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Abstract—As the core of present blockchain applications, 
smart contracts are designed to help multiple parties reach an 
agreement. Along with the promotion of smart contract 
applications, a large number of economic losses caused by 
attacks on smart contract vulnerabilities have emerged. Since 
most smart contracts only disclose bytecode, in recent years, 
there have been numerous researches on the vulnerability 
detection of smart contract bytecode, mainly for Ethereum 
smart contracts, achieving considerable results. My survey 
summarizes the methods and supported vulnerability types of 
these tools, aimed at Ethereum or EOSIO, over the years. The 
problems reflected in it shed light on the future work of smart 
contract bytecode vulnerability detection. 

Keywords—vulnerability detection, smart contracts, bytecode, 
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I. INTRODUCTION

Since Satoshi Nakamoto invented Bitcoin in 2008 [1], 
blockchain technology, one of the underlying technologies of 
Bitcoin, has received increasing attention. Today, the 
application range of blockchain has spread from digital 
currency to all aspects of life. Smart contracts, the core of 
these applications, are agreements written in computer code, 
allowing people to abide by the agreements without requiring 
trust. 

However, when writing smart contracts, developers may 
leave some vulnerabilities in the contracts due to the 
misunderstanding of the code language, the imperfect 
contract design, or the carelessness. These vulnerabilities are 
perceived and targeted by hackers, causing a lot of economic 
losses.  

Whether it is the most popular Ethereum launched in late 
2013 or the emerging EOSIO appeared in 2018 [2], [3], 
smart contracts and decentralized applications are gradually 
gaining attention and promotion. There are currently many 
tools that use various methods to detect various 
vulnerabilities in smart contracts on different platforms. 

For developers, security analysis tools for high-level 
smart contract languages may be more in line with demand. 
However, for users who want to know whether the smart 
contracts they are using is secure, for the reason that these 
contracts are usually not open-source, users can only obtain 
the bytecodes of these contracts, so it is more realistic for 
users to make use of security analysis tools for smart contract 
bytecode. Therefore, in order to help developers and users 
analyze the security of smart contracts, some tools for 
detecting the vulnerability of smart contract bytecodes have 

emerged. 

The methods of these tools are variable, and the types of 
vulnerabilities they supported are different. This survey will 
analyze and summarize these tools based on their methods 
and supported vulnerability types. Then based on the 
conclusions, the survey will propose some possible 
directions for future related work. Different from other 
surveys, this survey not only focuses on EVM bytecode 
contracts on the Ethereum platform, which most tools are 
aimed at, but also on web-assembly(WASM) contracts on 
the EOSIO platform. 

II. METHODS

This survey divides the methods used by the tools into 
three categories and briefly explains these methods.  

A. Code Translation
This kind of method translates the code into another form

which is easier to analyze. Code translation methods used by 
vulnerability detection tools include disassembly [4], [6], [9], 
[10], [12], [14], [18], [20], decompilation [6], etc. 

Disassembly is a method to translate bytecode into 
readable assembly language, using symbols and labels to 
represent operations and addresses. Decompilation is a 
method to translate bytecode into a higher-level language, 
trying to reconstruct the original source code. Disassembly 
and decompilation are two similar methods that improve the 
readability of the code. 

B. Static Analysis
Static analysis is a method that examining the code

without actually executing the program. This method will 
obtain the overall structure of the code and abstract the code 
information for inference. Most of the tools are based on 
static analysis. Static analysis methods used by vulnerability 
detection tools include control flow analysis [4], [9], [12], 
[14], [18], [20], pattern matching [6], [18], data flow analysis 
[6], symbolic execution [4], [9], [10], [12], [14], [20], etc. 

Control flow analysis is a method that uses a control flow 
graph (CFG) to represent paths traversed through a program 
during execution. In a CFG, the nodes represent the basic 
blocks of the program, and the edges represent the running 
order among blocks. A CFG will help tools confirm the 
control process of the program. 

