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ABSTRACT
The proliferation of mobile devices has enabled extensive mobile-
data supported applications, e.g., exercise and activity recognition
and quantification. Typically, these applications need predefined
features and are only applicable to predefined activities. In this
work, we address the issue of deep understanding of arbitrary ac-
tivities and semantic searching of any activity over massive mo-
bile sensing data. The challenges stem from the rich dynamics
and the wide-spectrum of activities that a human being could per-
form. We propose a hierarchical activity representation, extract
common bases of motion data in an unsupervised manner by lever-
aging the power of deep neural networks, and propose a univer-
sal multi-resolution representation for all activities without prior
knowledge. Based on this representation, we design an innovative
system Lasagna to manage and search motion data semantically.
We implement a prototype system and our comprehensive evalu-
ations show that our system can achieve highly accurate activity
classification (with precision 98.9%) and search (with recall almost
100% and precision about 90%) over a diverse set of activities.

CCS Concepts
•Human-centered computing → Ubiquitous and mobile com-
puting systems and tools; Mobile computing; •Information sys-
tems→ Web search engines;

Keywords
Hiearchical Semanteme; Activity Recognition; Mobile Sensing;
Deep Learning; Semantic Based Activity Search

1. INTRODUCTION
Smart mobile devices, including phones and wearables, have be-

come an indispensable part of people’s daily life. Recent analysis
shows that, in 2015, the global revenue from smartphones is around
272.28 billion dollars, and that of smart wearables reaches 6 billion
dollars. Beyond communication, mobile devices have become new
sensing platforms [2] [19] [13], which are equipped with rich sen-
sors, e.g., accelerometer, gyroscope, magnetometer, barometer and
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heart rate monitor. These on-board sensors enable them to act as an
interface between the physical and cyber worlds.

Human activity recognition or classification [6, 9, 26, 46, 48, 50]
using smart devices has drawn much attention due to its wide usage
and pervasiveness. Those work can be categorized into two groups.
The first group is based on physical model, such as walking [48]
and smoking [26]. The second group relies on machine learning
techniques, which trains classification model for some specific ac-
tivities using a large amount of data [2, 9, 10, 13, 14, 50]. By ex-
ploring the mobile sensing data of different activities respectively,
some of them achieve over 90% accuracy in certain scenarios. Es-
pecially, with the remarkable development of deep learning tech-
niques, some methods [11, 15] can achieve over 98% accuracy for
activity classification using supervised deep learning model. How-
ever, existing methods are limited in practical usage due to the fol-
lowing reasons. Firstly, the physical model or classification method
is only feasible for one or a few predefined activities. They require
either pre-knowledge or labeled data for supervised training. In
practice, the human activities often exhibit high diversity and un-
predictability and the motion data are often complex (e.g., smoking
while walking), which make it quite difficult to model or label all
activities. Even it is possible to laboursomely explore different ac-
tivities one after another, it is still inefficient to apply all recognition
models on a piece of unknown motion data. We are in bad need
of a universal solution for understanding and querying a rich set
of activities. Secondly, existing methods only favor some specific
granularity of an activity, while hierarchy is a common nature of
human activities. For example, at a fine granularity, doing exercises
may include walking, running and jumping. Even when zooming
in walking, it is composed of arm swinging and stepping forward,
and we can go deeper to explore more subtle motions. Neglect-
ing the hierarchical nature of human activity could not only result
in confusion in activity definition and modeling, but also prevent
a comprehensive understanding of human activities. Thirdly, with
the large population of mobile devices, it is no exaggeration to say
that mobile sensing data has become a new member of the Big Data
community. We still lack a unified mechanism that can manage and
search these data captured along with our daily activities.

In this work, towards a deep understanding of mobile sensing
data, we seek for a universal representation for all activities with-
out prior knowledge. The representation should also be able to suf-
ficiently express the activity at multiple resolutions. Based on the
similarity measurement of the representation, raw mobile sensing
data of different activities can be segmented and categorized au-
tomatically. Furthermore, a semantic activity search scheme over
mobile sensing data is desired, which can take a raw motion data
piece as input, search in mobile sensing database and return a list
of ranked data segments that represent the queried activity.



To develop such practical system, several challenges need to be
carefully addressed. First, human activities are very rich, unpre-
dictable, and hard to define and quantify. It is extremely difficult
to find a universal semantic representation for arbitrary activities
without prior knowledge. Existing hand-crafted feature descriptors
cannot fulfil the large spectrum of arbitrary activity space. Second,
the hierarchical nature of human activities requires multi-resolution
representation. The representation should also adapt to great diver-
sities of mobile sensing data, including temporal difference, indi-
vidual difference and device difference. Third, the severe time-
scale mismatch between query data and searched data raises a big
challenge for the activity search strategy design. For example, a
typical activity search process can take a short-duration data piece
(e.g. ten-second data) as input, and search on a long-duration data
stream (e.g. one-hour data). As activities have a rich set of spa-
tial and temporal scales, there lacks a general segmentation (like
the word segmentation for text search) on the mobile sensing data.
We need to design both activity representation strategy and search
strategy to ensure high accuracy, recall, and efficiency.

To address the above challenges, we propose to extract an ele-
mentary basis of diverse motion data, which can span the whole
motion data space and capture the discriminative features of all ac-
tivities. This enables us to embed arbitrary activity using the basis
and the interference caused by diversities is eliminated during the
embedding. The basis is obtained by unsupervised training with a
deep neural network. The multi-resolution receptive fields of dif-
ferent levels in the deep neural network enable us to obtain a hi-
erarchical representation. To manage and search data of different
duration, we propose the activity snapshot to capture short repre-
sentative fragments from long-duration data, and an index structure
is constructed to accelerate the search process. Our prototype sys-
tem provides a deep understanding of a rich set of activities, and
can achieve accurate and efficient unlabeled activity search over
mobile sensing data.

The main contributions of this work are as follows. By explor-
ing the hierarchical nature of human activities, we propose a time-
invariant multi-resolution semantic representation for describing
arbitrary activities. The representation can be obtained with unsu-
pervised learning. Based on this, we propose the concept of SBAS
(Semantic Based Activity Search), which expands the boundary of
search engine and mobile sensing. We then design a similarity met-
ric distinguishing activities from multi-resolution. With the metric,
we propose, design, and implement an innovative system Lasagna
to manage motion data and search unlabeled activity in a large mo-
bile database. Our implemented prototype is comprehensively eval-
uated on gigabytes of mobile sensing data collected by us and an-
other well-known dataset. Our extensive evaluation results show
that our system can achieve highly accurate activity classification
(precision is 98.9%) and search (recall is almost 100% and pre-
cision is about 90%) over diverse activities. Besides, our system
can be seamlessly concatenated to most of the existing indexing
strategies so that response time of search can be benefited by the
advanced indexing techniques developed in the literature.

We organize the rest of this paper as follows: Section 2 illustrates
the hierarchical nature of human activities and gives an overview of
Lasagna. Section 3 presents the design of the universal descriptor
which can represent arbitrary activities at multi-resolution. Then in
Section 4, we explain the semantic analysis and search strategies
over large motion database. The prototype system implementation
and system evaluation are presented in Section 5. We review related
work in Section 6, discuss the promising applications and open is-
sues in Section 7. At last we summarize our work in Section 8.

