7% lower than AVB; and the jitter of
E-TSN is 94.3% lower than PERIOD, and 97.0% lower than
AVB;

When the network load increases from 25% to 75%, the
performance of E-TSN and PERIOD is not affected, while
the performance of AVB degrades rapidly, similar to what we
have observed in the testbed (Sec. VI-B). On the other hand,
when the length of the ECT message increases from 1 MTU
to 5 MTU, the latency of E-TSN and PERIOD only increases
slightly, while the latency of AVB increases greatly. This is
because E-TSN and PERIOD explicitly reserve extra shared
or dedicated time-slots that are enough to transmit the entire
ECT message.

2) Impacts on TCT streams: E-TSN allows ECT to share

the time-slots of TCT. This may increase the latency and jitter
of TCT streams. To study the impact of ECT on TCT in E-
TSN, we measure the latency of TCT streams with or without
ECT. We assume that ten out of forty TCT streams are more
important than ECT, and they do not share time-slots. The
results are shown in Fig. 15. The latency of three shared
TCT streams and three non-shared streams are presented. The
results for other streams are similar.

The results show that E-TSN can protect TCT from the
encroachment of ECT and guarantee that the requirements of
TCT are always satisfied even in the worst case. For streams
that do not share time-slots, i.e., st1, st2, and st3, the presence
of ECT makes no difference. For streams that share time-
slots, i.e., st4, st5, and st6, although their latency and jitter
increase when there is randomly generated ECT, the worst-
case latency is always below the maximum allowed latency of
the respective streams.

3) Multiple ECT streams: We also measure the perfor-
mance of different methods when there are multiple ECT
streams in the network. The network load is set to 50%.
Besides the stream from Device 1 to Device 12 (se1), we create
three other ECT streams, i.e., se2, se3, and se4. The source and
destination devices are chosen randomly from the 12 devices.
All of the four streams send traffic at a random time in line
with uniform distribution.

The latency and jitter of the four streams using different
methods are shown in Fig. 16. E-TSN achieves the lowest
latency and jitter for all the streams. On average, E-TSN can
reduce the latency by 85.4% and the jitter by 97.0% compared
to AVB, and reduce the latency by 78.7% and the jitter by

se1 se2 se3 se4
Stream

0.0
2.5
5.0
7.5

10.0
12.5

Av
g.

 L
at

en
cy

 (m
s) E-TSN PERIOD AVB

Fig. 16: Latency and jitter of four ECT streams: se1, se2, se3, and
se4. The length of the error bar is double standard deviation of
the latency.

93.7% compared to PERIOD.

VII. RELATED WORK

A. Evolution of TSN

The IEEE TSN Task Group (TG) was evolved from the
former Audio Video Bridging (AVB) TG. AVB concentrates on
the QoS of audio/video traffic inside an Ethernet network [26].
In 2012, AVG TG was renamed to TSN TG, and the focus
of the group shifted from audio/video services to industrial
real-time communications. Numerous techniques have been
introduced to realize deterministic transmission on standard
Ethernet, such as Precision Time Protocol [13], Time Aware
Shaper [15], and Cyclic Queuing and Forwarding [27]. Other
techniques like SDN [28], OPC UA [2], and seamless redun-
dancy [29] are also explored to automate the configuration
process and provide extra reliability. The above techniques
and corresponding scheduling algorithms have enabled the
deterministic transmission of TCT in TSN. However, they do
not support ECT, which limits the scope of application of
TSN in industry. In this work, we propose a new scheduling
paradigm for TSN, and for the first time, discuss and solve
the problem of enabling ECT in TSN.

Next, we discuss previous work of offline and online
scheduling for TCT in TSN.