Pattern matching is a method that searches some patterns 
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in a given sequence of instructions. It first defines some 
patterns that are secure or vulnerable and then checks the 
code to find whether there is a match. The main concern is 
how to define secure patterns and insecure patterns simply 
but precisely. 

Data flow analysis is a method of collecting information 
about the dependencies and the possible ranges of values at 
various points in a program. The points are usually 
determined with the aid of the control flow graph. The main 
concern is how to infer the information at each point 
efficiently. 

Symbolic execution is a method of executing a program 
at a symbolic level. It treats values as symbols and code 
instructions as symbolic equations, solving equations to 
reason about the logic of code execution.  Each symbolic 
path has some constraints, indicating the restriction of the 
symbolic inputs of this path. By adding additional specific 
constraints to the equation set, symbolic execution can 
determine whether a program may have a corresponding 
output. Most of the symbolic execution tools use Z3-Solver 
to help to solve the equation set. The main challenges of 
symbolic execution usually include three parts: path 
exploration, constraint resolution, and memory modeling. 

C. Dynamic Analysis
Dynamic analysis is a method that examining the code by

executing it on a real or virtual processor. Among the 
vulnerability detection tools, dynamic analysis methods are 
used far less frequently. Some vulnerability detection tools 
make use of dynamic analysis to validate the results of static 
analysis [12], [14], while others take advantage of fuzzing 
[16]. 

Fuzzing is used to generate unexpected or random inputs 
for the program and to monitor for exceptions. The first 
challenge of fuzzing is how to generate the inputs so that 
they are unexpected enough to find the vulnerabilities but at 
the same time reasonable enough so the vulnerabilities can 
be triggered in practice. The second challenge is how to 
define the conditions for whether a vulnerability is 
established. 

III. VULNERABILITY TYPES

In addition to general vulnerability types such as integer 
overflow, smart contracts also have unique vulnerability 
types due to the characteristics of the blockchain platform.  

A. General Vulnerability Types
1) Integer overflow (IO)
Usually, the integer type in smart contract language, e.g.,

uint256 in Solidity and i64 in web-assembly, has a limited 
range. If the value of an integer variable exceeds the range, 
the value will be adjusted into the range, thereby obtaining 
incorrect results. 

2) Permission verification missing (PVM)
Some key function calls and read/write operations need

to verify the user's permission. If there is a lack of 
permission verification, hackers will be able to perform 
unauthorized operations, which will cause losses. This kind 
of vulnerability can be further subdivided into unrestricted 
write, unrestricted transfer, unrestricted call, suicidal contract, 
etc. 

3) Exception handling error (EHE)
When a program receives illegal inputs, the program

needs to handle the exception. Specifically, when a contract 
calls an external function, the contract needs to check the 
return value to determine whether the call is successful. A 
specific example in Solidity contracts is unchecked and 
failed sendings: as the send instruction will not throw any 
exception or error message when the sending is failed, if 
there is no exception handling implemented in send method, 
there may be errors in the balance calculation. 

B. Unique vulnerabilities in Smart Contract
1) Transaction ordering dependency (TOD)
The transaction takes a certain time from initiation to

confirmation. If someone initiates a transaction to modify the 
contract during this period and the modified transaction is 
confirmed earlier, the transaction initiated earlier will be 
affected. This dependency on the order of transactions is a 
critical problem in practice, e.g. seller may change the price 
after buyer’s buying so that buyer will be forced to pay more 
without consent. 

2) Predictable random number (PRN)
The contract may use predictable seeds, such as block

timestamps and block numbers, to generate pseudo-random 
numbers. In gambling contracts, hackers may take advantage 
of this to increase their winning rate. In these types of 
vulnerabilities, most tools detect timestamp dependencies 
only. 