Figure 1: the Hierarchical Nature of Activities

2. SYSTEM OVERVIEW
In this section, we give an overview of this work, including the

design space, the design principle as well as the architecture of the
proposed system.

2.1 Design Space
Our system, Lasagna, is proposed for deep hierarchical under-

standing over mobile sensing data, just like the traditional Italian
food interleaving layers of pasta with layers of sauce. Lasagna
aims to enable automatic management as well as semantic search
over them. We mainly focus on the motion data corresponding to
human activities (acceleration and angular velocity) considering its
wide applications, which is also more challenging than other types
of mobile sensing data since it is complex and unstructured. Our
scheme can be easily generalized to handle other data types.

• Lasagna can analyze unlabeled raw sensing data collected
by different onboard sensors of mobile devices, and embed
them into semantically discriminative descriptors at different
resolutions.

• Lasagna can measure the similarity between semantic de-
scriptors, and automatically categorize data of relevant activ-
ities at multiple resolutions.

• Lasagna supports semantic activity search over mobile sens-
ing data. The querier can input a piece of raw data of an arbi-
trary activity, and Lasagna will conduct a search over a large
database and return a list of ranked data pieces corresponding
to the same activity.

The embedding scheme provides a universal compact represen-
tation for mobile sensing data at different resolutions, and catego-
rizing data by activities enables effective sensing data management.
In this way, Lasagna achieves better understanding of human ac-
tivities, which can benefit users by enriching mobile applications
and bringing more accurate and efficient context-aware products
into reality. Moreover, Lasagna is also a step towards mobile sens-
ing data management system and search engine, which can boost
the development of not only mobile industry but also other research
and commercial fields, such as medical science, sociology, public
security and insurance marketing.



2.2 Design Principle
A careful system design is required to fulfill the aforementioned

challenging functionalities. We start with exploring the features
of human activities and mobile sensing data, and then discuss the
design principles.

Hierarchical nature of activity is an important feature for ac-
tivity definition and recognition. Fig.1 illustrates a simple example
of understanding the same piece of acceleration data collected by
a smart watch at different resolutions. As depicted, at the coarsest
granularity (the root node), it represents an 8-minute human ac-
tivity. At a finer granularity, it can be recognized as a 3.5-minute
exercise followed by a 4.5-minute sitting. When we achieve deeper
understanding, the exercise is composed of walking, running and
jumping and while the user is sitting there, he/she first sits still,
then reads and types at last. More subtle motions can be discovered
when we look at an even finer granularity. The hierarchical nature
and other features of human activities require us to design Lasagna
respecting the following principles:

(a) Multi-Resolution: Our system should comprehensively under-
stand the hierarchical semanteme of activities, which requires
our embedding scheme sufficient to express complex motion
data at multiple resolutions. Also our search strategy should be
capable of matching motion data at different granularities.

(b) Universality: Facing the rich dynamics, unpredictability and
the wide-spectrum of human activities,our system should pro-
vide a universal solution for understanding, representation and
querying arbitrary activities. Lack of prior knowledge and no
labeled data greatly increase the challenge.

(c) Adaptivity: Mobile sensing data generated by human activi-
ties exhibit great diversities, including spatial-temporal differ-
ence, individual difference and device difference, which could
cause dissimilarity between motion data of the same activity.
Our system should capture the essential features of activities,
and both the embedding scheme and searching strategy should
adapt to these diversities.Moreover, when performing search,
typically searching an unlabeled activity (by inputting a short-
duration data, e.g. ten-second data) in a long-duration data (e.g.
one-hour data from multiple sensor readings), the severe time-
scale mismatch between query data and searched data also raises
a big challenge for the search strategy design.

(d) Efficiency and Scalability: When providing search service, re-
sponse time is an important factor for good user experience. To
deal with large amounts of sensing data, we need to make our
search strategy efficient and our system scalable.

2.3 Architecture and Typical Workflow
Considering these principles, we carefully design our system to

achieve all aforementioned functionalities. The system architec-
ture and typical workflow is shown in Fig.2. There are two roles
for users, one is data provider who collects raw data using his/her
smart devices and stores the data in raw database, the other is data
querier who inputs a piece of sensing data corresponding to the tar-
get activity and query the data pieces of the same activity in the
database. Our system consists of three main components, includ-
ing model training, index construction and activity search, which
can be implemented on a PC for personal usage or outsourced to a
cloud for public service and minimizing the overhead of clients.

Model Training. We propose to extract elementary bases of di-
verse motion data, which can be used to embed raw motion data
to discriminative hierarchical descriptors. More specifically, this

Raw Data Raw Data

Result

Figure 2: Lasagna Framework

component feed the data in the raw database into the Motion Basis
Extraction module, which is a well-designed deep neural network
with multi-resolution receptive fields at different layers. And then
a set of motion bases at multiple resolutions are extracted by un-
supervised training. Given a piece of raw data, the Hierarchical
Descriptor Extraction module generates its hierarchical descriptor
using the motion bases.

Index Construction. To manage and search data of different du-
rations, we design a Snapshot Capture module to capture short rep-
resentative fragments (Activity Snapshot) from long-duration data.
All activity snapshots are embedded to multi-resolution descriptors
through the Hierarchical Descriptor Extraction module. The Se-
mantic Analysis module analyzes the distribution of all snapshots
in the descriptor space and constructs semantic index to accelerate
search.

Activity Search. This component takes the query data as in-
put, and embeds the raw data into a hierarchical descriptor in the
same way. Then the Semantic Search module uses the descriptor
to perform a nearest neighbor search using the index structure, and
outputs a result list of motion data pieces to the querier, where the
list is ranked by semantic similarity to the querying activity.

3. HIERARCHICAL SEMANTIC DESCRIP-
TOR

As mentioned before, we are looking for a universal descrip-
tor which can embed features of arbitrary activities without prior
knowledge. Besides, the descriptor should be capable of represent-
ing complex activities at multi-resolution and adaptive to diversi-
ties of mobile sensing data. Existing work uses statistics (e.g., av-
erage and deviation) or more sophisticated descriptors (e.g., DWT
[45], autoregressive model [22], and HMM [27]) to describe mobile
sensing data, which unfortunately cannot fulfil our requirements.

In linear algebra, a minimum set of vectors that can span the
whole vector space is called a basis, i.e., every vector can be rep-
resented as a linear combination of the basis vectors. This inspires
us to introduce the concept motion basis for the motion data space.
In this work we propose to extract motion basis, which captures the
discriminative semantic features of all activities and can be used to
embed arbitrary motion data. The motion basis is obtained by unsu-
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Figure 3: Convolutional Restricted Boltzmann Machine

pervised training of a deep neural network from diverse unlabeled
raw data. The network is composed of multiple stacked Convolu-
tional Restricted Boltzmann Machines(CRBM) [17], whose differ-
ent receptive fields at different levels enable us to extract bases at
multiple resolutions. Hence, desired hierarchical descriptors can
be generated using motion bases, and semantic similarity between
activities can be quantified. In the rest of this section, we present
the details of our design.