B. Offline TSN Scheduling

This category of previous work focuses on the offline
scheduling prior to the operation of the network. So the
scheduling algorithm does not need to consider the dynamic
change of the network in operation. IEEE 802.1Qbv was
published in 2015, and since then, many researchers have
studied the scheduling problem of it. Craciunas et al. first use
Satisfiability Modulo Theories (SMT) to model the 802.1Qbv
scheduling problem [8], based on their prior studies on Time-
Triggered Ethernet (TTE) [30]–[32]. They also discussed the
pros and cons of flow isolation and frame isolation strategies.
Later, they formalize the scheduling problem as a system of
constraints expressed using first-order theory of arrays [9],
which is then solved using SMT solvers. Besides SMT, another
trend is to formulate the scheduling problem as Integer Linear
Programs (ILP) [33]–[35]. Nayak et al. show that the well-
known No-wait Job-shop Scheduling Problem (NW-JSP) can

be adapted to calculate TSN schedules [36]. Pop et al. and
Steiner et al. also take the scheduling of mixed-criticality
traffic into consideration [11]. Besides sole traffic scheduling,
[35] takes traffic routing into consideration and proposes an
ILP-based joint routing and scheduling algorithm. However,
all the above work focuses on the scheduling of TCT without
considering the existence of ECT. In this work, we solve
the scheduling problem of ECT without violating TCT’s
requirements.

C. Online TSN Scheduling

The network topology and data transmission requirements
are not always static, since network links may fail and the
upper applications may change. Different from offline schedul-
ing, online scheduling focuses on the speed of the scheduling
algorithm [37]–[39]. So the network can accommodate to the
dynamic change of networks and streams by updating the
schedule in real-time. Yan et al. propose a novel algorithm
based on Tabu search [40] to schedule TCT flows in CQF-
based TSN, which improves the mapped flow number by
10x [10]. Nayak et al. also design a Tabu-based heuristic
algorithm, which split the scheduling into a time-tabling prob-
lem and a sequencing problem [36]. Besides the widely used
Tabu heuristic, Pop et al. design an algorithm based on Greedy
Randomized Adaptive Search Procedure (GRASP) [11], [41].
And Steiner proposes an incremental backtracking algorithm
in [18] to accelerate the solving of SMT. Recently, with the
huge success of artificial intelligence, some prior work studies
the application of deep learning to TSN scheduling problem.
Zhong et al. propose a Deep Reinforcement Learning based
scheduling method for time-triggered traffic, which shows bet-
ter performance than traditional heuristic-based methods [42].
Previous work designs heuristic- or DNN-based algorithms for
the scheduling of TCT in TSN. Some of these techniques can
be directly used in our algorithm like [18]. Designing online
scheduling algorithm for ECT is an interesting direction of our
future work.

VIII. CONCLUSION

With the rise of Industry 4.0 and the Industrial Internet,
TSN is gaining more and more attention. In this paper, we
propose a new paradigm for TSN scheduling named E-TSN.
It enables the reliable and timely transmission of ECT in
TSN for the first time. We propose three novel techniques to
model ECT’s different possibilities, guarantee low latency no
matter when ECT occurs, and ensure the fulfillment of TCT’s
network requirements. We also develop and make public a
TSN evaluation toolkit on FPGA, which supports major TSN
standards and measures network latency at 10ns accuracy.
The experiments show that E-TSN achieves at least an order
of magnitude lower latency and jitter for ECT compared to
state-of-the-art methods. The ability to support both TCT and
ECT can promote the application of TSN in more scenarios
of manufacturing and automation in the future.

ACKNOWLEDGMENT

This work is supported in part by the National Key Research
Plan under grant No. 2021YFB2900100, the NSFC under grant
No. 61832010.

REFERENCES

[1] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry
4.0,” Business & information systems engineering, vol. 6, no. 4, pp.
239–242, 2014.

[2] D. Bruckner, M.-P. Stănică, R. Blair, S. Schriegel, S. Kehrer, M. See-
wald, and T. Sauter, “An introduction to opc ua tsn for industrial
communication systems,” Proceedings of the IEEE, vol. 107, no. 6, pp.
1121–1131, 2019.

