
Industrial Knee-jerk: In-Network Simultaneous Planning and
Control on a TSN Switch

Zeyu Wang
School of Software and BNRist

Tsinghua University

Beijing, China

ycdfwzy@gmail.com

Jingao Xu
School of Software and BNRist

Tsinghua University

Beijing, China

xujingao13@gmail.com

Xu Wang
Global Innovation Exchange

Tsinghua University

Beijing, China

xu_wang@mail.thu.edu.cn

Xiangwen Zhuge
School of Software and BNRist

Tsinghua University

Beijing, China

zgxw18@gmail.com

Xiaowu He
School of Software and BNRist

Tsinghua University

Beijing, China

horacehxw@gmail.com

Zheng Yang∗

School of Software and BNRist

Tsinghua University

Beijing, China

hmilyyz@gmail.com

ABSTRACT

Rapid advances in programmable network devices catalyzed the

development of in-network computing, which is foreseen as a key

enabler to empower the intelligence of production lines and me-

chanical arms in Industry 4.0. Various pioneering approaches have

demonstrated the significant benefits of moving simple yet delay-

sensitive industrial control tasks performed by servers to network

switches. However, our detailed field study at a top-tier auto glass

factory reveals that current practice fails to achieve a real-time and

deterministic intelligent decision closure as leaving those complex

yet essential planning tasks still on edge or cloud. In this paper,

we design and implement a brand-new industrial switch, named

Netopia, on a commercial Zynq platform through software and

hardware co-design. Netopia enables planning and control to si-

multaneously perform on a network switch during communication.

At the core of Netopia are three simple yet effective modules -

a determinism guarantee mechanism, a computing acceleration

scheme, and a packet deterministic forwarding framework that

work hand-in-hand to ensure mechanical arms obtain intelligent

control commands with low and deterministic latency. Compre-

hensive evaluations in industrial environments demonstrate that

Netopia achieves an average end-to-end intelligent decision latency

of 3.0𝑚𝑠 with a jitter < 0.4𝑚𝑠 , reduced by > 86% over existing works.

CCS CONCEPTS

· Networks → In-network processing; Programmable net-

works; ·Computer systems organization→Real-time system

architecture.

∗Zheng Yang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiSys ’23, June 18ś22, 2023, Helsinki, Finland

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0110-8/23/06. . . $15.00
https://doi.org/10.1145/3581791.3596836

KEYWORDS

Time-Sensitive Networking, In-Network Computing, Industrial

Control

ACM Reference Format:

Zeyu Wang, Jingao Xu, Xu Wang, Xiangwen Zhuge, Xiaowu He, and Zheng

Yang. 2023. Industrial Knee-jerk: In-Network Simultaneous Planning and

Control on a TSN Switch. In The 21st Annual International Conference on

Mobile Systems, Applications and Services (MobiSys ’23), June 18ś22, 2023,

Helsinki, Finland. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3581791.3596836

1 INTRODUCTION

In the era of Industry 4.0 (a.k.a., the 4th Industrial Revolution), the

intelligence of production lines and the autonomy of mechanical

arms have gradually become highly prized goals for manufacturing

factories[29]. The tasks for mechanical arms are gradually evolving

from simple relay logic to intelligent decisions[10, 46, 47]. Com-

pared to mechanical arms with task-specific and pre-programmed

operating instructions on traditional lines, autonomous arms could

make intelligent and agile decisions according to production or en-

vironmental information, such as defective product detection and

grabbing[8, 9, 17], obstacle avoidance and emergency braking[48,

52]. Such an intelligence lift will bring a production paradigm shift

and significantly improve efficiency and safety.

According to our field study at a worldwide top-tier auto glass

manufacturer (§2.1), a mechanical arm’s intelligent decision closure

can be abstracted as planning and control two modules as illustrated

in Fig.2. The former exploits the arm’s sensing data to infer some

intelligent tasks (e.g., object classification, detection) using neural

networks, and on this basis, plan the arm’s subsequent high-level

operation trajectory (e.g., 20𝑐𝑚 forward, 30◦ rotation). The latter

translates the planned trajectory into low-level motor commands

based on the arm’s status messages using control algorithms (e.g.,

Inverse Kinematics[58], PID[62]). Eventually, these commands will

be distributed to each motor.

With the increasing interconnectivity of industrial devices, cloud

or edge robotics have hit the mainstream in industrial robotics

research[49]. Status-quo solutions either (𝑖) offload both the plan-

ning and control modules to a centralized cloud or edge server[42]

as illustrated in Fig.2a; or (𝑖𝑖) load the low-level control module onto

https://doi.org/10.1145/3581791.3596836
https://doi.org/10.1145/3581791.3596836
https://doi.org/10.1145/3581791.3596836

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Zeyu Wang, Jingao Xu, Xu Wang, Xiangwen Zhuge, Xiaowu He, and Zheng Yang

Spinal Cord Brain

x

Gray Matter

Sensory Neuron

Muscle Motion
Neuron Dorsal Root

NeuronLeg
Movement

External
Stimulus

(a) Illustration of human knee-jerk reflex.

Industrial Switch Edge/Cloud Server

Defective
Products

Sensing
Data

Motor Control
Commands

Intelligent
Decision

(b) Illustration of our proposed industrial knee-jerk.

Figure 1: An analogy between (a) human knee-jerk and (b)

our proposed industrial knee-jerk. Our design aims to enable

mechanical arms (like human arms and legs) to rapidly perform

some urgent and intelligent tasks through the control of nearby

industrial switches (analogous spinal cords), reducing the depen-

dence on distant edge/cloud servers (as human brains).

a network switch but keeps the high-level yet complex planning

module on cloud/edge (Fig.2b). In general, using a more powerful

server accelerates neural network inference in planning, and mov-

ing control to switch further reduces the end-to-end latency[29].

Although the early signals are positive and the industrial wheels

are in motion, we find current practice fails to enable mechanical

arms to periodically obtain updated control commandswith low and,

equally important, deterministic latency (i.e., newer arms require ≤

1𝑚𝑠 update period), where real-time and determinism are crucial for

a broader spectrum of industrial applications[44]. Grand challenges

are three-fold:

• Network heterogeneity exacerbates data propagation delay.

Unlike industrial networks (e.g., PROFINET[64], EtherCat[57]) de-

ployed between mechanical arms and switches, cloud/edge servers

and switches are typically connected by low-cost yet low reliability

standard Ethernet (Fig.2). Transmitting sensing data (e.g., succes-

sive images, high-frequent radar point clouds and IMU samples)

across those heterogeneous networks causes considerable delays

(§2.2-C1).

• Computational resource dynamics degrades latency deter-

minism. Despite the different network distances from industrial

environments, edge and cloud infrastructures typically rely on op-

erating systems (OS) or OS-level virtualization technologies[66] to

facilitate hardware resource management. However, the compu-

tational resources allocated to a specific task are thus varied and

influenced by OS or CPU scheduling, making it difficult to guaran-

tee the task with deterministic processing latency[32] (§2.2-C2).

• Background traffic overload impairs control commands dis-

patch. In practical industrial environments, each network switch

initially has to forward a large volume of background traffic (e.g.,

production information, surveillance videos), and transmitting sens-

ing data to edge/cloud further burdens the switch. Such an over-

loaded data flow overwhelms those critical control packets for arms,

affecting their real-time and deterministic distribution. (§2.2-C3).

In a nutshell, leaving the planning module on cloud/edge sets a

strong barrier to achieve a real-time and deterministic intelligent

decision closure, spanning from data transmission, computation,

and traffic forwarding.

Recently, two new opportunities have arisen in overcoming the

above challenges: (𝑖) With the advent of programmable network

devices, switches can perform not only pure packet forwarding

but computations as well. This trend led to the birth of a new

computational paradigm called in-network computing[26]; and (𝑖𝑖)

the use of novel embedded computing platforms with hierarchical

arithmetic units (e.g., Xilinx Zynq[25], Nvidia Tegra[65]) enables

lightweight devices to conduct relatively complex tasks.

Motivated by the above challenges and opportunities, we de-

sign and implement a brand-new network switch, named Netopia,

on a Zynq platform following a software and hardware co-design

paradigm. Netopia enables an industrial switch to perform both

the planning and control modules without offloading each of them

to edge/cloud, reducing the dependence on powerful servers. Just

like human physiological reflexes such as knee-jerk[61] and hand-

retraction[45] as shown in Fig.1a, where the behavior of skeletal

muscle, after stimulus, is controlled only by proximal neurons at

spinal cord rather than distal central nervous at brain[61]; our work

(Fig.1b), similarly, aims to splits the original long, distant closures

into smaller ones and realizes low-latency and deterministic calcu-

lations for some simple yet urgent tasks during communication.

Simultaneously moving planning and control to industrial net-

work posesmany challenges that are addressed in this work: (𝑖) how

to ensure delay determinism of the end-to-end intelligent decision

closure when diverse sub-tasks are diffused among heterogeneous

arithmetic units; (𝑖𝑖) how to improve the real-time performance of

those complex tasks in the planning module (i.e., neural network

inference plus trajectory planning); and (𝑖𝑖𝑖) how to achieve de-

terministic forwarding of critical control commands. Overall, the

design and implementation of Netopia excel in three aspects:

• Delay Determinism Guarantee. Before loading specific plan-

ning and control tasks, we first introduce a delay determinism guar-

antee mechanism to Netopia, spanning hardware resource isolation,

software processmanagement, and reliable data interaction, making

any tasks running on Netopia delay deterministic (§4.1).

• Task Computing Acceleration. We design an integrated hard-

ware and software neural network acceleration framework, which

significantly reduces the delay of intelligent task inference in plan-

ning by effective neural network module decomposition and task

re-assignments between low-level logic blocks and high-level com-

putational cores (§4.2).

