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ABSTRACT
Pioneer approaches for WiFi-based sensing usually employ
learning-based techniques to seek appropriate statistical fea-
tures, but do not support precise tracking without prior
training. Thus to advance passive sensing, the ability to
track fine-grained human mobility information acts as a key
enabler. In this paper, we proposed Widar , a WiFi-based
tracking system that simultaneously estimates human’s mov-
ing velocity (both speed and direction) and locations at
decimeter level. Instead of applying statistical learning tech-
niques, Widar builds a theoretical model that geometrically
quantifies the relationships between CSI dynamics and us-
er’s location and velocity. On this basis, we propose novel
techniques to identify PLCR components related to human
movements from noisy CSIs and then derive a user’s loca-
tions in addition to velocities. We implement Widar on
commercial WiFi devices and validate its performance in
real environments. Our results show that Widar achieves
decimeter-level accuracy, with a median location error of
24cm given initial positions and 36cm without them and a
mean relative velocity error of 11%.

1. INTRODUCTION
Location awareness is a key enabler for a wide range of ap-

plications such as smart homes, elderly care, security moni-
toring, and asset management. Traditional approaches track
a user in an active manner via devices such as smartphones
or wearable sensors attached to users [6]. These approaches,
however, pose inconvenience since users need to wear or take
specific devices and thus are inapplicable in some scenarios
such as security surveillance. Other approaches work pas-
sively with infrastructure installed in the area of interests,
such as cameras and wireless sensor networks (WSNs) [11].
Among them, camera based approaches only provide di-
rectional coverage with Line-Of-Sight (LOS) condition and
breach user privacy significantly. WSN-based approaches
require densely deployed nodes.

Recent innovations in wireless communications shed light
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on passive human sensing with WiFi signals. Various ap-
proaches such as WiVi [3], E-eyes [10], CARM [9] have been
proposed for human detection, activity classification, ges-
ture recognition, etc. In principle, these works exploit the
phenomenon that human motions distort the multipath pro-
files during signal propagation. These RF based approach-
es are more attractive than previous solutions since they do
not require any user-carried devices, render omni-directional
coverage even in Non-Line-Of-Sight (NLOS) scenarios, and
preserve user privacy gracefully.

Existing works, however, cannot track fine-grained human
mobility information (including speed, direction, location).
Most of them employ learning techniques for gesture and ac-
tivity recognition by seeking appropriate statistical features
of WiFi signals [10, 9]. The key limitations are that they
only recognize pre-defined gestures and activities and usual-
ly require prior training. User locations are thus sometimes
identified from recognized specific activities that are highly
location-dependent rather than vice versa [10]. Similarly, a
user’s moving velocity can only be derived from successive
locations rather than vice versa. These drawbacks heavi-
ly confine the applications of passive sensing. To promote
WiFi-based human sensing, the ability to track fine-grained
mobility information directly from RF signals acts as a fun-
damental primitive.

In this paper, we proposed Widar , a WiFi-based track-
ing system that simultaneously estimates human’s moving
velocity and locations at decimeter level. Specifically, we at-
tempt to not only track fine-grained continuous locations but
also measure the instantaneous velocity (both speed and di-
rection). Instead of applying statistical learning techniques,
Widar achieves these goals by deriving velocities and loca-
tions both directly from the Channel State Information (C-
SI) [4]. Our key observation is that human at different loca-
tions with different velocities both induce different changes
in signal propagation paths. Thus we build a CSI-mobility
model that captures the geometrical constraints between the
signal propagation path length change rates (PLCRs) and
human’s location and velocity. On this basis, we propose
techniques to extract PLCRs related to human movements
from noisy CSIs and then derive user’s location in addition
to velocity. By doing this, we enable, for the first time, pre-
cise passive tracking of a user’s location and moving velocity
using cheap and imperfect COTS WiFi devices.

Widar advances the state-of-the-art on WiFi-based sens-
ing from two fronts. First, Widar models the relationship
between CSI and human mobility from a geometrical per-
spective, which brings more favorable features than previous
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Figure 1: Extraction of PLCRs

learning based techniques. Such a model helps understand
the effects of human mobility on CSI changes. Moreover, our
model does not require prior training. Second, Widar pro-
vides accurate estimation of human moving velocity, which
is beyond the achievements of existing approaches. Moving
velocity, as an additional dimension of mobility, stimulates
a wide variety of novel applications. For example, veloci-
ty analysis provides valuable information for indoor fitness,
sport training and entertainment interaction.