[3] J. Eklahare. (2021, Jul.) Why tsn is the future in manufacturing.
[Online]. Available: https://www.industr.com/en/why-tsn-is-the-future-
in-manufacturing-2590686

[4] A. Albert et al., “Comparison of event-triggered and time-triggered
concepts with regard to distributed control systems,” Embedded world,
vol. 2004, pp. 235–252, 2004.

[5] M. S. Mahmoud and Y. Xia, “Chapter 2 - Networked Control Systems’
Fundamentals,” in Networked Control Systems, M. S. Mahmoud and
Y. Xia, Eds. Butterworth-Heinemann, 2019, pp. 37–89.

[6] X. Ge, Q.-L. Han, X.-M. Zhang, and D. Ding, “Dynamic event-triggered
control and estimation: a survey,” International Journal of Automation
and Computing, pp. 1–30, 2021.

[7] T. Li, Q. Qiu, and C. Zhao, “A fully distributed event-triggered com-
munication strategy for second-order multi-agent systems consensus,”
2020.

[8] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner, “Scheduling
real-time communication in ieee 802.1qbv time sensitive networks,”
in Proceedings of the 24th International Conference on Real-Time
Networks and Systems, ser. RTNS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 183–192. [Online].
Available: https://doi.org/10.1145/2997465.2997470

[9] R. Serna Oliver, S. S. Craciunas, and W. Steiner, “Ieee 802.1qbv gate
control list synthesis using array theory encoding,” in 2018 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2018, pp. 13–24.

[10] J. Yan, W. Quan, X. Jiang, and Z. Sun, “Injection time planning: Making
cqf practical in time-sensitive networking,” in IEEE INFOCOM 2020 -
IEEE Conference on Computer Communications, 2020, pp. 616–625.

[11] V. Gavriluţ and P. Pop, “Scheduling in time sensitive networks (tsn)
for mixed-criticality industrial applications,” in 2018 14th IEEE Inter-
national Workshop on Factory Communication Systems (WFCS), 2018,
pp. 1–4.

[12] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook
of model checking. Springer, 2018, pp. 305–343.

[13] Timing and Synchronization for Time-Sensitive Applications, IEEE Std.
802.1AS, 2020.

[14] Forwarding and Queuing Enhancements for Time-Sensitive Streams,
IEEE Std. 802.1Qav, 2009.

[15] Enhancements for Scheduled Traffic, IEEE Std. 802.1Qbv, 2015.
[16] Stream Reservation Protocols (SRP) Enhancements and Performance

Improvements, IEEE Std. 802.1Qcc, 2018.
[17] Bridges and Bridged Networks, IEEE Std. 802.1Q, 2018.
[18] W. Steiner, “An evaluation of smt-based schedule synthesis for time-

triggered multi-hop networks,” in 2010 31st IEEE Real-Time Systems
Symposium, 2010, pp. 375–384.

[19] Z3Prover. (2021, Jul.) Github repository of z3prover. [Online].
Available: https://github.com/Z3Prover/z3

[20] Xilinx. (2021, Jul.) Socs with hardware and software programma-
bility. [Online]. Available: https://www.xilinx.com/products/silicon-
devices/soc/zynq-7000.html

[21] Alinx. (2021, Jul.) Alinx xilinx zynq fpga development board. [Online].
Available: http://alinx.com/index.php/default/content/96.html

[22] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Dürr, S. Kehrer, and
K. Rothermel, “Nesting: Simulating ieee time-sensitive networking (tsn)
in omnet++,” in 2019 International Conference on Networked Systems
(NetSys), 2019, pp. 1–8.