•PacketDeterministic Forwarding.We implement Time-Sensitive

Networking (TSN) complying with IEEE 802.1AS [2] and IEEE

802.1Qbv[1] standards in the communication layer of Netopia, en-

abling Netopia to reserve dedicated time slots for critical industrial

control data. Benefiting from this, mechanical arms could reliably

receive updated control packets with deterministic latency. Addi-

tionally, as TSN is compatible with industrial networks and standard

Industrial Knee-jerk: In-Network Simultaneous Planning and Control on a TSN Switch MobiSys ’23, June 18–22, 2023, Helsinki, Finland

Motor ID Command

1 start

2 stop

3 accelerate

… …

Sensing Data:

Status Message:

Motor Control Commands
(~1000Hz)

Motor ID rpm

1 5,600

… …

Camera LiDAR mmWave

(b)

(c)

(a)

Production

Line

Mechanical

Arm
Industrial

Switch

Cloud/Edge

Server
Industrial Network

High Reliability & Low Latency
Standard Ethernet

Low Reliability or High Latency

Planning

Module

Control

Module

Upper-layer

Requirements

Planning

Module

Control

Module

Planning

Module

Control

Module

Upper-layer

Requirements

Upper-layer

Requirements

Planning

Module

Control

Module

Low Frequency

(~60Hz)

High Frequency

(~1000Hz)

Re-planned
Trajectory

Target

Update

#1

#2

#3

#4

Figure 2: An illustration of a practical production line and comparison of current practice for intelligent decision tasks. (a)

Traditional centralized solutions (e.g., Baseline-I[42] on IJCA’18), where both the planning and control modules are offloaded to a cloud or

edge server. (b) A recent work with in-network control yet still leaves the planning on the server (i.e., Baseline-II[29] on NSDI’22). (c) Our

work, Netopia, with in-network simultaneous planning and control.

Ethernet, the deterministic forwarding of control packets would

not affect Netopia’s plug-and-play property (§4.3).

We fully implement Netopia on the latest Zynq UltraScale+

platform[25] through software and hardware co-design. Compre-

hensive experiments are carried out on two public mechanical

control datasets and in real industrial environments, using 28.11

GB sensing data and industrial network traffic with over 1,500

object grabbing tests. We compare Netopia with two state-of-the-

art (SOTA) industrial control systems, Baseline-I (IJCA’18[42]) and

Baseline-II (NSDI’22[29]), and the experiment results show that

Netopia achieves an 100% defect detection and grabbing success

rate, outperforming comparative approaches by 33% and 28%. The

average end-to-end intelligent decision closure latency of Netopia

is 3.0𝑚𝑠 with a jitter < 0.4𝑚𝑠 , reduced by >86% over related works.

In summary, this paper makes three contributions.

(1) We design and implement Netopia, as far as we are aware of,

the first industrial switch that makes both the planning and control

modules compatible with in-network computing. Netopia empowers

mechanical arms to make agile decisions with determinism, thus

driving the intelligence of production lines.

(2) We propose several technologies, spanning from delay determin-

ism guarantee, task computing acceleration, and packet determin-

istic forwarding, in Netopia to enable mechanical arms to obtain

intelligent control commands with low and deterministic latency.

(3) We extensively evaluate the performance of Netopia and two

comparative systems on public datasets and in real industrial envi-

ronments. The results demonstrate Netopia’s superior performance.

Contribution to the community. First, we systematically study

existing industrial planning-control systems and reveal their funda-

mental limitations based on our field study in a typical manufactur-

ing industry, which would help to uncover new research issues on

industrial networks for the community. Second, we make Netopia’s

prototype implementation publicly available1. Netopia can serve

as a platform for the research about in-network computing and also

a brand-new switch for the deployment of industrial intelligent

decision systems.

2 BACKGROUND AND MOTIVATION

Wefirst introduce themechanical arm’s intelligent decision problem

according to our case study in a top-tier auto glass manufacturer.

We then explain the limitations of current practice and present the

system goals in designing Netopia.

2.1 Mechanical Arm’s Intelligent Decision

We present a snapshot of a real glass production line in Fig.2. Take

the glass defect detection, a highly prized task throughout the whole

production process in the manufacturer, as an example; some me-

chanical arms on the line (i.e., arms #2 and #4) are expected to

not only passively complete fixed operations (e.g., glass bending,

painting, gluing), but autonomously leverage sensors (e.g., camera,

radar) to detect defects on glass using neural networks. And once a

piece of glass is defective (e.g., dimensional non-compliance, inter-

nal cracks), these arms will directly grab it onto a recycling line for

re-producing rather than continue processing it.

Compared to traditional solutions where manually distinguish

defective glass at the end of a production line, such an intelligent lift

could save labor costs while greatly improving production efficiency

and yield rate as numerous unnecessary operations on defective

products are eliminated.

Problem statement.We abstract an intelligent decision closure

as planning and control two modules. As depicted in the left part of

Fig.2, an arm periodically uploads sensing data (e.g., images, point

1https://github.com/MobiSense/Netopia

https://github.com/MobiSense/Netopia

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Zeyu Wang, Jingao Xu, Xu Wang, Xiangwen Zhuge, Xiaowu He, and Zheng Yang

clouds) to the planningmodule and its status messages to the control

module, respectively.

Note that control and planning run in parallel due to the huge

gap between their operating frequency: the control module continu-

ously adjusts each motor’s commands at motor response frequency

(i.e., around 1,000Hz adopted by the factory’s newer mechanical

arms[13]) through control algorithms (e.g., PID), to make the arm’s

motion match a target trajectory. The planningmodule, at the mean-

time, leverages a neural network to detect defects and track products

(e.g., at 60Hz camera rate), and further plans the arm’s subsequent

operation trajectory. The latest planned trajectory, thereafter, will

be served as the new target for the control module.

What is a feasible solution? Let 𝑡𝑝 and 𝑡𝑐 be the delay of the

planning and control module, respectively. Specifically, 𝑡𝑝 consists

of sensing data upload (d in Fig.2), planning task computation, and

target trajectory update (→) delay. And 𝑡𝑐 is a also combined delay

of status messages upload (→), algorithms operation, and control

commands forwarding (→). In general, both low and deterministic

𝑡𝑝 and 𝑡𝑐 are crucial for an arm:

• Industrial arms’ motors require < 1𝑚𝑠 update period (i.e., an

ultra-fast 1000Hz response frequency), indicating 𝑡𝑐 should be de-

terministically less than 1𝑚𝑠 in any scenarios. A longer 𝑡𝑐 causes a

motor to repeatedly execute the cached wrong commands and even

emergency braking[13], which impairs the control performance and

affects production quality.

•As for the planning delay, a smaller 𝑡𝑝 contributes a more accurate

and effective planned trajectory as the conveyor belt moves during

calculation. On the other hand, 𝑡𝑝 cannot exceed the inter-frame

interval (i.e., 16.67𝑚𝑠 for 60Hz camera rate) to prevent blocking of

computation requests or even frames input order errors[33].

2.2 Limitations of Current Practice

Webuild a production line testbed in the glass factory to conduct our

field study. We then re-implement two SOTA industrial intelligent

control systems, Baseline-I (offloading both planning and control

to edge) and Baseline-II (offloading planning to edge and control

to switch), and evaluate their performance by conducting over 200

defective glass detection and grabbing tests (setup detailed in §5).

The overall performance is exhibited in Fig.3a. As seen, neither

of the current practice could achieve low or deterministic 𝑡𝑝 or

𝑡𝑐 within an acceptable range under practical industrial network

conditions (i.e., network load > 50%). We dig into the underlying

reasons and find the challenges are three-fold:

C1: Considerable data transmission delay. Offloading planning

to edge/cloud has to simultaneously upload mechanical arms’ sens-

ing data (e.g., continuously captured frames). However, the stan-

dard Ethernet deployed between industrial switch and edge/cloud

server suffers from a lower reliable and higher delayed data trans-

mission performance compared to those sophisticated industrial

networks (e.g., PROFINET[64], EtherCat[57], Modbus[59]) on pro-

duction lines. What’s worse, there is also protocol isolation between

industrial networks and standard Ethernet, making it difficult to di-

rectly transmit data packets from one to the other. Such a drawback

further exacerbates the packet conversion (e.g., analysis, re-packing,

and forwarding) delay on the switch.

To validate our analysis, we measure the average delay for trans-

mitting a 1920×1080 frame captured by the arm to a server under

different network loads. We further categorize the delay into packet

conversion (i.e., from PROFINET to standard Ethernet in the fac-

tory) on the switch and data transmission on Ethernet two parts2.

The results are shown in Fig.3b. We observe that both systems pro-

duce high (i.e., the sum of those two parts > 35𝑚𝑠) and fluctuating

delays in all scenarios. The server will blindly wait for over two

rounds of acceptable 𝑡𝑝 (16.67𝑚𝑠) before computing, leaving huge

room for improvement. Additionally, the packet conversion on the

switch contributes nearly two-thirds of the total delay, which can-

not be easily addressed by a simple network upgrade (e.g., adopting

advanced 10-Gigabit Ethernet).

C2: Highly dynamic computation latency. Edge and cloud in-

frastructures typically rely on conventional time-sharing operating

systems (TSOS, e.g., Linux, Unix) or OS-level virtualization technolo-

gies (e.g., Docker[56]) to facilitate hardware resource management

and reduce development costs. Such an operation cannot guaran-

tee the processing latency of a specific task is deterministic as the

resources allocated to it are dynamically varied and influenced by

OS or CPU scheduling[32]. Although existing solutions leverage

real-time operating systems (RTOS) to eliminate the effects for

industrial applications[30], it increases the average waiting delay

for each task, and merely brings a minor boost to those machine

learning models running on GPU[5].

We set up an edge server and measure the latency of each

task in planning, including two optional network backbones (i.e.,

VGG16 and ResNet-50) for defect detection (on GPU) and one tra-

jectory planning (TP) algorithm (on CPU), running on a TSOS (i.e.,

conventional CentOS[53]) and RTOS (i.e., upgraded CentOS with

Xenomai[67] patch), respectively. The results are shown in Fig.3c.

In accordance with our analysis, the task processing delay varies

significantly on TSOS, leaving nearly half of the defect detection

latency over acceptable 𝑡𝑝 (16.67𝑚𝑠). Moreover, we find the leverage

of RTOS barely influences lifting the latency determinism of those

neural networks (on GPU), compared with the planning algorithm

(on CPU). The above results also reveal that although one can ad-

ditionally deploy costly industrial networks to connect switches

and an edge server (e.g., around $10,000 to function) for the lowest

transmission latency, the highly dynamic computation latency will

soon become a newer bottleneck.

C3: Unreliable control packet forwarding. In industrial network

topology, each switch is exploited to forward a large volume of back-

ground traffic (e.g., production information, surveillance videos)

among connected devices (e.g., arms, other switches, or edge/cloud

servers). Additionally, transmitting sensing data or high-frequent

status messages to cloud/edge would further burden the traffic

forwarding on switch. Such an overloaded data flow overwhelms

control packets for arms, resulting in excessive queuing delays,

even inaccurate forwarding, of those critical control packets.