3.1 Motion Basis Learning
When a person is performing some activity, multiple sensors col-

lect data, maybe in an unsynchronized way or at different sample
rates. Before feeding these raw data to the training model, we need
to pack them into a coordinated structure, which we refer to as data
matrix.

Data Matrix. Given a sensor (e.g., accelerometer, gyroscope,
magnetometer and compass), its data can be represented in the for-
mat X = {xt}, t = 1 · · ·T , where xt is a vector composed of data
from different axes and t is the time index. Data from multiple sen-
sors are organized in a data matrix I in which each X is regarded
as a channel. Given multiple sensors, the size of I isDI×TI×CI ,
whereDI is the number of axes of each sensor, TI is the maximum
time index (the total sample number) and CI stands for the number
of sensors. For the example data matrix depicted in Fig.3, DI = 3,
CI = 2. We refer to Ici,j as the jth data sample of the ith axis col-
lected by the cth sensor, 1 ≤ i ≤ DI , 1 ≤ j ≤ TI , 1 ≤ c ≤ CI .
When there are unsynchronized data from different sensors, we
align them according to their timestamps. If data from different
sensors are sampled at different rates, we interpolate the sparser
data to make all the channels aligned.

We pack diverse unlabeled raw data (e.g., accelerometer and gy-
roscope data of different activities) to data matrixes and feed them
to a deep neural network (formed by multiple stacked CRBMs) to
extract the motion bases at different resolutions through unsuper-
vised learning.

Convolutional Restricted Boltzmann Machine. As illustrated
in Fig.3, the basic building block CRBM is a three-layer architec-
ture, including a visible layer V , a hidden layer H and a pooling
layer P . The visible layer adopts the input data matrix I , whose
size isDI×TI×CI , hereDI = 3, CI = 2. For each channel of the
input I , a group of K kernels {W̃ k}, k = 1, · · · ,K, are applied

to perform convolution operation. Each W̃ k is amW̃ ×nW̃ coeffi-
cient matrix. And its size is also referred to as the receptive field
of the kernel. For the example shown in Fig.3, mW̃ = 3,nW̃ = 5.
Considering the accelerometer channel in this example, after one
convolution with a kernel W̃ k, 3 × 5 units in this channel are
mapped to one unit of the corresponding channel in the hidden
layer. After a series of convolutions with a kernel W̃ k sliding along
the time dimension, the accelerometer data in I is mapped to a row
vector hk in the hidden layer, whose length is T − nW̃k + 1. The
conditional probability of each unit in the hidden layer is computed
as

P (hk,j = 1|I) = σ((W̃ k ∗v I)j + bk),

σ(x) =
1

1 + e−x

(1)

where ∗v indicates the valid convolution and bk indicates the visible-
to-hidden bias. The inference value of each hk,j is obtained through
a Gibbs Sampling process [5]. That is, we select a random num-
ber from a uniform distribution U [0, 1], and set hk,j = 0 if the
conditional probability is lower than the number, otherwise we set
hk,j = 1. The pooling layer adopts the pooling kernel with a
size of 1 × np. By uniformly dividing each row hk in the hidden
layer into non-overlapped segments with length of np (np = 4 in
Fig.3), the pooling layer shrinks the length of the hidden layer into
bT−n

W̃k+1

np
c and each unit equals to the sum of the values in the

corresponding segment.
For CRBM, the objective of the training process is to learn a

group of equal-size (mW̃ × nW̃ ) kernels {W̃ k} that can automati-
cally extract the descriptive information of the data. That is to say,
for an input data matrix I , little information is lost after the convo-
lution and the output h can be used to reconstruct the original I .
The reconstruction is defined as

v =
∑
k

(W k ∗f hk) + a, (2)

where ∗f stands for the full convolution and a is the scalar hidden-
to-visible bias. W k reverses W̃ k, which means W k

i,j = W̃ k
i′,j′

(i′ = mW̃ − i+ 1, j′ = nW̃ − j + 1).
Two metrics, error and sparsity are adopted to evaluate a model.

The error is defined as the mean Euclidean distance between all
the corresponding rows of v and I , and the sparsity is defined
as the mean value of all the conditional probabilities in the hidden
layer computed by Eq.1.

Therefore, an unsupervised training can be achieved by minimiz-
ing the error. Specially, to avoid getting a trivial solution, a sparsity
constraint is added to require that each value in the pooling layer
is no more than 1. The training process can be performed by Con-
trastive Divergence proposed by Lee [18] and Hinton [8].

Moreover, comparing Eq.2 with the typical linear combination
of basis in a vector space, we find that, the only difference is that
Eq.2 uses full convolution (∗f ) rather than multiplication. For each
channel, the set {W k} can be seen as a basis, and therefore the
combination of corresponding hk can be referred to as an embed-
ding (coordinate) in the space spanned by the basis.

3.2 Descriptor Extraction
After the motion basis is learned, for an input data matrix I in

visible layer, the hidden layer outputs a K × (TI − nW̃ + 1)×CI

data matrix, where K equals the number of convolution kernels we
adopt, which is also the embedding of each channel of the input
data. Fig.4 illustrates embedding results of four pieces of accel-
eration data corresponding to different activities (brushing teeth,
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Figure 4: From Raw Data to Descriptors (Acceleration Channel)

walking upstairs, combing hairs and walking downstairs), with a
configuration K = 60. Each row of an embedding matrix visual-
izes an hk and the j-th light yellow pixel in the row indicates that
hk,j = 1. These figures intuitively show that the distribution of the
light yellow pixels varies for different activities, which means that
these embedding results are discriminative in the spanned space of
the motion basis.

Therefore, to capture the discriminative feature of different em-
bedding results, for each channel c(1 ≤ c ≤ CI), we propose the
descriptor fc(I), which is defined as:

fc(I)k =

∑
j h

c
k,j

TI
, 1 ≤ k ≤ K. (3)

The descriptor fc(I) is a histogram of the light yellow pixels,
and the histogram is normalized by the length of the input data
matrix.

Time-invariant Property. A typical case in activity search is
inputting a short-duration data (e.g. 10 second data of running) to
search a long-duration data (e.g. one hour data of running), the
time-scale mismatch between query data and searched data raises
critical challenges for search strategy design. By analyzing the de-
scriptor, we find that the descriptor has a remarkable time-invariant
property, which can help to solve the time-scale mismatch problem.

LEMMA 1. Given two data matrixes I and I ′ of a same activity,
whose lengths are TI and TI′ (TI 6= TI′ ). For the their descriptors
f(I) and f(I ′), we have f(I) ≈ f(I ′).

Based on the definition of our descriptor (Eq.3), it characterizes
the distribution of embedding features, which is a set of histograms
normalized by the length of the input data (i.e. the duration of the
activity). As a result, repeating the same activities (with reasonable

Figure 5: Hierarchical Descriptor Generation

temporal diversity) won’t change the feature distribution. Here we
omit the details of the proving process. But we can get the intuition
when we let I ′ be the repetition of I (e.g. TI′ = 2TI , I

′
t+TI

=
I ′t = It). For each k, the numerator and denominator of fc(I ′)k in
Eq.3 are both approximately proportional to the times of repetition.
Hence we achieve the time-invariant descriptor.