[23] O. Group. (2021, Jul.) Omnet++ is an extensible, modular, component-
based c++ simulation library and framework, primarily for building
network simulators. [Online]. Available: https://omnetpp.org/

[24] IEEE. (2021, Jul.) Ieee 802.1 protocol simulations. [Online]. Available:
https://omnetpp.org/

[25] TSN Profile for Industrial Automation, IEC/IEEE Std. 60 802, 2018.
[26] Wiki. (2021, Jul.) Audio video bridging. [Online]. Available:

https://en.wikipedia.org/wiki/Audio Video Bridging
[27] Cyclic Queuing and Forwarding, IEEE Std. 802.1Qch, 2017.
[28] S. B. H. Said, Q. H. Truong, and M. Boc, “Sdn-based configuration

solution for ieee 802.1 time sensitive networking (tsn),” ACM SIGBED
Review, vol. 16, no. 1, pp. 27–32, 2019.

[29] Frame Replication and Elimination for Reliability, IEEE Std. 802.1CB,
2017.

[30] F. Pozo, G. Rodriguez-Navas, H. Hansson, and W. Steiner, “Smt-
based synthesis of ttethernet schedules: A performance study,” in 10th
IEEE International Symposium on Industrial Embedded Systems (SIES).
IEEE, 2015, pp. 1–4.

[31] F. Pozo, W. Steiner, G. Rodriguez-Navas, and H. Hansson, “A decom-
position approach for smt-based schedule synthesis for time-triggered
networks,” in 2015 IEEE 20th conference on emerging technologies &
factory automation (ETFA). IEEE, 2015, pp. 1–8.

[32] S. S. Craciunas and R. S. Oliver, “Combined task-and network-level
scheduling for distributed time-triggered systems,” Real-Time Systems,
vol. 52, no. 2, pp. 161–200, 2016.

[33] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, “Enabling fog
computing for industrial automation through time-sensitive networking
(tsn),” IEEE Communications Standards Magazine, vol. 2, no. 2, pp.
55–61, 2018.

[34] J. Falk, F. Dürr, and K. Rothermel, “Exploring practical limitations of
joint routing and scheduling for tsn with ilp,” in 2018 IEEE 24th Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA). IEEE, 2018, pp. 136–146.

[35] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and
G. Mühl, “Ilp-based joint routing and scheduling for time-triggered
networks,” in Proceedings of the 25th International Conference on Real-
Time Networks and Systems, 2017, pp. 8–17.

[36] F. Dürr and N. G. Nayak, “No-wait packet scheduling for ieee
time-sensitive networks (tsn),” in Proceedings of the 24th International
Conference on Real-Time Networks and Systems, ser. RTNS ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p.
203–212. [Online]. Available: https://doi.org/10.1145/2997465.2997494

[37] A. A. Atallah, G. B. Hamad, and O. A. Mohamed, “Fault-resilient
topology planning and traffic configuration for ieee 802.1 qbv tsn
networks,” in 2018 IEEE 24th International Symposium on On-Line
Testing And Robust System Design (IOLTS). IEEE, 2018, pp. 151–
156.

[38] N. G. Nayak, F. Dürr, and K. Rothermel, “Incremental flow scheduling
and routing in time-sensitive software-defined networks,” IEEE Trans-
actions on Industrial Informatics, vol. 14, no. 5, pp. 2066–2075, 2017.

[39] M. L. Raagaard, P. Pop, M. Gutiérrez, and W. Steiner, “Runtime
reconfiguration of time-sensitive networking (tsn) schedules for fog
computing,” in 2017 IEEE Fog World Congress (FWC). IEEE, 2017,
pp. 1–6.

[40] F. Glover and M. Laguna, “Tabu search,” in Handbook of combinatorial
optimization. Springer, 1998, pp. 2093–2229.

[41] M. G. Resende and C. C. Ribeiro, “Grasp: Greedy randomized adaptive
search procedures,” in Search methodologies. Springer, 2014, pp. 287–
312.

[42] C. Zhong, H. Jia, H. Wan, and X. Zhao, “Drls: A deep reinforce-
ment learning based scheduler for time-triggered ethernet,” in 2021
International Conference on Computer Communications and Networks
(ICCCN), 2021, pp. 1–11.