3) Reentrancy (RE)
In a Solidity contract, there is a function called the

fallback function that will be called when an account is sent 
a call method. If the callback function invokes a call method, 
this process may be repeated until the gas is exhausted. 

4) Frozen Tokens (FT)
Some contracts rely on external library contracts to

transfer tokens. If the external library contract is terminated 
or destructed, this contract cannot transfer tokens to other 
contracts, which means that the tokens are frozen in the 
contract and cannot be consumed. 

5) Fake EOS and fake notice (FF)
In a EOSIO contract, there must be an apply function as

a corresponding action handler. In addition, the eosio.token 
contract is a token standard contract in EOSIO, responsible 
for all token management in EOSIO. If user A wants to send 
tokens to B, A will push transfer action to eosio.token and 
then eosio.token will send a notice to B, triggering B’s apply 
function. Both fake EOS and fake notice involve this process. 
Regarding fake EOS, if the apply function doesn’t verify that 
the sender of notice is eosio.token, the contract may mistake 
false tokens for true tokens. About fake notice, if the apply 
function doesn’t verify that the receiver of the notice is the 
contract itself, the contract may mistake notices forwarded 
by other contracts as its own. 

IV. TOOLS

In recent years, many vulnerability detection tools have 
been developed for smart contract bytecode, of which most 
aim at Ethereum. Table I shows the methods and supported 
vulnerability types of these tools briefly. 
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TABLE I.  METHODS AND SUPPORTED VULNERABILITY TYPES OF TOOLS 

Tool 
Method Supported Vulnerability Type 

Disassembly CFG Pattern 
matching 

Symbolic 
execution 

Result 
validation Fuzzing IO PVM EHE TOD PRN RE FT FF 

Oyente √ √ √ √ √ √ √

Securify √ √ √ √ √ √

Mythril √ √ √ √ √ √ √ √ √ 

Manticore √ √ √ √ √ √

teEther √ √ √ √ √ 

MAIAN √ √ √ √ √ √

ContractFuzzer √ √ √ √ √ 

EVulHunter √ √ √ √

EOSafe √ √ √ √ √ √

A. Tools for Ethereum Contracts
1) Oyente
As a starting milestone in this field, Oyente is a static

analysis tool based on symbolic execution that can be run 
directly on EVM bytecode without accessing high-level 
languages such as Solidity [4], [5]. Oyente supports the 
detection of vulnerabilities such as TOD, the predictable 
random number (timestamp dependency), reentrancy, and 
exception handling error.  

Oyente has four modules: CFGBuilder, Explorer, 
CoreAnalysis, and Validator. CFGBuilder constructs a CFG 
of the contract; Explorer symbolically executes the contract; 
CoreAnalysis takes in the outputs of Explorer, locating the 
vulnerabilities; Validator uses Z3-Solver to filter out some 
false positives of TOD detection and reports the final result 
to users. 

Oyente covers most of the EVM opcodes, but due to the 
lack of context information such as variable types and the 
reuse of same bytecode by different function calls, it is 
difficult for Oyente to reconstruct the development intent 
only from the EVM bytecode, thus it cannot verify some 
issues on fairness and correctness such as integer overflow. 
Oyente simplifies the processing of loops by limiting the 
number of loops to prevent path explosions, which leads to 
the underreporting of some defects. 

2) Securify
Securify is a lightweight and scalable security verifier for

Ethereum smart contracts [6], [7]. As a static analysis tool 
based on symbolic abstraction and pattern matching, 
Securify defines compliance patterns and violation patterns 
for each security attribute, and then match the contract with 
these patterns to detect vulnerabilities. Securify supports 
detection of vulnerabilities such as frozen tokens, permission 
verification missing (unrestricted write and unrestricted 
transfer), TOD, argument validation missing, and exception 
handling error. 