We evaluate the control packet forwarding performance in dif-

ferent network load settings. Specifically, we measure each control

packet’s forwarding delay (i.e., the time a packet spends traversing

the switch) and forwarding success rate (i.e., the ratio a target arm

could receive the packet within the 1𝑚𝑠 motor response cycle). The

2We omit the < 1𝑚𝑠 propagation delay on PROFINET.

Industrial Knee-jerk: In-Network Simultaneous Planning and Control on a TSN Switch MobiSys ’23, June 18–22, 2023, Helsinki, Finland

25 50 75
Network Load (%)

0.5

1.0

1.5

2.0

Co
nt

ro
l D

ela
y (

m
s)

I-tc
II-tc

I-tp
II-tp

15

20

25

30

35

40

Pl
an

nin
g

De
lay

 (m
s)

Acceptable
tc

Acceptable
pt

(a)

25 50 75
Network Load (%)

0

5

10

15

20

25

La
te

nc
y (

m
s)

Coversion Delay
Transmission Delay

Acceptable tp

(b)

TP VGG16 ResNet50
Different Tasks

0

5

10

15

20

25

30

La
te

nc
y (

m
s)

TSOS
RTOS

Acceptable tp

(c)

25% 50% 75%
Network Load

0

200

400

600

800

Fo
rw

ar
din

g
De

lay
 (u

s)

70%

75%

80%

85%

90%

95%

100%

Su
cc

es
s R

at
e

(d)

Figure 3: Limitations of current practice based on our field study. (a) Overall performance of two status-quo solutions. (b) Considerable

data transmission delay. (c) Highly dynamic computation latency. (d) Unreliable control packet forwarding.

results are depicted in Fig.3d. As seen, the forwarding success rate

drops below 75% when network loads > 75% with an average queu-

ing delay spiking to 1.2𝑚𝑠 , exceeding the acceptable 𝑡𝑐 . Evidently,

such a lower success rate and higher forwarding delay fail to meet

the arm’s ultra-fast response frequency.

Lessons Learned. To enable arms to obtain intelligent control com-

mands with low and deterministic latency, we find three dimensions

could be enhanced:

(𝑖) On the architecture front, according to C1, we can design a

brand-new industrial switch that simultaneously conducts both

urgent planning and control on it, thus thoroughly eliminating the

data transmission delay and uncertainty.

(𝑖𝑖) On the implementation front, motivated by C2, we should ac-

celerate tasks computing and ensure deterministic latency through

handcrafted software and hardware co-design, bypassing those un-

certain OS- or CPU-level resource allocation and task scheduling.

(𝑖𝑖𝑖) On the network front, following C3, the switch needs to sup-

port a prioritized and deterministic forwarding of those critical

control packets.

2.3 System Goals

Netopia takes a solid step forward in solving the above issues and

thus enhancing the intelligence of production lines. We list the

system goals below:

Goal 1: Plug and play.Netopia should be implemented as a general

plug-in switch for industrial deployments, exposing well-packaged

yet non-dedicated ports to end-devices for connection. This allows

devices to benefit from Netopia without re-developing specific

network protocols (§5.3).

Goal 2: Portability. Netopia should provide functionality and

resource abstractions of the next-generation computing platform.

This allows a broader scope of planning tasks (neural network

with diverse backbones, layers, etc.) and control algorithms to take

advantage of Netopia (§5.3).

Goal 3: Efficiency. Netopia should effectively reduce the end-to-

end latency and ensure determinism, spanning data transmission,

task calculation, and packet forwarding (§5.2).

3 SYSTEM OVERVIEW

We leverage the latest commercial Zynq UntralScale+ MPSoC (ab-

breviated asMPSoC), a heterogeneous computing platform launched

by Xilinx[25], to implement Netopia through software and hard-

ware co-design. We briefly introduce the MPSoC platform, and then

present the system architecture.

3.1 Zynq Platform Primer

Fig.4 illustrates the hierarchical computing resources provided by

MPSoC. As seen, MPSoC consists of a processing system (PS, for

software development) and user-programmable logic (PL, for hard-

ware design) two modules. The PS features a 64-bit Cortex-A53

quad-core processor (4*A-Core) and a Cortex-R5 dual-core real-time

processor (2*R-Core). The four A-Cores are typically centralized

and scheduled by a Linux OS, such as PetaLinux[20] and Debian[54].

The two R-Cores, designed for real-time application, are typically

scheduled by a RTOS. The PL provides programmable logic blocks,

digital signal processing (DSP), etc., for hardware design. Benefiting

from the above versatile computational resources, MPSoC has been

foreseen as a key enabler for next-generation applications such as

5GWireless[3, 75], advanced driving assistance system (ADAS)[36],

industrial Internet-of-Things[44, 71].

MPSoC is able to handle packet forwarding and complex task

calculation simultaneously. However, we find simply migrating

planning and control onto MPSoC without an elaborate software

and hardware co-design could not achieve delightful performance,

in terms of the end-to-end intelligent decision closure delay and

determinism (§5.4). There are still three challenges that ought to

be addressed: (𝑖) how to ensure end-to-end delay determinism

when hierarchical and heterogeneous units are all involved in the

computation for both planning and control; (𝑖𝑖) how to realize real-

time inference of neural networks in the planning module; and (𝑖𝑖𝑖)

how to achieve deterministic forwarding of critical packets in the

control module.

3.2 Netopia’s Architecture

Netopia tackles the above challenges through software and hard-

ware co-design. Fig.4 sketches the architecture of Netopia. Specif-

ically, the design of Netopia can be abstracted as communication

and computation two layers:

• On the network communication front, Netopia implements a

complete network protocol stack and thus forwards industrial data

traffic (i.e., background traffic) similar to a conventional switch,

and an A-Core (i.e., #A4) is leveraged for the general switch con-

figuration. In addition, Netopia receives arms’ sensing data and

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Zeyu Wang, Jingao Xu, Xu Wang, Xiangwen Zhuge, Xiaowu He, and Zheng Yang

Processing System (PS)

ARM®CortexTM−A53 NEONTM

FloatingPoint Unit 32KBI − Cachew/Parity

Programmable Logic (PL)
Circuits

ARM®CortexTM−A53 NEONTM

FloatingPoint Unit 32KBI − Cachew/Parity
ARM®CortexTM−A53 NEONTM

FloatingPoint Unit 32KBI − Cachew/Parity

ARM®CortexTM−A53 NEONTM

FloatingPoint Unit 32KBI − Cachew/Parity

ARM®CortexTM−R5 VectorFloatingPoint Unit
MemoryProtectionUnit 128KBTCMw/ECC

Application Processing Unit (4*A-Core)

R
e
a
l-

T
im

e
 P

ro
c
e
s
s
in

g
 U

n
it
 (

2
*R

-C
o
re

)

I/O
, M

e
m

o
ry, a

n
d

 P
la

tfo
rm

 M
a
n

a
g

e
m

e
n
t U

n
it

PS

I/O
, M

e
m

o
ry, a

n
d

 P
la

tfo
rm

 M
a
n

a
g

e
m

e
n
t U

n
it

PL

ARM®CortexTM−R5 VectorFloatingPoint Unit
MemoryProtectionUnit 128KBTCMw/ECC

Data

Pre-processing

Inference

Acceleration

Parallelized

Neural Network

Inference

Parallelized

Neural Network

Inference

Trajectory

Re-Planning

#A2#A1

#A3 #R2

#R1

Time-Sensitive

Networking

Switch Fabric

Motor Motion

Scheduling

PID Control

U
p
p
e

r-la
y
e

r a
d

d
itio

n
a

l re
q

u
ire

m
e
n

ts

#A4

Control Packet

Generation

Time Sync.

Client Config.

Switch Initialization

Routing Table Gen.

MAC Addr. Mapping

……

Planning Module Control ModuleSwitch Config.

Status MessageSensing DataBackground Traffic

§4.2 Task Computing Acceleration

§
4
.3

 P
a
c
k

e
t

D
e
te

rm
in

is
ti

c
F

o
rw

a
rd

in
g

§4.1 Delay Determinism Guarantee

Critical Control Packets
Forwarded

Background Traffic

Updated

Target

Detection

& Tracking

Results

Scheduled

Motor

Motion

Figure 4: An exhibition of our proposed Netopia switch (left) based on a Xilinx Zynq UntraScale+ MPSoC (middle), and Netopia’s

architecture (right).

status messages, and distributes control packets back to each arm at

motor response frequency (i.e., 1000Hz) after computation. Netopia

implements a Packet Deterministic Forwarding framework, ensuring

each arm to obtain control packets with deterministic latency (§4.3).

The entire communication layer is implemented on the PL.

• On the computation front, both the planning and control modules

are accomplished through the collaboration of PS and PL. Before

loading specific tasks to the MPSoC platform, Netopia introduces

a Delay Determinism Guarantee mechanism through computing

resource abstraction, core isolation, and reliable data interaction

among diverse heterogeneous units (§4.1). This allows (𝑖) any tasks

running on the platform to enjoy deterministic latency; and (𝑖𝑖) the

sub-tasks on each arithmetic unit could be flexibly adjusted with

respect to the modification of high-level tasks without re-designing

the entire system architecture, improving Netopia’s portability.

As for the specific workflow, Netopia first leverages a Task Com-

puting Acceleration scheme to accelerate the complex neural net-

work inference (e.g., defect detection) on logic blocks and two

A-Cores (i.e.. #A1 and #A2) using sensing data (§4.2). Based on

the inference results, the planning module leverages a re-planning

algorithm to calculate an arm’s subsequent working trajectory for

grabbing a defective glass on an A-Core (i.e., #A3) and send it to

the control module. Meanwhile, the control module (𝑖) schedules

each motor’s motion according to the high-level working trajectory

on an R-Core (i.e., #R2); and (𝑖𝑖) generates motor control packets

through PID control on #R1 based on the scheduled motor motion

and arm’s current status. Those critical control packets, eventually,

will be distributed back to the arm.

4 DESIGN AND IMPLEMENTATION

4.1 Delay Determinism Guarantee

Distinguished from commercial applications, industrial applica-

tions impose higher real-time and deterministic requirements (e.g.,

§4.1.2§4.1.2

A-Core A-CoreA-Core A-Core R-Core R-Core

PL

§4.1.1

Linux OS

Sensing
DMA

Trajectory
DMA

Control
DMA

PL

Figure 5: Illustration of Determinism Guarantee.

sub-millisecond versus tens of milliseconds latency and jitter). Al-

though MPSoC’s hierarchical computational resources empowers

lightweight devices to perform some complex tasks, the hetero-

geneity of arithmetic units (i.e., logic blocks on PL, A-Cores and

R-Cores on PS), and the intermediate data interaction among them,

still challenge the real-time and deterministic manner of industrial

systems. Simply running an OS on MPSoC for centralized resource

management and scheduling will again leave Netopia with the same

drawbacks as edge/cloud solutions (§2.2).