3.3 Hierarchical Descriptor
Until now, we have obtained a descriptor at a specific resolu-

tion corresponding to the receptive field of the convolution kernels
with a single level of CRBM. To achieve a hierarchical descrip-
tor for describing an activity at multi-resolution, we propose to
use a deep neural network (formed by multiple stacked CRBMs),
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Figure 6: Semantic Analysis

where the higher level of CRBM has a larger receptive field, hence
a coarser resolution. Fig.5 illustrates this idea by taking the ac-
celerometer channel as an example. K1 convolution kernels are
applied in the first building blockM1 and we can get the descrip-
tor f1 (including f1

1 for accelerometer and f1
2 for gyroscope). In

the pooling layer P1, besides adding the sparsity constraints in the
training process, the pooling kernel is more like a filter, that can
summarize information of embeddings in the hidden layer. For
an input data matrix I(DI × TI × CI ), while the descriptor is
extracted from the embedding, by utilizing pooling kernel with a
length of np, a new, compact data matrix can be generated with
size K × b (TI−n

W̃
+1)

np
c × cI . Thus, by training another building

blockM2 taking all data matrixes outputted from pooling layer P1

as input, a second-level motion basis containing K2 components
can be learned. After that, we treat the pooling layer P1 as the vis-
ible layer V2 of a new building blockM2, and then a second-level
descriptor f2 can be extracted. In this way, f2 describes the mo-
tion characteristics at a coarser level, since the pooling operation in
M1 enables the convolution kernels inM2 to analyze motion data
at a larger scale. Accordingly, for motion data I , the descriptor is
defined as f(I) = {f l

c(I)}, where l = 1, 2, · · · indicates the level
and c = 1, 2 indicates the accelerometer channel and gyroscope
channel. More building blocksM3,M4... added to the structure,
more semantic layers of the motion can be extracted, which allows
us to understand the motion comprehensively.

3.4 Semantic Similarity
Based on the hierarchical descriptor, the semantic similarity be-

tween descriptors can also be decomposed into multiple levels. For
two descriptors f(I1) = {f l

c(I1)} and f(I2) = {f l
c(I2)}:

First of all, similarity θl,c(f
l
c(I1), f l

c(I2)) in the same level l
and channel c can be measured by commonly used vector based
metrics. Furthermore, we can fuse the knowledge from different
channels (sensors) and get the multi-channel similarity Θl (l =
1, 2, 3, ...). And similarly, multi-level similarity Θc (c = 1, 2) and
comprehensive similarity Θ can also be obtained.

For simplicity, in this work, we use the fusing strategy of con-
catenating the descriptors from different sensors and different lev-
els. Euclidean distance between the descriptors is adopted in get-
ting θl,c (as well as Θl, Θc and Θ). Evidently, a larger θ (or Θ)
indicates a smaller semantic similarity between two descriptors.

4. SEMANTIC ANALYSIS & SEARCH
Based on the proposed multi-level model, the hierarchical de-

scriptor we propose can automatically highlight the descriptive in-
formation hidden in the motion data, and the similarity between
activities can also be quantified at different resolutions. However,
facing with the raw database, we are still far from activity man-
agement and search based on the proposed descriptor. The raw
database collects the motion data streams with long time duration,
and different activities are concatenated together. It is intractable
to get different activities separated for further comparison.

To address these issues, we propose a semantic analysis strat-
egy for raw motion data. By taking snapshots on large pieces of
data, the activity semanteme can be extracted and purified. More-
over, after indexing the extracted activity semanteme, accurate and
efficient semantic based activity management and search can be re-
alized.

4.1 Activity Snapshot
It is difficult to segment the motion data streams to separated ac-

tivities due to two major challenges. First, human activities possess
a hierarchical nature, there are varying ways of defining activities at
different resolutions (e.g. from the basic hand swinging to running
and then basketball playing). Second, the duration of different ac-
tivities varies from person to person, and from time to time, which
prevents us from segmenting them with equal-length time window.

To address these problems, we propose a new activity snapshot
data structure to capture the activity fragments in a data stream at
different granularities.

Snapshots are captured according to the parameters focus posi-
tion p and scale q. For a data matrix I whose length is TI , the
snapshot captured under (p, q) collects the data from p− q to p+ q
( p − q > 0, p + q ≤ TI ). Thus, we continuously slide the fo-
cus position p along the time axis with a step length, and at each
position, multiple snapshots are captured by adjusting the scale q.

To avoid unnecessary enumeration and reduce the computation
overhead, we propose the minimal resolution rmin as the step length
and the maximal resolution rmax to limit the max size of a snapshot
( 2q < rmax ).

4.2 Semantic Analysis
When a new query is uploaded, by performing NN-Search within

the snapshots, the probable results that are semantically similar to
the query can be obtained. However, trivially performing linear
comparison through the snapshots will inevitably bring unaccept-
able computation overhead. Thus, it is urgent to perform an analy-
sis on these snapshots.

Fig.6 visualizes the distribution of snapshots’ descriptors in a 3D
space. Each descriptor, in other words, a point in the figure corre-
sponds to a snapshot. We divide the snapshots into two categories:
unitary snapshots and mixed snapshots. The former refers to
snapshots that capture a unitary activity, while the latter refers to
those span multiple activities. In this example, the groundtruth of
these activities is obtained by labelling the training data manually.

As illustrated in Fig.6(a), the snapshots are well aggregated in
several clusters. When we zoom in, in Fig.6(b), we observe that the
distribution of snapshots exhibits very good properties which can
significantly facilitate our further analysis. On the one hand, snap-



shots gathering together tend to be unitary snapshots of the same
activity. On the other hand, mixed snapshots lie between clusters.
And the distances from a mixed snapshot’s descriptor to its adjacent
cluster heads are relevant to the weights of activities it spans. Based
on the first observation, we can extract unitary activities in an un-
supervised manner. Then according to the second observation, we
can approximate a mixed snapshot’s constitution by representing
its descriptor through a linear combination of several nearby clus-
ter heads.

4.3 Semantic based Activity Search
As more and more new users join the system who continuously

generate data, the scale of motion database could be huge which
raise critical challenge to activity search efficiency. The result of
semantic analysis can help to provide efficient and accurate Seman-
tic Based Activity Search (SBAS). In order to speed up the activity
search, we propose a clustering-based indexing scheme. We firstly
adopt the density based algorithm DBSCAN to cluster the snap-
shots in database. Then we can extract a series of cluster heads
as representative descriptors which are used to set up an indexing
structure. Note that our approach is fully compatible with other
existing indexing approaches.

After the analysis, suppose that we have already built a repre-
sentative descriptor set S. And all snapshots are mapped to their
closest representative descriptors, which means they are semanti-
cally similar. Then when the query q is uploaded, the SBAS can be
performed in a progressive procedure:

(1) Semantic Level Search: Search for a subset of representative
descriptors S ′ that are most semantically similar to the descriptor
of the query q.

(2) Snapshot Level Search: Search for the most relevant snap-
shots among those are mapped to S ′.

(3) Snapshot Splicing (if possible): Rank the snapshots retrieved
in procedure (2) and splice the snapshots that have an intersection
in time duration.