We implement Widar on COTS WiFi devices and conduct
extensive experiments in real world. Experimental results
demonstrate that Widar yields decimeter-level tracking with
a respective median location error of 24cm and 36cm with
and without initial positions and a mean relative velocity
error of 11%.

Our core contributions are as follows: First, we build a
geometrical model that captures the relationships of CSI
dynamics and human mobility, which underpins the feasi-
bility of human sensing via a non-learning way. Second,
we design a system that simultaneously tracks human loca-
tion and moving velocity (both speed and direction). We
envision this leading-edge capability as a key enabler for fu-
ture motion recognition applications. Third, we preliminar-
ily implement Widar and validate its performance on COTS
hardware. Experimental results show that Widar achieves
a decimeter-level accuracy in continuous location tracking.

2. UNDERSTANDING CSI-PLCR MODEL

2.1 From CSI to PLCR
Wireless signals are subjected to distortions caused by

physical interactions, such as reflections and diffractions, be-
tween the signals and surrounding objects. Previous works
have built a model that formally relates CSI dynamics to
multipath changes and explained principles of exploiting CSI
dynamics for human activity detection [9]. Specifically, the
Channel State Information portrayed by off-the-shelf WiFi
NICs can be represented in terms of PLCR components [4]:

H(f, t) = (Hs(f) +
∑
k∈Pd

αk(t)e−j
2π
λ

∫ t
−∞ rk(u)du)ejφf,t . (1)

where Pd is the set of dynamic paths, and Hs is the sum
of CSIs for static paths. αk and rk are the complex at-
tenuation factor and path length change rate (PLCR) for
the k-th path respectively. And φf,t is unknown phase shift
caused by carrier frequency and timing offset. To eliminate
unknown phase offsets, CSI power |H(f, t)|2 that contains
sinusoids with instantaneous frequency described by PLCR
is calculated.
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Figure 2: Typical motion traces and PLCRs.

Note that CSI power contains all frequency shifts induced
by motions of different body parts, internal noises caused by
hardware imperfection, and static interferences caused by
LOS transmission and static reflectors (e.g. walls). Com-
paring to frequency shifts caused by human movement, the
frequency of impulses and burst noises is generally high-
er, and the frequency of interference caused by static and
quasi-static reflectors and the LOS signal is generally low-
er. Thus, to remove all irrelevant interferences and noises,
we first apply a passband filter (e.g. Butterworth filter) to
CSI power to eliminate burst noises and interferences that
are out of band of interest. Next, we perform PCA analy-
sis on subcarriers of CSI and calculate the first PCA com-
ponent, in purpose of extracting representative signals for
target motion, as well as reducing the dimensionality of the
CSI measurements. Finally, we apply Short-Term Fourier
Transform (STFT) to the first PCA component to calculate
the spectrogram that describes power distribution of PLCR
(Figure 1a), and obtain the globally optimal PLCR series
that contain maximum power in the spectrum of interest
(Figure 1b).

2.2 Limitations In Tracking
The CSI-PLCR model is helpful for activity recognition

when approximating human velocity as a fixed function of
PLCR, which is, however, insufficient for tracking. To in-
versely use PLCR exposed by CSI for tracking, two types of
ambiguities have to be solved.

From PLCR to target velocity. While PLCR to some
extent exposes the moving velocity, it actually depends on
both velocity and location of target reflector. As depicted in
Figure 2a, target P1 is on the perpendicular bisector of the
link; P2 is parallel with the link; P3 is on an ellipse whose fo-
cuses are the transmitter and receiver. Suppose an identical
constant velocity and the same length of each trace, we plot
their respective PLCRs in Figure 2b, which turn out to be
different from each other. Thus, while PLCR provides some
clues of human motion, it can not immediately characterize
the moving status. An advanced model that outputs human
mobility information from PLCRs is needed for tracking.

Loss of the sign. While CSI power excludes unknown
phase offsets, it also loses the sign of PLCR. As the sign
of PLCR indicates whether the reflector moves towards or
away from the link, without the sign, we are not able to
obtain the moving direction or track the locations.