In Netopia, we tackle the above challenge and ensure the com-

putation delay determinism of any tasks on Netopia through hand-

crafted and detailed resource and computation management. We

categorize the end-to-end delay determinism into the determinism

of intermediate data interaction and sub-task processing two parts,

and propose Tri DMA to ensure the former while Isolated A-Core

and Bare-metal R-Core for the latter, bypassing the uncertain OS

scheduling.

4.1.1 Tri DMA for Intermediate Data Interaction. We lever-

age the direct memory access (DMA) technique to take over the

intermediate data interaction process. In general, DMA allows dif-

ferent arithmetic units to access the main system memory and

transfer data in-between independently of the CPU (Cortex A53

Industrial Knee-jerk: In-Network Simultaneous Planning and Control on a TSN Switch MobiSys ’23, June 18–22, 2023, Helsinki, Finland

In-network
Parser

Image
Resizer

Network Packets

AXI-Stream Signal

Restored Image

#A1

A-Cores

#A2

…

PS

AXI-Stream Signal

PL

Direct Image
Packing Module

S0

S1

S2

Valid signal &

Sensing Packet

Set packet header

as dummy data

Valid signal & Non-

Sensing Packet

All data valid

Others

All data valid

Last portion of packet

All data valid

Parser State Machine

assign m_axis_tkeep=1…110…00

Inference

Accelerator

Dual-Agent
Inference Module

Others

All data valid

C
o
n
v
1

C
o
n
v
2
_
x

C
o
n
v
3
_
x

C
o
n
v
4
_
x

C
o
n
v
5
_
x

P
O
O
L+
F
C

S
o
ft
m
a
x

R
e
sN

e
t-
5
0

Figure 6: Workflow of Task Computation Acceleration

and R5). Taking the data interaction from an A-Core to an R-Core

(and vice-versa) as an example, without DMA, when the R-Core is

executing programmed input/output, it is typically fully occupied

for the entire duration of the read/write operation, and thus receives

the data from A-Core with frequent blocking. On the contrary, with

DMA, the R-Core first initiates a data transfer channel with A-Core,

then it does programmed operations while the transfer is still in

progress.

Following the above insight, we propose three different types of

DMA bridging all heterogeneous arithmetic units as illustrated in

Fig.5: (𝑖) the Sensing DMA bridges PL to A-Core to transfer sensing

data in the planning module; (𝑖𝑖) the Trajectory DMA updates the

planned trajectory from A-Core to R-Core for communications

between the planning and control modules; and (𝑖𝑖𝑖) the Control

DMA exchanges status messages and control commands between

PL and R-Core. Generally, different from existing network-based

solution such as PL-PS ethernet interface[23] and OpenAMP[37],

our proposed Tri DMA enables each kind of critical data flow to

own its exclusive transmission channel, ensuring the intermediate

data interaction determinism throughout the whole task lifespan.

On the other hand, leveraging DMA channels can transfer data to

and from devices withmuch less CPU overhead than network-based

solutions[55].

4.1.2 Sub-task Processing Determinism Guarantee. We pro-

pose Isolated A-Core and Bare-metal R-Core to keep sub-tasks

processing away from uncertain OS scheduling.

Isolated A-Core It’s difficult to ensure the execution latency of a

time-sensitive task running on an TSOS, i.e., Debian[54]. The ratio-

nale is that there are a number of background processes running

on the OS at the same time, competing with the time-sensitive task

for computing resources. To avoid the influence of these processes,

we reserve three A-Cores (red dotted in Fig.5) for the execution of

each time-sensitive task. In our implementation, we realize A-Core

isolation by build Linux OS with boot parameter isolcpus=<cpu

number>.

Bare-metal R-Core R-Core is dedicated for real-time applications,

such as high frequency industrial machinery control. It provides a

high level of reliability and determinism. It’s common to running an

RTOS on the R-Cores for better resource management and complex

task scheduling. However, considering RTOS’s elaborate scheduling

algorithm could introduce extra delay (see §5.4), we finally adopts

the R-Cores with no OS, i.e., bare-metal R-Core.

ALGORITHM 1: PL Load Balancing Algorithm

input :Resized Image AXI-Stream signal axis-image

1 S-A1← Get-#A1-Status;

2 S-A2← Get-#A2-Status;

3 if S-A2 is busy than S-A1 then

4 Send-DMA-to-#A1(axis-image);

5 else

6 Send-DMA-to-#A2(axis-image);

ALGORITHM 2: PS Receiving New Image Algorithm

1 while Receiving is uncompleted do

2 Receive-DMA-from-PL(new_image);

3 if Running on #A1 then

4 Push-into-#A1-Task-Queue(new_image);

5 Update-#A1-Status(+1);

6 else

7 Pushśinto-#A2-Task-Queue(new_image);

8 Update-#A2-Status(+1);

4.2 Task Computing Acceleration

The essential intelligent tasks (e.g., defect detection, object track-

ing) in planning rely on neural networks (e.g., VGG, ResNet) to

function. Although MPSoC provides versatile computational re-

sources, it’s still non-trivial to make the real-time performance of

neural network inference on Netopia meet industrial application re-

quirements. The rationale is that the processors (i.e., the quad-core

Cortex-A53 and dual-core Cortex-R5) on MPSoC’s PS are designed

for general applications without being optimized for those massive

floating-point operations in neural networks as Nvidia Jetson light-

weight AI devices do[19]. According to our measurements, running

a typical ResNet-50 model on the Cortex-A53 first brings an aver-

age 12𝑚𝑠 delay for resizing each input image (from 1920×1080 to

224×224), and then costs over 110𝑚𝑠 to infer the model. Each of

these two parts is unacceptable because 𝑡𝑝 should be below 16.67𝑚𝑠

(§5.4).

To address the above issue and accelerate task computing in

Netopia, we propose a fresh neural network inference workflow on

MPSoC through the collaboration of PL and PS. As shown in Fig.6,

the workflow consists of a Direct Image Packing and a Dual-Agent

Inference two modules. At a high-level, Direct Image Packing runs

on PL, re-packing image clips from network packets and converting

each image to a specific size and format that fits the neural net-

work input. The Dual-Agent Inference schedules the computational

tasks between PL and PS, leveraging logic blocks to cooperate and

accelerate the neural network inference.

4.2.1 Direct Image Packing. Netopia implements an in-network

packet parser for restoring image data from the network link layer,

and on this basis, directly executes data pre-processing (e.g., image

resizing) on PL. In general, the leverage of elaborate logic blocks

could accelerate the image resizing, and the integrated image packet

parsing and pre-processing workflow further reduces the delay of

transferring raw images from PL to PS. Specifically, theDirect Image

Packing module accelerates the image pre-processing by around

500% compared to simply perform it on PS (§5.4).

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Zeyu Wang, Jingao Xu, Xu Wang, Xiangwen Zhuge, Xiaowu He, and Zheng Yang

ALGORITHM 3: PS Model Inference Algorithm

1 An← Get-Core-Number();

2 while True do

3 if An-Task-Queue is empty then

4 continue;

5 new_image← Pop-From-An-Task-Queue();

6 while Inference not finished do

7 Offload-Inference-to-PL();

8 Perform-Unsupported-Operations-On-An();

9 Send-Inference-Results-to-Follow-up-Modules();

10 Update-An-Status(-1);

Fig.6 (left) presents the workflow of the Direct Image Packing

Module. As seen, sensing data packets will be first parsed and

packed into raw images through a in-network parser state ma-

chine (the left bottom part). Specifically, the state machine fully

explores the piplined propriety of task processing on PL; it contin-

uously removes the header of sensing data packets from state S0

to state S1 (i.e., by set the packet header signals as dummy data,

i.e., assign m_axis_tkeep=1..110..00 in implementation), and further

reconstructs raw images from S1 to S2. An reconstructed image will

be directly fed into a hardware image resizing Intellectual Property

(IP[22]). Eventually, PL sends it to PS (i.e., A-Cores) by Sensing DMA

for neural network inference.

4.2.2 Dual-Agent Inference. Dual-Agent Inference utilizes PL

and two A-cores to accelerate neural network model inference.

Generally, we find there are two major complementary features

between PL and PS, which guides our design for task decomposition

and re-allocation to accelerate neural network inference.

(𝑖) On the task execution front, PL is superior at parallelized tasks

processing than PS as lots of logic designs in PL have the pipeline

architecture[63], which motivates us to adopt pipeline architecture

in the inference accelerator and exploit two A-Cores to improve

the inference throughput;

(𝑖𝑖) On the computational ability front, PL has a greater apprecia-

tion for operations with large number of parameters than PS as a

number of arithmetic units, such as DSP[21], allows ultra-fast pa-

rameters loading and efficient numerical calculation, which guides

us to offload computation-intensive tasks to PL. Nevertheless, logic

blocks are unable to handle exponential calculations, so we have to

move the Softmax or SigMod layer back to A-Cores.

We translate the above analysis into a practical neural network

acceleration workflow: two isolated A-Cores for low-computing lay-

ers inference and pipelined Inference Accelerator for computation-

intensive layers inference. As an example, in the lower right of

Fig.6, we split ResNet-50 into two portions: (𝑖) the first convolu-

tional layer and the Softmax layer before output are executed on

an isolated A-Core. (𝑖𝑖) the main backbone is offloaded to PL for

acceleration.

In order to improve the throughput, we balance the workload

of two cores by introducing Dual-Agent Inference mechanism in-

cluding three algorithms. Algorithm1 explains the logic how PL

dispatches pre-processed data (i.e., resized images) to these two

A-cores. PL first gets two A-cores’ current state (Line 1, 2) from

certain registers, then select one A-core with lower workloads (Line

PL

Switch

PL

Switch

PL

A-Core R-Core

Netopia Switch
Sensing
data

Status
message

Control
Command

Figure 7: Different network traffic flow in Netopia.

3) and sends the image through the DMA (Line 4, 6). On each agent,

there are two threads that running Algorithm2 and Algorithm3,

respectively. Algorithm2 performs image receiving from PL (Line

1, 2). After receiving, the new image will be pushed into the task

queue (Line 4, 7) waiting for inference, and update the core sta-

tus3, thus change the values of registers in PL, via PS-PL AXI-lite

interface (Line 5, 8). Algorithm3 takes charge of model inference.