By dividing the search process into different steps, the progres-
sive strategy can avoid the comparison between distant snapshots
and greatly reduce the computation overhead.

In SBAS, if the querier input query data with labels, the seman-
tic mapping between text labels and motion data can be gradually
set up. Based on our semantic analysis, we can achieve automatic
labeling over the raw motion database and therefore a text-based
activity data search could be enabled.

5. IMPLEMENTATION AND EVALUATION
We design and implement a proof-of-concept prototype Lasagna,

to manage and search mobile sensing data of arbitrary activities.
The system consists of an application which collects data from var-
ious sensors in mobile devices, and a service whose architecture
is illustrated in Fig.2. Here we present the system implementation
and measurement to show the feasibility and practicability of our
system.

5.1 System Implementation
Software implementation: We develop two versions of sensing

data collecting application. One is implemented in Java for An-
droid platform, the other is implemented in HTML and Javascript
for Tizen. We implement all components (Fig.2) of the service
with Python and Matlab. For the deep neural network, we modify
the CRBM proposed by Lee et al. [17] and construct the network
with multiple CRBMs.

Hardware configuration: Two kinds of smart watches are used
for data collection, one is Samsung Galaxy Gear S (with Tizen OS)
and the other is Sony SmartWatch3 (with Android Wear OS). The
service is setup on a PC with a 2.5GHz Intel R© Core

TM
i7 CPU and

a 16GB 1600MHz DDR3 memory.

5.2 Data Collection and Datasets
To comprehensively evaluate our system, we collect our own

dataset and also adopt a public dataset [33] for evaluation and com-
parison. The details of two datasets are as follows:

Dataset[#1]: This dataset is collected by us. 10 volunteers (7
males, 3 females) wear smart watches on right wrist. 320 hour (2.7
GB) data of accelerometer and gyroscope are collected in both con-
trolled and uncontrolled environments. Data are manually labeled
for ground truth.

Dataset[#1][Controlled] includes 11 common activities: getting
up, lying down, brushing teeth, combing hair, drinking water, pour-
ing water, walking, running, walking upstairs, walking downstairs
and typing. Each activity is performed by our volunteers and the
time duration varies from 10 seconds to 10 minutes.

Dataset[#1][Uncontrolled] includes but not limited to the 11 ac-
tivities in the controlled environment. Volunteers wear smart watches
for whole days and act freely, while data are continuously collected.
We design buttons for pre-defined activities for users to label the
current data by a simple tap. And also an "add a new activity"
button is used for volunteers to add a new activity. To reduce the
effect caused by inaccurate labeling, e.g. the delayed label caused
by response time, we remove the start and end of the data of each
activity.

To minimize power consumption caused by continuous data col-
lecting and evaluate the accuracy of our method with a low sam-
pling rate, we set the sampling rate to 20Hz. Our app periodically
writes the motion sensors’ readings to the smart watch’s local stor-
age. The stored data will be uploaded to the server when WiFi or
USB connection is available.

Dataset[#2]: This dataset is collected by Shoaib et al. [33]. 10
males with Samsung Galaxy SII attached on the right wrist. 323.9
MB data of accelerometer and gyroscope are collected in controlled
environment, including 7 activities: walking, standing, jogging, sit-
ting, biking, walking upstairs and walking downstairs. Each activ-
ity is performed for 3-4 minutes.

5.3 Model Training
As presented in [18], a deep neural network can be efficiently

trained using greedy level-wise training. For our multi-level CRBM
model, we pack all the controlled and uncontrolled raw data of
Dataset[#1] without labels into data matrixes as the input, which
has three rows (for three axes) in each of the two channels (for
accelerometer and gyroscope). Then we conduct a greedy level-
wise training to minimize reconstruction error under the sparsity
constraint without supervision. Here the two metrics error and
sparsity (defined in Section 3.1) can evaluate the performance of
a deep learning model and the embedding. Smaller error indicates
higher embedding accuracy, and better sparsity (sparser model) in-
dicates more efficient descriptor and also avoids trivial solutions.
In state-of-the-art deep learning systems, tuning model parameters
is an manual process, which is directed mostly by experience. In
our experiment, to achieve optimal model, we tune all model pa-
rameters (including convolution kernel number at each level, ker-
nel width, etc.) and explore more than 50 different configurations
of these parameters.

It is worth noting that kernel number and level number affect
different aspects in our model. Kernel number affects the accuracy
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Figure 7: Kernel Number Selection

of the embedding, while level number mainly affects the coarseness
of the extracted activity features (i.e. the semantic level of activity).
So we determine these two parameters separately in our work.

Kernel Number.
Kernel number at each level is an important parameter for our

deep neural network, which determines the size of the descriptor,
and also affects the error and sparsity of the model. There is a trade-
off in determining the kernel number. On one hand, a larger kernel
number raises the embedding accuracy, since more information can
be represented by more kernels. As shown in Fig.7, the error re-
duces as K1 and K2 increase. On the other hand, a larger number
of kernels will bring longer representation (feature vectors), which
will bring extra cost for storage, model training and searching. To
achieve a balance, we select K1 = 60 and K2 = 60 after which
the declination of error slows down significantly. Under this con-
figuration, we can have a classification accuracy of 98.2% (Table
2), which we think sufficient for accurate activity search.

Moreover, as we can see in Fig.7, K1 and K2 influence the per-
formance (error and sparsity) differently. This is because the input
of level 2 is the output of level 1. As we designed, the motion basis
helps to filter out the diversities and interferences. After the con-
volution and max-pooling operations in level 1, the input of level 2
is smoother than that of level 1, which leads to smaller errors using
the learned motion basis in level 2.

Kernel Width.
Kernel width nW̃ is another important parameter determining the

receptive field of each level. When we extract a multi-resolution
descriptor for an activity, kernel width indicates the granularity of
each hierarchy. In our experiment, facing diverse unknown motion
data, we don’t want to miss any important feature of activities, so
we set the kernel width to a small number, nW̃ = 10, which is
approximate to 0.5-second resolution at the first level. The recep-
tive field increases level by level due to the pooling operation, thus
produces coarser and coarser descriptor.

Level Number.
The multi-level CRBM provides us hierarchical view of activity

features. When stacking more levels of CRBMs, more comprehen-
sive information can be obtained in the multi-resolution descriptor,
and more accurate the descriptor will be. As we will present in the
upcoming accuracy evaluation (Table 2), the classification accura-
cies for one-level model, two-level model and three-level model
are 97.8%, 98.2% and 98.9% respectively. However, increasing
the model level will cause the following impacts: (1) higher train-
ing cost is needed to train more CRBM; (2) CRBM in higher level
is fed with the data shrunk by the pooling operation in the lower
level. Hence, to guarantee the model quality, severalfold raw data
is required for training a high level model. (3) more levels in the
model mean more dimensions of the hierarchical descriptor, which
also increase the complexity for similarity comparison and index-
ing construction. As a result, the design goal of our deep learning
model is to achieve high classification accuracy with as less level as

possible. Since the improvement is not significant when we use a
3-level model, to achieve a trade-off, we adopt the two-level model
in the rest of the experiments. But a 3-level model is also trained
to compare with the two-level model to study the effect of level
number.