3. MODELING OF CSI-MOBILITY
In this section, we attempt to build a model to relate

PLCR to human moving velocity together with location di-
rectly. We achieve this by considering the geometrical con-
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Figure 3: Relation between target velocity and PLCR: (a)one link, (b)two links, (c)three links; and
(d)consecutiveness of target movements.

straints of reflection paths and human movements. As shown
in Figure 3a, taking the transmitter and receiver as ellipse
focuses, the length of reflecting path decides which ellipse
the target is on. The target velocity ~v can be orthogonally
decomposed as radial velocity ~vr and tangential velocity ~vt.
Only radial velocity ~vr changes the reflecting path length.

Given the position of the transmitter and the receiver of

the i-th link as ~l
(i)
t = (x

(i)
t , y

(i)
t )T , ~l

(i)
r = (x

(i)
r , y

(i)
r )T , the

current target position as ~lh = (xh, yh)T , the target velocity

as ~v = (vx, vy)T , PLCR as r(i), and the sign of PLCR as

s(i), the relation between PLCR and target velocity can be
algebraically described as follows:

a(i)x vx + a(i)y vy = s(i)|r(i)|, (2)

where

a(i)x =
xh − x(i)t
||~lh −~l(i)t ||

+
xh − x(i)r
||~lh −~l(i)r ||

,

a(i)y =
yh − y(i)t
||~lh −~l(i)t ||

+
yh − y(i)r
||~lh −~l(i)r ||

.

(3)

Note that single link is insufficient for velocity estimation,
due to loss of tangential velocity ~vt. Fortunately, with more
links, we are able to solve the ambiguity and derive the
true velocity. By add one or two extra links, the number
of velocity candidates reduces to four and two respectively,
as shown in Figure 3b and 3c. Theoretically, aggregating
relation of all L links at time k, we have:

A~v = R~s, (4)

where

A =

(
a
(1)
x a

(2)
x · · · a

(L)
x

a
(1)
y a

(2)
y · · · a

(L)
y

)T
,

R = diag
(
|r(1)| |r(2)| · · · |r(L)|

)
,

~s =
(
s(1) s(2) · · · s(L)

)T
.

With the knowledge of signs of PLCR, the optimal solution
for ~v becomes:

~vopt = (ATA)−1ATR~s. (5)

However, since each link is associated with an unknown
sign of PLCR, there are always more variables than equa-
tions, no matter how many links are added. To resolve ambi-
guity of direction, we resort to introduce constraints based
on the observation of consecutiveness of the target move-
ments in real world. Specifically, while human is moving,

the directions of consecutive velocities, within a certain s-
mall time slot, are likely to be similar, due to the nature lim-
itations on people’s moving accelerations and high sampling
rate supported by commercial devices. Figure 3d illustra-
tively demonstrates the effect of the constraint. Suppose the
last measurement of target velocity is ~vk−1. At time k, for
the two symmetric velocity candidates, ~vk and ~v′k with the
smallest fitting error, ~vk holds a significantly higher proba-
bility to be the current velocity since it is almost in the same
direction as preceded ~vk−1.

Based on such constraints, the optimal solution for ~sk can
be obtained by minimizing following error function:

~sk,opt = argmin
~sk∈{−1,1}N

(errl,k + β · errv,k),

errl,k = ||Ak~vk,opt −Rk~sk||,
errv,k = ||Ak~vk,opt −Ak−1~vk−1,opt||,

(6)

where errl,k is the mean square error that quantifies incon-
sistency between PLCR and solved velocity. errv,k is the
velocity deviation error that quantifies the deviation of cur-
rent velocity against to last velocity estimation. β is the
weight factor to prevent excessive impact of the error term
errv. The rationality lies in that the optimization procedure
determines two best fitted candidates mostly based on the
mean square error while applies the second velocity devia-
tion error term to exclude one of them. While there are in
total 2L candidates for initial directions at the start point,
the trace converges to 2 solutions after several steps of track-
ing in Equation 6. Thus, to decide the initial direction at
the start point, we set ~v0 as a small uncertainty that takes
values in a pair of symmetric vectors.

Upon obtaining current velocity ~vk,opt, the target location
can be updated as:

~lk+1 = ~lk + ~vk,opt ·∆t, (7)

where ∆t is the interval between two consecutive measure-
ments. And the target velocity thereafter can be successively
estimated in the same way.

4. TRACKING VELOCITY & LOCATION
To fully track human location in addition to the velocity,

Widar has to opportunistically pinpoint human in order to
provide initial target location and avoid accumulative track-
ing errors. Lacking external information for references, we
propose a pseudo self-calibration scheme for such purpose.