It continuously takes images from task queues (Line 5) and per-

forms the model inference by offloading it to the PL accelerator

mentioned above (Line 7). Additionally, some special operations,

which are not supported by PL, will be executed with the assistance

of A-Cores (Line 8). After completing inference, it will send the

inference results to the follow-up modules (Line 9), and update the

current A-core’s status because its workload decreases (Line 10).

4.3 Packet Deterministic Forwarding

Netopia realize deterministic forwarding of the following three

kinds of critical data packets: (𝑖) the status message packet; (𝑖𝑖)

the calculated control command packet; and (𝑖𝑖𝑖) the sensing data

packet. Among them, (𝑖) and (𝑖𝑖) enjoy the highest priority com-

pared to (𝑖𝑖𝑖) as they are directly related to an arm’s operations.

(𝑖𝑖𝑖) is also given a higher priority than background traffic (e.g.,

surveillance videos) since all intelligent decisions are made based

on it.

In Netopia, the key insight behind achieving traffic deterministic

forwarding is reserving dedicated network bandwidth and time slots

for those critical packets. To this end, we make the communication

layer of Netopia compatible with TSN, following the IEEE 802.1Qbv

standard[1] to leverage a Time-Aware Shaper for resource reserva-

tion. To push forward the determinism, we additionally introduce

a Time Synchronization mechanism referring to the IEEE 802.1AS

standard as reserving dedicated time slots requires connected de-

vices enjoy the same global timestamp (i.e., bias <1𝑛𝑠).

4.3.1 Time Synchronization. The naive software implementation of

time synchronization, e.g., Network Time Protocol[60] (NTP), could

achieve milliseconds accuracy, which does not meet the industrial

requirements. In Netopia, we implement the time synchronization

protocol defined in IEEE 802.1AS[2] through software and hard-

ware co-design. The synchronization algorithm is developed in

PS using C on #A4, while the real-time clock and timestamping

module are implemented in PL using verilog for precise timing. The

timestamp of each synchronization packet was added as soon as its

pass through the PHY chip and TEMAC IP[24] in PL, so that the

3We define the core status as the size of current task queues

Industrial Knee-jerk: In-Network Simultaneous Planning and Control on a TSN Switch MobiSys ’23, June 18–22, 2023, Helsinki, Finland

TEMAC

PORT #1 PORT #2

TEMAC

T
ra

n
s
m

is
s
io

n
 S

e
le

c
ti
o
n

fo
r

P
o

rt
 #

2

Priority #7

Priority #6

Priority #1

Priority #0

DATAPATH

Waiting Queues

Gate Control List𝑡0=occccccc𝑡1=cocccccc

……

o
u
tp

u
t
q
u
e
u
e
s

O
u
tp

u
t
p
o
rt

 l
o
o
k
u
p

…
…

Time=𝑡0
In: Port #1

Out: Port #2

Priority: 7

o=Gate Open

c=Gate Closed

Gates

Figure 8: Netopia switch forwards a packet with priority 7

from port #1 to port #2

Netopia Switch

Mechanical Arm
Server

Experiment

Topology

Glass

Defect

Examples

External

Blisters

Internal

Fragment

Inclusion

Foreign Body

CAT 6 cables

Internal

Blisters

Figure 9: Experimental industrial network topology with

four typical glass defect examples.

link delay, key to the synchronization algorithm, is more precise as

PL logic hardly impairs the link delay.

4.3.2 Time-Aware Shaper. IEEE 801.1Qbv designs a Time-Aware

Shaper (TAS), with predefined Gate Control List (GCL), to trans-

mit periodic traffic streams. The concept of TAS is based on time-

division multiple access (TDMA). It divides the network commu-

nication into fixed length, repeating time cycles and uses a timed

flow table to control the traffic transmission, thus reserve the band-

width for critical traffic. The timed flow table specifies when to

open the gate within a cycle so that the critical traffic (see Fig.7)

with the corresponding priority can being transmitted. The back-

ground traffic can only be transmitted when no critical traffic is

under transmission.

Fig.8 shows howNetopia switch forwards a packet with priority 7

(top priority) from port #1 to port #2. The packet first passes through

TEMAC IP for signal conversion, and then goes into DATAPATH

module. In DATAPATH, this packet is pushed into a waiting queue

according to it’s priority (7) and destination port number (2). At

time 𝑡0, GCL opens the Gate 7 and this packet will be forwarded

after passing through output TEMAC.

5 EVALUATION

5.1 Experimental Methodology

Field studies. Based on Netopia, we have developed a real-time

defective glass detection and sorting system, and deployed it on a

production line in the glass factory. As shown in Fig.9, the system

consists of four mechanical arms connected to a Netopia switch

through category 6 Ethernet cable.We select 522 panes of defective

glass (refer to the bottom-right of Fig.9) and 246 panes of qualified

glass to pass through the conveyor belt, and designate one mechan-

ical arm (arm #4 in particular) to pick all defective ones. The whole

field studies lasts over two hours with around 1500 defect detection

and grabbing tests.

Dateset. In addition to our field studies, we also conduct compre-

hensive evaluations based on public robotic control datasets (grasp-

ing dataset[31] and push dataset[11]). In this part of evaluations, we

leverage four ZYNQ-7021 SoC boards, simulating mechanical arms,

to periodically (1000Hz) send sampling data to Netopia switch also

in industrial environments.

Metrics.We first use the grabbing success rate, the rate arm #4 could

successfully identify a defective glass and grab it onto a recycle line,

to evaluate the system performance from a holistic perspective.

We further measure the control latency 𝑡𝑐 and planning latency

𝑡𝑝 (defined in §2.1) to better understand the rationale behind the

overall performance.

Baselines. We compare Netopia with two most relevant state-

of-the-art industrial control systems, Baseline-I[29] and Baseline-

II[42], to evaluate the system performance. Following their design,

we additionally introduce an edge server to deploy them in indus-

trial environments. Specifically, mechanical arms connect to the

industrial switch through PROFINET, while the edge server con-

nects to the industrial switch through 100Mbps standard Ethernet

and is equipped with an Intel Core i9-10980XE CPU@3.00GHz and

an NVIDIA GeForce RTX 2080 Ti GPU.

Network loads. To better evaluate the system robustness under

practical industrial network conditions, we further plug multiple

surveillance cameras into our testbed to send surveillance videos

through the deployed network, simulating background traffic. By

adjusting the quantity and quality of active video streams, we divide

the network load into four levels of 0%, 25%, 50%, 75% Note that in

real manufacturing scenarios, the network load typically exceeds

50%.

Workloads. In our experiments, the planning module first uses

a neural network with ResNet-50 backbone to detect defects on

each glass and track the defective ones. Afterwards, it leverages

a trajectory planning algorithm to calculate the arm’s subsequent

working trajectory for grabbing each defective glass onto a recycle

belt. Meanwhile, the control module exploits IK algorithm[58] to

translate the planned trajectory into arm’s configuration space (i.e.,

each motor’s target state), and PID control[62] to gradually adjust

each motor’s motion.

5.2 Overall Performance

Fig.10 illustrates the overall performance of Netopia and two base-

lines. In a nutshell, Netopia achieves an order of magnitude lower

control and planning latency, and succeeds in grabbing defective

glass panes in all test cases.

Fig.10a displays the success rate results4. Netopia maintains

100% success rate under all network loads, outperforming two base-

line systems. When the network is idle (network load = 0%), both

baselines achieve 100% success rate. However, their success rates

decrease significantly as the background traffic increases. When the

network load is 75%, Baseline-I and Baseline-II exhibits 33% and 28%

success rate, respectively. To make matters worse, the mechanical

arm is shut down by the safety mechanism occasionally with the

baselines.

4We excluded all unsuccessful cases caused by ResNet-50’s misidentification

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Zeyu Wang, Jingao Xu, Xu Wang, Xiangwen Zhuge, Xiaowu He, and Zheng Yang

0 25 50 75
Network Load (%)

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Netopia
Baseline-I
Baseline-II

(a) Success Rate

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Netopia
Baseline-I
Baseline-II

0 25 50 75
Network Load (%)

0.11

0.12

0.13

C
on

tro
l L

at
en

cy
 (m

s)

(b) Control Latency

20

25

30

35

40
Netopia
Baseline-I
Baseline-II

0 25 50 75
Network Load (%)

2.8

3.0

3.2

Pl

an
ni

ng
 L

at
en

cy
 (m

s)

(c) Planning Latency

Figure 10: Overall performance

Furthermore, We measures the latency introduced by the control

module and planning module respectively in Fig.10b and Fig.10c.

As depicted in the bottom part of two figures, Netopia perfectly

meets the requirements of industrial arms: (i). 𝑡𝑐 is stable at around

120μ𝑠 under all four network conditions, and 𝑡𝑐 ≪ 1𝑚𝑠 even in the

worst cases. (ii). 𝑡𝑝 is no more than 3.2𝑚𝑠 in all test cases, far below

the requirement of 16.67𝑚𝑠 . Benefiting from (i) and (ii), Netopia

never misses any grabbing in Fig.10a.

Nevertheless, the results of Baseline-I and Baseline-II are un-

satisfactory. As depicted in Fig.10b, though 𝑡𝑐 of two baselines is

relatively small (< 1𝑚𝑠) with no background traffic, it increases

significantly as the network load increases. At the 75% network

load level, over half of the baseline cases show 𝑡𝑐 ≥ 1𝑚𝑠 , which

causes the unexpected shutdowns in Fig.10a. Besides, the jitter of

𝑡𝑐 in Baseline-I is markedly lower than that in Baseline-II, mainly

resulting from the additional link in network transmission.

As to 𝑡𝑝 , Fig.10c demonstrates that offloading planning module

to cloud/edge servers for real-time control is infeasible: on the one

hand, heavy network load delays the arrival of images from the

arm (around 29𝑚𝑠 when NL = 75%); on the other hand, the latency

jitter introduced by GPU computation (up to 10𝑚𝑠) further impairs

its practicality.

5.3 Robustness Study

We conduct three experiments to demonstrate Netopia’s portability

and scalability. The latency of control and planning modules is

recorded and shown in Fig.11.