5.4 Effectiveness of Semantic Descriptor

5.4.1 Activity Classification Accuracy
After training the multi-level CRBM model, we extract the mo-

tion basis of each level and generate hierarchical descriptors of mo-
tion data using these bases. Considering there is no existing work
addressing the semantic based activity search over unlabeled mo-
tion data, the most related area is activity classification. To objec-
tively evaluate the accuracy and discriminative property of our de-
scriptor, we compare our work with two related works [33] and [11]
for the same activity classification task using the same Dataset[#2].

We choose them for comparison because they are both recent
highly relative and representative works on mobile device based ac-
tivity classification, which achieve remarkable accuracy. Shoaib et
al. propose a classic strategy with a rich set of predefined features
(both in time-domain and frequency-domain) [33]. A set of pre-
defined features (in Table 1) are extracted as the descriptor for data
segments. Then classifiers like SVM, are trained with 90% labelled
data and the accuracy is tested using the rest 10% data. The work
of Wenchao and Zhaozheng, which is published in ACM MultiMe-
dia 2015, adopts the up-to-date supervised Convolutional Neural
Network. They train the CNN with data segments and their trans-
formations (wavelet decomposition and discrete Fourier Transfor-
mation) in a supervised manner. Then 21 (C2

7 ) two-class SVMs
are trained based on the output of the CNN to determine the final
classification.

For the same task, our model is trained using all the raw data
in Dataset[#1] as presented in Subsection 5.3 in an unsupervised
manner. With our model, hierarchical descriptors of data segments
in Dataset[#2] are extracted for classification. For a fair play, we
adopt the same SVM in [33] to conduct classification for 7 activ-
ities. Table 2 presents the average classification accuracies of two
related works and our method. Here, x-level indicates the classifi-
cation accuracies using our hierarchical descriptor extracted from
the x-level CRBM model. According to the results, our descriptor
outperforms the predefined features in [33] greatly. Compared with
the 98.75% accuracy of the supervised deep learning model [11],
our 2-level descriptor has a comparable accuracy (98.2%) and our
3-level descriptor has an even a higher accuracy (98.9%). The eval-
uation reveals another fact that, accelerometer has a better perfor-
mance on activity recognition than gyroscope, and compound data
from multiple sensors can increase the accuracy.

We note that, Dataset[#1] and Dataset[#2] consist of different
activities performed by different groups of people with different
devices. Our model is trained using Dataset[#1] and evaluated on
Dataset[#2], and achieves a significantly high accuracy (98.9%),
which show that our hierarchical descriptor can capture the dis-
criminative features of arbitrary activities without supervision, and
has good universality and adaptivity.

Table 1: Feature Sets
Feature Set Features in the Feature Set

FS1 Mean, standard deviation
FS2 Median, zero crossings, root means square
FS3 Variance, zero crossings, root means square
FS4 Sum of first five FFT coefficients, spectral energy
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Figure 8: Fusing Knowledge from Accel and Gyro

Table 2: Classification Accuracy
Sensor [33] [11] 1-level 2-level 3-level
Accel 80.3% - 94.6% 96.1% 98.4%
Gyro 71.8% - 82.1% 82.9% 91.4%

Acc+Gyro 90.3% 98.75% 97.8% 98.2% 98.9%

Uncontrolled Data. To further explore the effectiveness of our
descriptor, we perform a classification task on our uncontrolled
Dataset[#1][Uncontrolled], which is much more challenging due to
more noise and unknown actions compared to the controlled data.
Same model and strategy as that are used for evaluating the accu-
racy on Dataset[#2] are adopted to distinguish 11 different activi-
ties, and the results are presented in Table 3. We can see that even
for uncontrolled daily activities, an accuracy over 90% can still be
guaranteed using a low level model (1-level or 2-level). With a
higher level, the model accuracy can be further improved.

People Diversity. Here, we evaluate the adaptivity of our de-
scriptor to people diversities. There are 10 different males’ data in
Dataset[#2]. We perform the classification task on different num-
ber of people’s data. As shown in Table 4, the accuracy has a slight
decrease when the people number increases. Overall, our descrip-
tor still shows a good classification accuracy (above 97.8%) for
diverse people’s motion data.

Table 3: Classification Accuracy (Dataset[#1][Uncontrolled)]
Sensor 1-level 2-level
Accel 88.1% 89.2%
Gyro 80.3% 80.9%

Acc+Gyro 91.0% 92.0%

Table 4: People Diversity
#People 2 4 6 8 10

Accuracy 98.54% 98.16% 97.95% 97.87% 97.80%

5.4.2 Time-invariant Property
In Subsection 3.2, we mentioned that our descriptor has a time-

invariant property, which can match motion data of the same ac-
tivity at different time-scales. Here we validate the time-invariant
property by experiment. We randomly cut out 8 data segments for
each activity in Dataset[#1] with incremental time duration (5s,
10s, 15s,..., 40s), and extract the Level 1 and Level 2 descriptors
of each segment. Similarities are calculated among different activ-
ities’ descriptors, and also among descriptors of the same activity
with different time duration. Fig.9 shows all similarities, with all
11 activities lined up along both axes and each activity has 8 strips

for 8 segments of different duration, forming a 88 × 88 grid. The
color of each cell of the grid indicates the similarity between cor-
responding segments. The darker color implies higher similarity,
while the lighter color implies lower similarity

As depicted in Fig.9(a), since segments of the same activity are
grouped adjacently along both axes, the dark 8 × 8 blocks along
the diagonal line confirm that descriptors of the same activity are
highly similar to each other, even though they are representing data
at different time-scales, i.e. our descriptor is time-invariant. Be-
sides, the bright (low similarity) non-diagonal cells show that our
descriptors are sufficient to distinguish different activities.

Activities at multiple resolutions. Furthermore, Fig.9(b) illus-
trates the similarities measured with only Level 2 descriptors (not
the 2-level hierarchical descriptors, but the descriptors extracted
only from the second level of CRBM model). We notice that, the
overall color discrimination is not as clear as Fig.9(a) (using Level
1 descriptors). This fact is caused by the hierarchical semanteme
of human activities and our descriptor. The Level 2 descriptor cap-
tures much coarser semantic features of motion than the Level 1 de-
scriptor. And at this resolution, the coarse feature is not sufficient
to distinguish semblable activities like walking, running, walking
upstairs and walking downstairs. But it better distinguishes the 1st
activity (brushing teeth, the light blue one) and 10th activity (typ-
ing, the light yellow one) from all other activities, since they are
hand movements and others are more like body movements.

Descriptor with different sensors. Comparing the subfigures
of Fig.9(a) and Fig.9(b), we find that descriptors extracted from ac-
celerometer and gyroscope contribute different in activities recog-
nition at different semantic level. At a higher level, the data of
gyroscope shows better discrimination, so a descriptor compound-
ing information from multiple sensors can significantly enhance the
classification accuracy, as shown in Fig.8 and Table 2.