Trace Refinement. Opportunistic location hints are
generally necessary for calibration in a tracking system to
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Figure 5: Examples of tracking results

avoid accumulative errors. Since we do not have extra in-
formation to serve as precise initial locations and for cali-
bration, we employ a pseudo-calibration approach based on
trace segmentation to refine the tracking results and guar-
antee the accuracy. As Widar may misjudge the velocity di-
rection in some cases especially when the user takes a sharp
turning or walks very slowly, we segment the trace at these
vulnerable moments and re-initialize the tracking process for
each new segment, in order to avoid error accumulation.

For each individual segment, Widar explores all poten-
tial candidates of the trace and accounts for extensive con-
straints to sift out the invalid ones. These constraints in-
clude the relation between link-reflector distance and CSI
power variance, the limitation of normal walking speed and
normal turning angular, and the link coverage.

Initial location estimation. Widar tracks human move-
ments via velocity, rather than direct location estimation.
Consequently, an initial location is needed. Due to limi-
tations of transmission bandwidth, number of antennas and
hardware imperfections, however, present COTS WiFi NICs
are not suitable for non-learning model-based localization [5,
2, 1]. To complement the tracking process while avoiding
learning and training, Widar iteratively search through the
whole tracking area to identify a location that yields the
least fitting error of the trace as the initial location.

The search-based method works effectively in our settings
and requires no extra information hints. Yet some inherent
disadvantages do exist, such as complex computation, over
fitting problem and potential location errors. Non-learning
localization techniques should be proposed and incorporat-
ed, which we leave as future works.

5. FEASIBILITY RESULTS
Experiment Setup. We implement Widar using three

off-the-shelf mini-desktops equipped with Intel 5300 NIC.
One mini-desktop with one external antenna works as the
transmitter, while the other two mini-desktops, each with
three external antennas, work as receivers. To obtain CSI
measurements from WiFi data frames, all mini-desktops are
installed with Linux 802.11n CSI Tool [4] and set up to injec-
t in monitor mode on Channel 161 at 5.825GHz. A trans-
mission rate of 2000Hz is adopted. Different deployment
schemes are designed for Widar , for all of which both trans-
mitter and receivers are deployed almost along the same side
or in a corner of the tracking area to avoid severe shadowing
effect caused by LOS obstruction. The effective area of ex-
periment is 4m×4m. We design traces with various lengths,
directions and shapes (such as line, curve, rectangular, cir-
cle and fold line, etc.), and collect a total of 580 traces from
5 volunteers. The volunteers include 4 males and 1 female,
with heights in the range of 1.6m to 1.8m, and ages in the

range of 20 to 35. The ground truth locations and velocities
of human trajectories are obtained via visual methods.

Performance in Velocity Tracking We first report
performance of Widar on tracking target velocity, in terms
of both speed and direction. For speed, we compare Widar
with a näıve method: Max PLCR, which converts half of the
largest PLCR among all links as target speed. In addition,
we show the estimation errors when only one link is avail-
able (denoted as Single PLCR). Figure 4a plots the relative
speed errors of three methods over all trajectories. As seen,
Widar achieves the highest accuracy with a median error of
11%, while those of Max PLCR and Single PLCR are 17%
and 34% respectively. The favorable performance of Max
PLCR attributes to the deployment of links, where links are
deployed in two orthogonal directions in the experiment.

While both Widar and Max PLCR report highly accurate
velocity amplitude, Widar further provides velocity direc-
tion, which is necessary for tracking. As shown in Figure 4b,
the deviation of more than 80% direction measurements are
within 20◦, which is sufficient for human tracking.

Performance in Location Tracking Figure 4c shows
the tracking errors across all trajectories. As illustrated,
with knowledge of accurate initial location, Widar achieves
high tracking accuracy with a median tracking error of 24cm.
Without initial location, the performance slightly degrades
yet the median tracking error is still as low as 36cm, guar-
anteeing decimeter-level accuracy. Integrated with velocity
tracking, Figure 5 shows illustrative tracking results.

6. RELATED WORK
RF-based Active Tracking. Active motion tracking,

which essentially localizes radio devices attached on object-
s, has been studied in depth. Various signal features, from
RSSI [15] to CSI [7], have been exploited as location fin-
gerprints. Another mainstream of active motion tracking
systems are built upon phased antenna array [6]. However,
these tracking schemes requires dedicated radio devices that
expose accurate phase information of antenna array, which
is unavailable in COTS WiFi devices due to unknown carrier
frequency offset [9].