Impact of different network models. We evaluate the perfor-

mance of Netopia with different neural network models as the

defect detector. Fig.11a shows the CDFs of 𝑡𝑝 with ResNet-101,

MobileNetv1 and YOLOv3. Compared to Fig.10c, 𝑡𝑝 is obviously

higher in this experiment, because all these three models have more

FLOPs (Floating Point OPerations) than ResNet-50. For ResNet-

101 and MobileNetv1, 𝑡𝑝 distributes in the range of [3.1𝑚𝑠, 4.2𝑚𝑠]

and [8.0𝑚𝑠, 10.2𝑚𝑠], respectively, satisfying the requirements of

16.67𝑚𝑠 . Their 𝑡𝑝 jitter is also small enough for deterministic re-

quirements. However, the average 𝑡𝑝 with YOLOv3 is around 19.5𝑚𝑠 ,

slightly above 16.67𝑚𝑠 , because YOLOv3 is a relatively heavier de-

tector. As a result, YOLOv3 is more suitable for non-urgent but

accuracy-sensitive tasks with powerful cloud/edge servers.

Impact of arm’s DoF. We investigate the performance of Netopia

on the mechanical arm with different degrees of freedom (DoF).

As the DoF of arm is positively related to the computational com-

plexity in control module, we compare the control latency 𝑡𝑐
5 with

three most common DoFs of the commercial arm, i.e., 5, 6 and 7. As

depicted in Fig.11c, 𝑡𝑐 increases slightly as the DoF increases, with

mean value of 100.8μ𝑠 , 108.7μ𝑠 and 122.1μ𝑠 , respectively. Mean-

while, the jitter of 𝑡𝑐 does not exceed 40μ𝑠 across different DoFs.

The result demonstrates that Netopia can maintain its reliability

even if more axes are added to future mechanical arms.

Impact of number of connected arms. We delineate the perfor-

mance of Netopia when multiple mechanical arms are connected.

As depicted in Fig.11c, when the number of devices increases from 1

to 4, the control latency remains stable at around 125μ𝑠 . Benefiting

from the pipeline design in hardware acceleration and the load

balancing of dual A-core inference, the total planning latency only

increases slightly when more arms are present (from 3.01𝑚𝑠 for one

arm to 3.25𝑚𝑠 for four arms). In summary, the result demonstrates

that Netopia is scalable and enables the connection of more end

devices.

5.4 Ablation Study

We conduct several experiments to understand the effectiveness of

each module in Netopia.

Hardware acceleration.We remove Direct Image Packing (DIP)

and Dual-Agent Inference (DAI), and demonstrate the respective

planning latency in Fig.12a and Fig.12b. Fig.12a demonstrates that

DIP does reduces the planning latency 𝑡𝑝 by about 0.4𝑚𝑠 and lower

the jitter by about 0.18𝑚𝑠 , ensuring Netopia’s fast and deterministic

planning. Furthermore, as depicted in Fig.12b, 𝑡𝑝 without DAI is

more than one order of magnitude higher than that with, indicating

that inference acceleration is critical to Netopia.

Tri DMA. We replace the sensing DMA with a PS-PL Ethernet

interface to investigate its influence on Netopia. Fig.12c shows the

planning latency w/ and w/o the sensing DMA. Although the me-

dian of 𝑡𝑝 only increases 0.54𝑚𝑠 , in the worst case, 𝑡𝑝 increases by

over 130%. This indicates that DMA can reduces the 𝑡𝑝 jitter by elim-

inating the bandwidth contention between critical and background

traffic.

Baremetal RPU. In Netopia, the computation of the controlmodule

is deployed on the baremetal RPU. We conducted two experiments

5As TSN requires pre-scheduling[16], the computation latency in control module
should be known in advance. For convenience, TSN’s transmission latency is excluded
from 𝑡𝑐 in this experiment.

Industrial Knee-jerk: In-Network Simultaneous Planning and Control on a TSN Switch MobiSys ’23, June 18–22, 2023, Helsinki, Finland

0 5 10 15 20
tp(ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F ResNet101

MobileNetv1
YOLOv3

(a) Impact of different neural network model

90 100 110 120 130 140
tc(us)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

5 DoF
6 DoF
7 DoF

(b) Impact of arm’s DoF

1 2 3 4
Number of Arms

0.10

0.11

0.12

0.13

0.14

Co
nt

ro
l L

at
en

cy
(m

s)

2.8

3.0

3.2

3.4

3.6

Pl
an

nin
g

La
te

nc
y(

m
s)Control Latency

Planning Latency

(c) Impact of number of connected arms

Figure 11: Robustness Evaluation

2.8 3.0 3.2 3.4 3.6 3.8 4.0
tp (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

w/ DIP
w/o DIP

(a) Netopia w/ and w/o Direct Image Packing

100 101 102

tp (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F w/ DAI

w/o DAI

(b) Netopia w/ and w/o Dual-Agent Inference

3 4 5 6 7
tp (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

w/ Tri DMA
w/o Tri DMA

(c) Netopia w/ and w/o Tri DMA

100 120 140 160 180
tc (us)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

w/ R-Core
w/o R-Core

(d) Netopia w/ and w/o R-Core

100 110 120 130 140
tc (us)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Baremetal
RTOS

(e) Netopia with Bare-metal R-Core and RTOS

2.5 3.0 3.5 4.0 4.5 5.0 5.5
tp (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

w/ Isolated A-Core
w/o Isolated A-Core

(f) Netopia w/ and w/o Isolated A-Core

Figure 12: Ablation Study

to understand if it could utilize the ordinary APU and if the alter-

native ways to schedule RPU (e.g., RTOS) were practical. Fig.12d

and Fig.12e display the corresponding results. If the control module

is placed on the APU, the APU will simultaneously do the control

and planning computation, resulting in an addition in the delay

and jitter of control(Fig.12d). Similarly, when using RTOS on the

RPU scheduling, the operating system adds unnecessary overhead

and increase the control’s delay and jitter (Fig.12e).

Isolated A-Core. We evaluate the performance of Netopia’s plan-

ning module with and without core isolation on the APUs. The

results are shown in Fig.12f. When core isolation is turned off, the

planning computation may be interrupted by kernel-level processes

or other high priority user-level processes. According to the exper-

iment, core isolation can successfully reduce 𝑡𝑝 by 0.32𝑚𝑠 and the

jitter by 4.77𝑚𝑠 . As a result, it is crucial for Netopia to implement

the core isolation technique.

6 RELATED WORK

We review the most related works in this section.

Industrial Control for Mechanical Arms. Generally speaking,

repeatability and accuracy are two goldenmetrics for measuring the

control effectiveness of an arm during the execution of its producing

tasks. The former is defined as its ability to achieve repetition of the

same task while the latter is the difference (i.e., the bias) between

the requested task and the task actually achieved[43, 50]. The ulti-

mate goal of an industrial control system is to make each arm have

both - accurately hitting every target every time. Traditional indus-

trial control systems rely on expensive hardware programmable

logic controllers (PLC), and major PLC providers include Siemens,

Rockwell Automation, Mitsubishi Electric, etc.. However, hardware

PLC-based solutions cannot meet the high flexibility and intelli-

gence requirements of production lines in the era of Industry 4.0

(e.g., the defective glass detection and grabbing case presented in

§2.1), as the re-programming of PLCs typically takes a long time,

e.g., days even weeks, and requires a lot of expertise[15].

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Zeyu Wang, Jingao Xu, Xu Wang, Xiangwen Zhuge, Xiaowu He, and Zheng Yang

Edge Computing in Industry. Recent years have witnessed the

rapid developments of edge computing[4, 34, 38, 41, 68, 69, 74], es-

pecially for industrial applications such as industrial inspection[35,

51, 72], robotic perception[6]. Several studies have also shown the

benefits of connecting mechanical arms to an edge server for flexi-

ble and intelligent industrial control, replacing traditional high-end

PLC-based solutions and thus making the control tasks evolve from

simple relay logic to complex machine learning models[39, 40].

Though edge-based processing has clear benefits in making the

management processes simple and flexible, they cannot easily sat-

isfy the low-latency and high-reliability network requirements of

real-time industrial control as demonstrated in §2.2.

In-Network Industrial Computing and Control.With the ad-

vent of next-generation network devices (e.g., PISA switches[7], P4

language[12], and a wider scope of handcrafted white box switches

based on diverse computing platforms[14]), a new era has begun in

which programmable switches can not only perform pure packet

forwarding but simple computations as well. This trend leads to

the birth of in-network computing, a new computational paradigm,

where edge/cloud-based computations (or a part of them) are loaded

to switches or other programmable data planes[18, 26, 27]. This

new way of using networking hardware opens up the opportunities

for low-latency and reliable calculations during the communication.

Recent studies adopt the paradigm for controlling mechanical arms

on network switches[28, 70, 73]. The most relevant in-network con-

trol systems to our work is Baseline-II (published on NSDI’22[29]),

which performs the real-time velocity control of robot arms on a P4-

enabled programmable network switch and offloads the high-level

planning module at an edge-based industrial controller. However,

based on our extensive evaluations, we find leaving planning tasks

on edge still faces fundamental limitations, spanning from data

transmission, computation, and packet deterministic forwarding,

for real-time industrial applications (detailed in §2.2), which moti-

vates the design of Netopia.

7 DISCUSSION

Netopia is the first attempt to simultaneously offload the control

module and planning module on an industrial switch. We briefly

discuss some concerns, limitations and future works in this section.

• Cost of Netopia. Netopia is implemented on the development

board MPSoC, priced at around $1,000 (with $800 dedicated to the

core FPGA board), offers a more economical alternative to tradi-

tional industrial control platforms. As detailed in §2.2, deploying

such platformsÐincluding industrial Ethernet and edge comput-

ersÐtypically exceeds $10,000. Additionally, converting the design

prototype into dedicated chips could significantly reduce Netopia’s

expenses. Consequently, this budget-friendly, high-performing so-

lution positions Netopia for success in the competitive market.

• Generalizability. We concentrate on processing general and

computationally-intensive visual tasks within the planning mod-

ule. Owing to the Direct Image Packing and Dual-Agent Inference

modules in §4.2, Netopia boasts wide applicability across various

network architectures, with most inference acceleration strategies

(e.g., pruning, quantization and early exit) ready for deployment

with minimal adaptation. However, industrial environments also

involve other types of sensing data, such as mmWave RADAR and

IMU data. As a result, fusing multi-modal data on Netopia switches

for precise environment perception and motion control is nontrivial

and would be left as the future work.

• Multi-arms Collaboration. Netopia represents a pioneering

effort to offload simple yet urgent tasks from cloud/edge servers

to industrial network switches within the planning module. Still,

some urgent tasks with high computational demands, like multi-

arms collaboration, remain to be addressed. Future research will

explore methods for offloading those complicated tasks onto Ne-

topia switches. Potential avenues include investigating specific

computation compression algorithms and devising strategies to di-

vide complicated tasks into smaller components, distributing them

across multiple switches. Ultimately, the key challenge lies in en-

suring that mechanical arms receive intelligent control commands

with low and deterministic latency.