5.5 Semantic Analysis and SBAS
Fig.6(a) and Fig.6(b) have demonstrated that semantic analysis

can be achieved by taking snapshots of motion data streams. In this
part, we will further measure the performance of semantic analy-
sis and semantic based activity search (SBAS) in both controlled
and uncontrolled environments. In the experiments, we use 2-level
descriptors of compound data from both accelerometer and gyro-
scope.

Semantic Analysis. Note that, in semantic analysis we have
unitary snapshot (capturing a single activity) and mixed snapshot
(capturing mixed activities). The raw data in the uncontrolled en-
vironment contains mixed activities naturally. For the controlled
environment, we randomly select segments from 11 different activ-
ities and manually splice them to get a 2 hour mixed motion data.
Therefore, snapshots are captured respectively on the uncontrolled
data and spliced controlled data, and then clustered using the den-
sity based DBSCAN algorithm. We propose a metric named ag-
gregative degree to evaluate the performance of the semantic anal-
ysis, which is defined as for a certain activity, the proportion of the
unitary snapshots that are clustered into a same class.

The measurement results are depicted in Fig.10(a). For con-
trolled data, the minimal aggregative degree of all the activities is
over 0.8, which means for each activity, over 80% unitary snap-
shots are mapped into a same cluster. For uncontrolled data, we
have a decreased aggregative degree for each activity. The rea-
son is two-fold: (1) the activities in uncontrolled environment are
much more complex, which results in ambiguous clustering; (2)
mislabeling of the motion data in uncontrolled environment may
cause inaccurate ground truth. But for most of the activities, the
aggregative degrees still stay around 0.7.
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Figure 9: Similarities Between Different Activities with Different Time Duration
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Figure 10: Semantic Analysis and Search Accuracy.

SBAS. Then we perform SBAS based on the result of seman-
tic analysis. During the progressive search procedure, a distance
threshold is used to filter out the "distant" representative descrip-
tors and the "distant" snapshots. We employ two metrics precision
and recall to evaluation the data retrieval performance of SBAS.
Taking the activity label as a groundtruth, precision is the fraction
of the retrieved data pieces that are correct, while recall is the frac-
tion of the correct data pieces that are successfully retrieved. Both
factions are measured by time duration, and the larger the better.

First, we evaluate SBAS over spliced controlled data. As shown
in Fig.10(b), a larger distance threshold yields higher recall and
lower precision. So a proper threshold should be chosen to balance
recall and precision. For the controlled data, a 0.8 recall (80% of
the correct data pieces are successfully retrieved) and a 0.9 preci-
sion (90% of the retrieved data pieces are correct) can be achieved
when the threshold is set to 0.3. When the threshold is tuned to
0.4, we can almost retrieve all correct results, while the precision
is still above 0.7. Fig.10(c) shows the performance of SBAS for
uncontrolled data. When we set the threshold to 0.5, we get a 0.78
recall and 0.8 precision. In the uncontrolled environment, due to
the complex human motion and mislabeling, it is hard to retrieve
all correct data even with a large distance threshold.

Then, we make an attempt to search mixed activity, for example
brush-comb (brushing teeth and combing hair), type-drink (typing
and drinking water), etc. The search is conducted on the controlled
data and the result is presented in Fig.10(d). We find that when the

threshold is 0.25, the recall is around 0.6 and the precision falls
below 0.6. Comparing with Fig.10(b), we notice a sharp decline
of the precision as the threshold increase, i.e., many incorrect data
pieces are retrieved. The reason could be that the mixed activity
contains features of multiple activities and is located between ac-
tivities in the descriptor space (Figure.6(b)). So its component ac-
tivities can be easily taken as the correct results. We will further
explore mixed activities in our future work.

Table 5: Time Overhead
Data Size 1 min 10 min 1 h 1 d 10 d

Indexing Time (s) 0.001 0.02 0.55 7.89 71.63
Search Time (s) 0.0008 0.002 0.052 0.28 8.83

At last, we discuss the practicability of Lasagna including en-
ergy consumption, efficiency and scalability.

Energy Consumption. According to our evaluation, keeping
running data collecting application at backstage only leads to about
10% additional power consumption, which is affordable for most
COTS mobile devices. Moreover, since it is more energy efficient
to launch a system service than an application, this part of con-
sumption could be further reduced if data collecting service can be
attached in the smart watch operating system.

Efficiency and Scalability. We consider the procedures in per-
forming SBAS, including feature extraction, index setup and se-
mantic search. First, for each input data matrix, feature extrac-



tion consists of data inference and quantification. As we can see
in Eq.1 and Eq.3, both parts are linearly correlated with the length
of the input data matrix. Then for the index setup, the server per-
forms a density-based clustering algorithm over the feature vectors.
In the end, the server performs a search on the index and returns
the result. For a querier, it brings negligible overhead to perform
feature extraction over the query data matrix. For the server, as
shown in Table 5, it takes 7.89 seconds to index one-day sensing
data, and for each search query, it takes only 0.28 seconds. For
ten-day data, the index and query time are 71.63 seconds and 8.83
seconds respectively. Considering the evaluation is performed on
a PC, the runtime can be greatly reduced using a much powerful
sever. Moreover, there is a plenty of work devoted to improving
the performance of data indexing and retrieving based on feature
vector. For boosting each process, our system is compatible with
most of the vector based indexing and search strategies.

6. RELATED WORK
To the best of our knowledge, there are few approaches address-

ing the problem of semantic based activity search over unlabeled
motion data. Lasagna is related to existing work is in the follow-
ing areas.

6.1 Recognition on Mobile Sensing Data
The recognition strategies on mobile sensing data can be divided

into two categories.
(1) Physical Model Based Methods: Those methods construct a

physical model of an event, and then explore the correlation be-
tween the physical model and patterns of mobile sensing data. For
example, Fang-jing et al. design cyber-physical handshake [46],
which allows two users to naturally exchange personal information
with each other after detecting and authenticating the handshaking
patterns between them. Abhinav et al. tackle the problem of recog-
nizing smoking behavior using a wristband equipped with a 9-axis
inertial sensor [26]. Lan Zhang et al. integrate the temporal and
spatial constraints while walking and achieve meter-second-level
tracking with COTS smartphones [48]. Nirupam Roy et al. pro-
pose WalkCompass, a system that estimates the walking direction
by analyzing the relationship between human walking and its effect
on the phone [30]. Yanzhi Ren et al. propose a user verification
scheme leveraging gait patterns derived from acceleration readings
to mitigate against user spoofing attacks [29].

Moreover, leveraging the acoustic signal, Zheng Sun et al. ex-
ploit the relationship between the pointing gesture and the Doppler
effect, and propose Spartacus, which enables spatially-aware inter-
action for mobile devices [37]. Similarly, by waving a hand from
one device towards another, users can directly transfer files between
them using AirLink [3].

(2) Machine Learning Based Methods: Machine learning are
widely applied in achieving activity recognition and classification.
Frequently used classifiers can be divided into two categories, su-
pervised classifiers (e.g. KNN, SVM, Decision Tree, etc.) and un-
supervised ones (e.g. K-Means, Markov Model, etc.). Generally
speaking, supervised strategies can provide better accuracy while
unsupervised strategies are more computationally efficient and do
not require labeled data.