RF-based Passive Motion Tracking. Passive motion
tracking exploits signals reflected off objects to recognize and
localize objects using specialized wireless devices. Isolating
certain reflections can be done in either time domain using
pulse radar or frequency domain using FMCW radar [2, 1].
WiVi [3] proposes a MIMO interference nulling algorithm to
focus the receiver on moving targets. In contrast, however,
isolating certain reflections can not be processed on COT-
S WiFi devices due to limited bandwidth, constant carrier
frequency and asynchronization between transmitter and re-
ceiver.



As RF techniques such as RFID and mmWave provide ac-
curate signal phase information, processing signals in phase
domain enables tracking with sub-wavelength accuracy [12,
14]. WiDeo [5] jointly estimates ToF and AoA to identify
all reflectors and extract moving ones by comparing succes-
sive estimation. WiDraw [8] tracks in-air hand motion by
computing AoA of blocked incident signals. Similarly, phase
information used in these tracking systems is unavailable in
COTS WiFi devices. Radio Tomography Imaging [11] de-
ploys a mesh of sensors to enclose sensing area and locate
persons by identifying shadowed area with weak RSS or high
variation. In contrast, Widar leverages reflection instead of
shadow effect, and thus requires fewer sensors while achieves
finer tracking resolution.

WiFi-based Gesture and Activity Recognition. WiFi-
based activity recognition attracts considerable research in-
terests recently [10, 9]. These works mainly target at gesture
or activity recognition instead of location tracking, let alone
speed estimation. As such, most of them employ learning-
based solutions for recognition. Our CSI-Mobility model is
inspired by CARM [9], yet Widar reveals the relationships of
CSI dynamics and real human moving velocity and enables
simultaneous estimation of human velocities and locations.

7. CONCLUSION AND FUTURE WORK
In this paper, we propose a WiFi-based passive tracking

system Widar that simultaneously estimates human’s loca-
tion and velocity at decimeter level. We build a model that
geometrically quantifies the relationships between CSI dy-
namics and human mobility. And several novel techniques
are proposed to translate this model into a fine-grained track-
ing system. Widar advances the state-of-the-art on WiFi-
based sensing from two fronts, theoretical model and non-
learning characteristics.

We also recognize the limitations of this preliminary study
and plan to work on the following parts:

Model-based contactless localization. Despite the
pseudo self-calibration algorithm in Widar , accumulative er-
rors still may increase over long traces. Thus, location hints
obtained by certain passive localization technique, even not
accurate enough, benefit initialization and re-calibration for
tracking. Non-learning contactless localization may be real-
ized with wider bandwidth, larger number of antennas and
purer phase information. Given that splicing multiple CSI
channel together to provide wider bandwidth is shown to
benefit active localization [13], extending related techniques
to enable contactless localization on COTS devices is part
of our future work.

Deployment of WiFi links. Widar exploits reflections
and diffractions of signals for the tracking model and omits
the shadow effects due to blockage of LOS, which, however,
may also cause significant CSI variations. To steer by severe
shadowing effects, we deploy WiFi links along walls or other
obstructions such that human does not traverse through the
LOS paths in the tracking area. Nevertheless, shadowing ef-
fect has been well studied and utilized in Radio Tomography
Imaging [11], despite of a dense sensor networks required to
be deployed to enclose the monitor area. In the future, we
will try to unify the two tracking models to further release
the constraints on deployment of WiFi links.

Velocity-based motion recognition. Widar is capa-
ble of deriving precise moving velocity of human movements
(represented by human torso). We plan to extend the veloc-

ity estimation capability to other body parts in our future
works. By doing this, we are able to better understand user’s
physical motion and achieve finer-grained gesture and activ-
ity recognition, using velocity-based physical characteristics,
instead of previous statistical features.

Multiple human tracking. Recently, WiTrack2.0 [1]
enables multiple human localization by successive silhouette
cancellation using FMCW signals, which is not achieved in
its initial version WiTrack1.0 [2]. We also attempt to track
multiple people by iteratively cancelling the PLCR compo-
nents of each target. The results, however, are not satisfiable
since the movements of different people are similar and their
corresponding frequency components overlap a lot. Enabling
tracking of multiple targets remains an open and challenging
problem in the future.
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