8 CONCLUSION

We have presented the design and implementation of Netopia,

a brand-new industrial switch that simultaneously supports in-

network planning and control. Netopia proposes functionality and

resource abstractions of a next-generation computing platform and

features three vital services to ensure delay determinism in terms

of task computation, data interaction, and packet forwarding. On

this basis, Netopia enables mechanical arms to periodically obtain

intelligent control commands with low and deterministic latency,

empowering them to make agile and intelligent decisions. Extensive

evaluations on public datasets and in real industrial environments

demonstrate its superior performance.

9 ACKNOWLEDGMENTS

We sincerely thank theMobiSense Group, the anonymous reviewers

and our shepherd for their constructive comments and feedback

in improving this work. This work is supported in part by the

National Key Research Plan under grant No. 2021YFB2900100, the

NSFC under grant No. 61832010 and No. 62202263.

REFERENCES
[1] 2015. Enhancements for Scheduled Traffic.
[2] 2020. Timing and Synchronization for Time-Sensitive Applications.
[3] Mamta Agiwal, Abhishek Roy, and Navrati Saxena. 2016. Next generation 5G

wireless networks: A comprehensive survey. IEEE Communications Surveys &
Tutorials (2016).

[4] Ali J Ben Ali, Marziye Kouroshli, Sofiya Semenova, Zakieh Sadat Hashemifar,
Steven Y Ko, and Karthik Dantu. 2022. Edge-SLAM: edge-assisted visual simul-
taneous localization and mapping. ACM Transactions on Embedded Computing
Systems (2022).

[5] Sara Alonso, Jesus Lazaro, Jaime Jimenez, Leire Muguira, and Unai Bidarte. 2021.
Evaluating the OpenAMP framework in real-time embedded SoC platforms. In
2021 XXXVI Conference on Design of Circuits and Integrated Systems (DCIS).

[6] Andrea Bonci, Pangcheng David Cen Cheng, Marina Indri, Giacomo Nabissi, and
Fiorella Sibona. 2021. Human-robot perception in industrial environments: A
survey. Sensors (2021).

[7] Ismail Butun, Yusuf Kursat Tuncel, and Kasim Oztoprak. 2021. Application Layer
Packet Processing Using PISA Switches. Sensors (2021).

[8] Tamás Czimmermann, Gastone Ciuti, Mario Milazzo, Marcello Chiurazzi, Stefano
Roccella, Calogero Maria Oddo, and Paolo Dario. 2020. Visual-based defect
detection and classification approaches for industrial applicationsÐa survey.
Sensors (2020).

[9] Hongwen Dong, Kechen Song, Yu He, Jing Xu, Yunhui Yan, and Qinggang Meng.
2020. PGA-Net: Pyramid Feature Fusion and Global Context Attention Net-
work for Automated Surface Defect Detection. IEEE Transactions on Industrial
Informatics (2020).

Industrial Knee-jerk: In-Network Simultaneous Planning and Control on a TSN Switch MobiSys ’23, June 18–22, 2023, Helsinki, Finland

[10] Guoguang Du, Kai Wang, Shiguo Lian, and Kaiyong Zhao. 2021. Vision-based
robotic grasping from object localization, object pose estimation to grasp estima-
tion for parallel grippers: a review. Artificial Intelligence Review (2021).

[11] Chelsea Finn, Ian Goodfellow, and Sergey Levine. 2016. Unsupervised learning
for physical interaction through video prediction. Advances in neural information
processing systems (2016).

[12] Open Networking Foundation. 2022. Programming Protocol-independent Packet
Processors. https://opennetworking.org/p4/

[13] FRANKA. 2022. Minimum system and network requirements. https://frankaemika.
github.io/docs/requirements.html

[14] Nomios Group. 2022. What is white box switching? https://www.nomios.com/
resources/white-box-switching/

[15] Vivek Hajarnavis and Ken Young. 2008. An assessment of PLC software structure
suitability for the support of flexible manufacturing processes. IEEE transactions
on automation science and engineering (2008).

[16] Xiaowu He, Xiangwen Zhuge, Fan Dang, Wang Xu, and Zheng Yang. 2023. Deep-
Scheduler: Enabling Flow-Aware Scheduling in Time-Sensitive Networking. In
IEEE INFOCOM 2023-IEEE Conference on Computer Communications. IEEE.

[17] Yu He, Kechen Song, Qinggang Meng, and Yunhui Yan. 2019. An end-to-end
steel surface defect detection approach via fusing multiple hierarchical features.
IEEE Transactions on Instrumentation and Measurement (2019).

[18] Ning Hu, Zhihong Tian, Xiaojiang Du, and Mohsen Guizani. 2021. An energy-
efficient in-network computing paradigm for 6G. IEEE Transactions on Green
Communications and Networking (2021).

[19] NVIDIA Inc. 2022. Jetson TX2. https://www.nvidia.com/en-sg/autonomous-
machines/embedded-systems/jetson-tx2/

[20] Xilinx Inc. 2020. Petalinux - Xilinx wiki. https://xilinx-wiki.atlassian.net/wiki/
spaces/A/pages/18842250/PetaLinux

[21] Xilinx Inc. 2022. Flexible DSP Solutions. https://www.xilinx.com/products/
technology/dsp.html

[22] Xilinx Inc. 2022. Intellectual Property. https://www.xilinx.com/products/
intellectual-property.html

[23] Xilinx Inc. 2022. MPSoC PS and PL Ethernet Example Projects.
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/478937213/MPSoC+
PS+and+PL+Ethernet+Example+Projects

[24] Xilinx Inc. 2022. Tri-Mode Ethernet Media Access Controller (TEMAC). https:
//www.xilinx.com/products/intellectual-property/temac.html

[25] Xilinx Inc. 2022. Zynq® UltraScale+™ MPSoC. https://www.xilinx.com/products/
silicon-devices/soc/zynq-ultrascale-mpsoc.html

[26] Somayeh Kianpisheh and Tarik Taleb. 2022. A Survey on In-network Comput-
ing: Programmable Data Plane And Technology Specific Applications. IEEE
Communications Surveys & Tutorials (2022).

[27] Changhoon Kim. 2016. Programming the network dataplane. ACM SIGCOMM:
Florianopolis, Brazil (2016).

[28] Ike Kunze, René Glebke, Jan Scheiper, Matthias Bodenbenner, Robert H Schmitt,
and Klaus Wehrle. 2021. Investigating the applicability of in-network computing
to industrial scenarios. In 2021 4th IEEE International Conference on Industrial
Cyber-Physical Systems (ICPS).

[29] Sándor Laki, Csaba Györgyi, József Pető, Péter Vörös, and Géza Szabó. 2022.
In-Network Velocity Control of Industrial Robot Arms. In Proceedings of the
USENIX NSDI.

[30] Sander Lass and Norbert Gronau. 2020. A factory operating system for extending
existing factories to Industry 4.0. Computers in industry (2020).

[31] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.
2018. Learning hand-eye coordination for robotic grasping with deep learning
and large-scale data collection. The International journal of robotics research
(2018).

[32] Haoran Li, Meng Xu, Chong Li, Chenyang Lu, Christopher Gill, Linh Phan, Insup
Lee, and Oleg Sokolsky. 2021. Towards Virtualization-Agnostic Latency for Time-
Sensitive Applications. In 29th International Conference on Real-Time Networks
and Systems.

[33] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time
object detection for mobile augmented reality. In The 25th annual international
conference on mobile computing and networking.

[34] Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao Du. 2018.
On-demand deep model compression for mobile devices: A usage-driven model
selection framework. In Proceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services.

[35] Zheng Liu, Hiroyuki Ukida, Pradeep Ramuhalli, and Kurt Niel. 2015. Integrated
Imaging and Vision Techniques for Industrial Inspection. Advances in Computer
Vision and Pattern Recognition (2015).

[36] Ryosuke Okuda, Yuki Kajiwara, and Kazuaki Terashima. 2014. A survey of
technical trend of ADAS and autonomous driving. In Technical Papers of 2014
International Symposium on VLSI Design, Automation and Test.

[37] OpoenAMP. 2022. OpenAMP Project. https://www.openampproject.org/
[38] Arthi Padmanabhan, Neil Agarwal, Anand Iyer, Ganesh Ananthanarayanan,

Yuanchao Shu, Nikolaos Karianakis, Guoqing Harry Xu, and Ravi Netravali. 2023.
GEMEL: Model Merging for Memory-Efficient, Real-Time Video Analytics at the

Edge. In USENIX Symposium on Networked Systems Design and Implementation
(NSDI).

[39] Jorge Ribeiro, Rui Lima, Tiago Eckhardt, and Sara Paiva. 2021. Robotic process
automation and artificial intelligence in industry 4.0śa literature review. Procedia
Computer Science (2021).

[40] Gerasimos G Rigatos. 2011. Modelling and control for intelligent industrial
systems. adaptive algorithms in robotics and industrial engineering (2011).

[41] Manasvini Sethuraman, Anirudh Sarma, Ashutosh Dhekne, and Umakishore
Ramachandran. 2021. Foresight: planning for spatial and temporal variations in
bandwidth for streaming services on mobile devices. In Proceedings of the 12th
ACM Multimedia Systems Conference.

[42] Alaa Sheta, Nazeeh Ghatasheh, Hossam Faris, and Ali Rodan. 2018. Robotics
Evolution: from Remote Brain to Cloud. International Journal of Control and
Automation (2018).

[43] Arif Şirinterlikçi, Murat Tiryakioğlu, Adam Bird, Amie Harris, and Kevin Kweder.
2009. Repeatability and accuracy of an industrial robot: Laboratory experience
for a design of experiments course. The Technology Interface Journal (2009).

[44] Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael
Gidlund. 2018. Industrial internet of things: Challenges, opportunities, and
directions. IEEE transactions on industrial informatics (2018).

[45] PLOS ONE Staff. 2016. Retraction: biomechanical characteristics of hand coordi-
nation in grasping activities of daily living.

[46] Guangzhi Tang and Konstantinos P Michmizos. 2018. Gridbot: An autonomous
robot controlled by a spiking neural network mimicking the brain’s navigational
system. In Proceedings of the International Conference on Neuromorphic Systems.

[47] Yunchao Tang, Mingyou Chen, Chenglin Wang, Lufeng Luo, Jinhui Li, Guoping
Lian, and Xiangjun Zou. 2020. Recognition and localization methods for vision-
based fruit picking robots: A review. Frontiers in Plant Science (2020).