Based on the user-annotated acceleration data, Ling Bao et al.
from MIT Media lab propose to extract a set of frequency domain
features for 20 daily activities, and the trained decision tree classi-
fiers provide an overall accuracy of 84% [2]. Kwapisz et al. use
phone-based accelerometers and collect labeled data of 6 activities
from 29 users. The classification accuracy ranges from 77.6% to
96.9% [13]. Anjum et al. collect the readings of accelerometer

and gyroscope and perform classification over 9 activities using 4
different classifiers. The average accuracy ranges from 73.8% to
95% [1]. Through supervised training, Heng-Tze Cheng builds a
semantic attribute structure. The experimental results show that the
proposed approach achieves 70-80% precision and recall in recog-
nizing unseen new activities [4]. Shoaib et al. extensively evalu-
ate the activity recognition performance with four motion sensors
and four feature sets. Seven physical activities are targeted and the
adopted supervised classifiers include SVM, KNN, Decision tree,
and so on [33].

On the other hand, there are also unsupervised strategies de-
voted to address the problem of activity recognition. Yongjin Kwon
et al. adopt a set of time-frequency domain features. The un-
supervised strategies (e.g. mixture of Gaussian, DBSCAN etc.)
can achieve around 90% accuracy when the number of activities
is unknown [14]. Tâm Huynh et al. propose to recognize daily
routines as a probabilistic combination of activity patterns. The
mean recognition precision of the unsupervised strategy is around
77% [10]. Peng Wang et al. propose pattern-based Hidden Markov
Model (pHMM) that can learns the patterns and the model simul-
taneously from the time series data [42]. Yasuko Matsubara et al.
present AutoPlait, which can automatically identify all distinct pat-
terns in a time-series using Hidden Markov Model(HMM), and
spot the time-position of each variation [23]. Besides traditional
recognition/classification tasks, machine learning based methods
can also be used for device unlocking [6, 9, 20, 38], invalid user
detection [7,32,50], keystroke eavesdropping [41], keyword recog-
nition with inertial sensor [49], speech recognition [21, 24, 25, 47],
GPA forecasting [43], non-infrastructure localization [39], and so
on.

All the existing work have made great use of the mobile sensing
data. However, the physical model is only applicable to one or a
few predefined specific activities. Supervised classifiers need addi-
tional labeled data for supervised training. Existing unsupervised
strategies can only deal with the activity that is seen in the training
data. The rich dynamics and the wide-spectrum of human activities
make it quite laboursome to explore different activities one after an-
other. And it is also inefficient to apply all recognition models on
a piece of unknown data. Besides, those methods only focus on a
specific granularity of an activity, neglecting the hierarchical nature
of human activity.

Different from existing work, we propose a universal hierarchi-
cal descriptor for arbitrary activities without requiring prior knowl-
edge. Based on this descriptor, we design an innovative system
supporting managing and semantic search on a rich set of motion
data.

6.2 Deep Learning Based Recognition
Recent years, many efforts have been devoted to training deep

models for recognition tasks, and most of them focus on image and
video understanding.

Facenet [31] learns a model that can embed a face image into the
Euclidean space. Similarity between two faces can be measured
without external classifiers. DeepID [34–36] is a series of work
focusing on face recognition. By analyzing face images at multiple
resolutions and increasing the depth of the network, the recognition
accuracy reaches up to 99 percent. Besides, using the semantic
and temporal constraints between video frames, [28] [44] study the
embedding of unlabeled video frames. Text descriptors for images
can also be automatic generated with deep learning [12] [40].

As data streams from multiple heterogeneous sensors, mobile
sensing data possess quite different properties from image data.
And the richness, dynamic and diversity of human activities in-



crease the challenge of understanding arbitrary motion data. There
is a few work dealing with mobile sensing data recognition us-
ing deep learning. DeepEar [16] uses labeled acoustic dataset to
train a deep neural network to perform ambient scene classification,
stress detection, emotion recognition and speaker identification,
etc. Wenchao trains a convolution neural network to get the proba-
bility distribution of different activities, and an additional group of
SVMs are trained to determine the final activity classification [11].
Those two methods achieve good recognition and classification ac-
curacy. However, they rely on the supervised training with a large
set of labeled data and also they neglect the hierarchical property
of the data.

7. DISCUSSION

7.1 Promising Applications
Lasagna enables hierarchical understanding and efficient man-

agement over mobile sensing data, which could bring a lot of promis-
ing applications in the future. For individual, an diary-like record
of daily activities can be generated automatically. Rich statistics
can be provided by the automatic recording, which can help people
have better understanding of their daily lives, or inform them when
abnormal activities or bad habits are detected. In such a way, better
time and health management can be achieved. For mobile service
providers, through a deep and long term understanding of human
activities, Lasagna can help them improve the behavior targeting
advertising since users’ real-time behaviors are available. Also,
mobile products design can be improved with the real-time and
statistical data. More importantly, our system provides SBAS in
massive mobile sensing data, which could bring a whole set of new
ways to explore and make use of mobile sensing data. For exam-
ple, government and organizations can use SBAS to study the res-
idents’ health condition, the correlation between common diseases
and people’s exercise habits, etc. Besides, Lasagna can facilitate
the context-aware computing functionalities. For example, operat-
ing system can automatically adjust the system setting to conduct
context-aware energy saving.

7.2 Open Issues
In this work, we propose and implement a proof-of-concept sys-

tem, which provides semantic based activity search on mobile sens-
ing data. But there are still a few steps to take before SBAS is ready
for practical use by massive users. First, issues in traditional text
based search engine also need to be addressed for SBAS. For ex-
ample, at the server side, efficient activity segmentation and index-
ing need to be carefully designed. Compared to text processing,
performing reasonable segmentation over continuous motion data
without activity vocabulary and then construct efficient index are
even more challenging. Second, SBAS should be able to support
more complex queries. Lasagna works well in searching with sin-
gle "keyword" (i.e. activity), while designing strategies that can ac-
cept queries like multiple keywords or regular expressions is chal-
lenging and necessary. Moreover, since people may also need to
perform semantic activity search by text or pictures, how to as-
sociate text (or picture) semanteme with motion data to support
cross-modality search also need careful design. At last, a compre-
hensive understanding of mobile sensing data and the search func-
tion may lead to privacy concerns. The service providers may be
curious about user privacy and there could even be malicious at-
tackers. New privacy protection mechanism is required when the
mobile sensing data is better understood and searched.

8. CONCLUSION
In this work, we address the issue of deep understanding and se-

mantic search of arbitrary mobile sensing data. We extract common
bases of motion sensing data leveraging unsupervised deep learn-
ing. To discover the hierarchical nature of human activities, we
propose a universal multi-resolution embedding for all activities
requiring no pre-knowledge. Based on the embedding, we design
an innovative system Lasagna to manage and search motion data
semantically. We implement a prototype system and the compre-
hensive evaluations show that the prototype can achieve highly ac-
curate activity classification (precision is 98.9%) and search (recall
is almost 100% and precision is about 90%) over diverse activities.

Lasagna is a first step towards mobile sensing data search en-
gine. It opens up new possibilities to many promising applications
and benefits the development of mobile industry and other research
and commercial fields. Meanwhile, many open issues are raised
and to be solved in the future work.
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