[48] Akshay Thirugnanam, Jun Zeng, and Koushil Sreenath. 2022. Safety-Critical
Control and Planning for Obstacle Avoidance between Polytopes with Control
Barrier Functions. In IEEE International Conference on Robotics and Automation.

[49] Axel Vick, Vojtěch Vonásek, Robert Pěnička, and Jörg Krüger. 2015. Robot control
as a serviceÐtowards cloud-based motion planning and control for industrial
robots. In 2015 10th International Workshop on Robot Motion and Control (RoMoCo).
IEEE, 33ś39.

[50] Michal Vocetka, Róbert Huňady, Martin Hagara, Zdenko Bobovskỳ, Tomáš Kot,
and Václav Krys. 2020. Influence of the Approach Direction on the Repeatability
of an Industrial Robot. Applied Sciences (2020).

[51] Daniel Weimer, Bernd Scholz-Reiter, and Moshe Shpitalni. 2016. Design of deep
convolutional neural network architectures for automated feature extraction in
industrial inspection. CIRP annals (2016).

[52] Patrick Wenzel, Torsten Schön, Laura Leal-Taixé, and Daniel Cremers. 2021.
Vision-based mobile robotics obstacle avoidance with deep reinforcement learn-
ing. In 2021 IEEE International Conference on Robotics and Automation (ICRA).

[53] Wikipedia. 2022. CentOS. https://en.wikipedia.org/w/index.php?title=CentOS&
oldid=1118193821

[54] Wikipedia. 2022. Debian. https://en.wikipedia.org/w/index.php?title=Debian&
oldid=1126272347

[55] Wikipedia. 2022. Direct memory access. https://en.wikipedia.org/w/index.php?
title=Direct_memory_access&oldid=1123461808

[56] Wikipedia. 2022. Docker (software). https://en.wikipedia.org/w/index.php?
title=Docker_(software)&oldid=1123196945

[57] Wikipedia. 2022. EtherCAT. https://en.wikipedia.org/w/index.php?title=
EtherCAT&oldid=1120354882.

[58] Wikipedia. 2022. Inverse kinematics. https://en.wikipedia.org/w/index.php?
title=Inverse_kinematics&oldid=1124543632.

[59] Wikipedia. 2022. Modbus. https://en.wikipedia.org/w/index.php?title=Modbus&
oldid=1125273307

[60] Wikipedia. 2022. Network Time Protocol. https://en.wikipedia.org/w/index.
php?title=Network_Time_Protocol&oldid=1125151433

[61] Wikipedia. 2022. Patellar reflex. https://en.wikipedia.org/w/index.php?title=
Patellar_reflex&oldid=1069824082

[62] Wikipedia. 2022. PID controller. https://en.wikipedia.org/w/index.php?title=
PID_controller&oldid=1121264197.

[63] Wikipedia. 2022. Pipelining (DSP implementation). https://en.wikipedia.org/w/
index.php?title=Pipelining_(DSP_implementation)&oldid=1121275138

[64] Wikipedia. 2022. Profinet Ð Wikipedia, The Free Encyclopedia. https://en.
wikipedia.org/w/index.php?title=Profinet&oldid=1118142114

[65] Wikipedia. 2022. Tegra. https://en.wikipedia.org/w/index.php?title=Tegra&
oldid=1123369665

[66] Wikipedia. 2022. Virtualization. https://en.wikipedia.org/w/index.php?title=
Virtualization&oldid=1116535435

[67] Wikipedia. 2022. Xenomai. https://en.wikipedia.org/w/index.php?title=
Xenomai&oldid=1109190278

[68] Jingao Xu, Hao Cao, Zheng Yang, Longfei Shangguan, Jialin Zhang, Xiaowu He,
and Yunhao Liu. 2022. SwarmMap: Scaling Up Real-time Collaborative Visual
SLAM at the Edge. In Proceedings of the USENIX NSDI. 977ś993.

https://opennetworking.org/p4/
https://frankaemika.github.io/docs/requirements.html
https://frankaemika.github.io/docs/requirements.html
https://www.nomios.com/resources/white-box-switching/
https://www.nomios.com/resources/white-box-switching/
https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-tx2/
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842250/PetaLinux
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842250/PetaLinux
https://www.xilinx.com/products/technology/dsp.html
https://www.xilinx.com/products/technology/dsp.html
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/products/intellectual-property.html
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/478937213/MPSoC+PS+and+PL+Ethernet+Example+Projects
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/478937213/MPSoC+PS+and+PL+Ethernet+Example+Projects
https://www.xilinx.com/products/intellectual-property/temac.html
https://www.xilinx.com/products/intellectual-property/temac.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.openampproject.org/
https://en.wikipedia.org/w/index.php?title=CentOS&oldid=1118193821
https://en.wikipedia.org/w/index.php?title=CentOS&oldid=1118193821
https://en.wikipedia.org/w/index.php?title=Debian&oldid=1126272347
https://en.wikipedia.org/w/index.php?title=Debian&oldid=1126272347
https://en.wikipedia.org/w/index.php?title=Direct_memory_access&oldid=1123461808
https://en.wikipedia.org/w/index.php?title=Direct_memory_access&oldid=1123461808
https://en.wikipedia.org/w/index.php?title=Docker_(software)&oldid=1123196945
https://en.wikipedia.org/w/index.php?title=Docker_(software)&oldid=1123196945
https://en.wikipedia.org/w/index.php?title=EtherCAT&oldid=1120354882
https://en.wikipedia.org/w/index.php?title=EtherCAT&oldid=1120354882
https://en.wikipedia.org/w/index.php?title=Inverse_kinematics&oldid=1124543632
https://en.wikipedia.org/w/index.php?title=Inverse_kinematics&oldid=1124543632
https://en.wikipedia.org/w/index.php?title=Modbus&oldid=1125273307
https://en.wikipedia.org/w/index.php?title=Modbus&oldid=1125273307
https://en.wikipedia.org/w/index.php?title=Network_Time_Protocol&oldid=1125151433
https://en.wikipedia.org/w/index.php?title=Network_Time_Protocol&oldid=1125151433
https://en.wikipedia.org/w/index.php?title=Patellar_reflex&oldid=1069824082
https://en.wikipedia.org/w/index.php?title=Patellar_reflex&oldid=1069824082
https://en.wikipedia.org/w/index.php?title=PID_controller&oldid=1121264197
https://en.wikipedia.org/w/index.php?title=PID_controller&oldid=1121264197
https://en.wikipedia.org/w/index.php?title=Pipelining_(DSP_implementation)&oldid=1121275138
https://en.wikipedia.org/w/index.php?title=Pipelining_(DSP_implementation)&oldid=1121275138
https://en.wikipedia.org/w/index.php?title=Profinet&oldid=1118142114
https://en.wikipedia.org/w/index.php?title=Profinet&oldid=1118142114
https://en.wikipedia.org/w/index.php?title=Tegra&oldid=1123369665
https://en.wikipedia.org/w/index.php?title=Tegra&oldid=1123369665
https://en.wikipedia.org/w/index.php?title=Virtualization&oldid=1116535435
https://en.wikipedia.org/w/index.php?title=Virtualization&oldid=1116535435
https://en.wikipedia.org/w/index.php?title=Xenomai&oldid=1109190278
https://en.wikipedia.org/w/index.php?title=Xenomai&oldid=1109190278

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Zeyu Wang, Jingao Xu, Xu Wang, Xiangwen Zhuge, Xiaowu He, and Zheng Yang

[69] Mengwei Xu, Zhe Fu, Xiao Ma, Li Zhang, Yanan Li, Feng Qian, Shangguang
Wang, Ke Li, Jingyu Yang, and Xuanzhe Liu. 2021. From cloud to edge: a first look
at public edge platforms. In Proceedings of the 21st ACM Internet Measurement
Conference.

[70] Zheng Yang, Yi Zhao, Fan Dang, Xiaowu He, Jiahang Wu, Hao Cao, Zeyu Wang,
and Yunhao Liu. 2023. CaaS: Enabling Control-as-a-Service for Time-Sensitive
Networking. In IEEE INFOCOM 2023-IEEE Conference on Computer Communica-
tions. IEEE.

[71] Han Zhang, Abhijith Anilkumar, Matt Fredrikson, and Yuvraj Agarwal. 2021.
Capture: Centralized Library Management for Heterogeneous {IoT} Devices. In
30th USENIX Security Symposium (USENIX Security 21).

[72] Jialin Zhang, Xiang Huang, Jingao Xu, Yue Wu, Qiang Ma, Xin Miao, Li Zhang,
Pengpeng Chen, and Zheng Yang. 2022. Edge Assisted Real-time Instance Seg-
mentation on Mobile Devices. In Proceedings of the IEEE ICDCS.

[73] Yi Zhao, Zheng Yang, Xiaowu He, Jiahang Wu, Hao Cao, Liang Dong, Fan Dang,
and Yunhao Liu. 2022. E-TSN: Enabling Event-triggered Critical Traffic in Time-
Sensitive Networking for Industrial Applications. In 2022 IEEE 42nd International
Conference on Distributed Computing Systems (ICDCS). 691ś701. https://doi.org/
10.1109/ICDCS54860.2022.00072

[74] Ruogu Zhou and Guoliang Xing. 2014. nshield: A noninvasive nfc security system
for mobiledevices. In Proceedings of the 12th annual international conference on
Mobile systems, applications, and services.

[75] Fengyuan Zhu, Mingwei Ouyang, Luwei Feng, Yaoyu Liu, Xiaohua Tian, Meng
Jin, Dongyao Chen, and Xinbing Wang. 2022. Enabling software-defined PHY for
backscatter networks. In Proceedings of the 20th Annual International Conference
on Mobile Systems, Applications and Services.

https://doi.org/10.1109/ICDCS54860.2022.00072
https://doi.org/10.1109/ICDCS54860.2022.00072

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Mechanical Arm's Intelligent Decision
	2.2 Limitations of Current Practice
	2.3 System Goals

	3 System Overview
	3.1 Zynq Platform Primer
	3.2 Netopia's Architecture

	4 Design and Implementation
	4.1 Delay Determinism Guarantee
	4.2 Task Computing Acceleration
	4.3 Packet Deterministic Forwarding

	5 Evaluation
	5.1 Experimental Methodology
	5.2 Overall Performance
	5.3 Robustness Study
	5.4 Ablation Study

	6 Related Work
	7 discussion
	8 Conclusion
	9 Acknowledgments
	References