Starting with the EVM bytecode of the contract, Securify 
decompiles the bytecode into a static-single assignment form 
(SSA). After symbolically encoding the dependence graph of 
the contracts in stratified Datalog, Securify uses ready-made 
Datalog solvers to analyze the Datalog code and get semantic 
facts of contract efficiently. The semantic facts include data 
flow dependency and control flow dependency. The 

compliance and violation patterns are also defined in a 
designated domain-specific language (DSL). The matching 
result of these patterns in the contract will reveal whether the 
contract is safe. 

Recently, Securify officially released version 2.0, which 
supports an updated version of the smart contract language 
and more detailed types of vulnerability detection [8]. For 
instance, Securify2 refines TOD into three vulnerabilities: 
TODAmount, TODReceiver, and TODTransfer. 

3) Mythril
Mythril is a security analysis tool for Ethereum contracts

based on symbolic execution and taint analysis [9]. After 
disassembling the EVM bytecode, Mythril initializes the 
state of the contract account and uses a couple of transactions 
to explore the state space of the contract. When an undesired 
state is discovered, Mythril uses Z3-Solver to prove or deny 
its reachability under certain assumptions. When a 
vulnerability state is discovered, Mythril will calculate the 
transactions required to reach that state to verify the 
existence of the vulnerability. 

Mythril supports the detection of vulnerabilities such as 
integer overflow, permission verification missing 
(unrestricted write, unrestricted jump, suicidal contract), 
exception handling error (unchecked call return value), 
reentrancy, predictable random number, frozen tokens, etc. 

4) Manticore
Manticore is a symbolic execution framework for the

analysis of Ethereum smart contracts as well as Linux ELF 
binaries [10], [11]. Based on EVM bytecode, Manticore can 
execute the contract with symbolic transactions where both 
value and data are symbolic and explore all possible states, 
generating corresponding concrete inputs for any program 
state with Z3-Solver. On this basis, Manticore can detect 
vulnerabilities in contracts. Through event callbacks and 
instruction hooking, Manticore can control the exploration of 
the state at a fine-grained level. In a default contract analysis, 
Manticore gets 66% code coverage on average. 

Manticore supports the detection of vulnerabilities such 
as integer overflow, reentrancy, permission verification 
missing (external call or ether leak, suicidal contract), 
exception handling error (unchecked call return value), etc. 

Manticore is currently under development and does not 
cover all opcodes. The official recommendation is to compile 
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the contract with Solidity version 0.4.x to ensure the validity 
of the tool analysis. 

5) teEther
teEther is an analysis tool for Ethereum EVM contracts

based on symbolic execution and result validation, focusing 
on detecting permission verification missing (unrestricted 
call) [12], [13]. The process of teEther analyzing contracts 
can be divided into five steps: The first step is to build a CFG 
for the contract; The second step is to scan the contract for 
important instructions, including critical instructions and 
state-changing instructions, e.g. DELEGATECALL, 
SELFDESTRUCT, SSTORE, etc.; The third step is to 
explore paths to these instructions; The fourth step is to 
generate a set of path constraints through symbolic execution; 
The last step is to solve the constraints of these paths to 
detect the vulnerabilities. To validate the detection results, 
teEther will test the contract on a private blockchain. 

6) MAIAN
MAIAN is an analysis tool for Ethereum EVM contracts

based on symbolic execution and result validation [14], [15]. 
It symbolic executes the contract with Z3-Solver, checking 
the paths of execution. To validate the detection results, 
MAIAN will test the contract on a private blockchain, 
attacking the contract with concrete transactions. 

MAIAN supports the detection of vulnerabilities 
including permission verification missing (unrestricted 
transfer and suicidal contract) and frozen tokens. 

7) ContractFuzzer
ContractFuzzer is a fuzzer to detect vulnerabilities in

Ethereum EVM contracts [16], [17]. In this work is proposed 
the first fuzzing framework and a set of new test oracles for 
detecting vulnerabilities in Ethereum contracts. 

ContractFuzzer consists of two parts: offline 
instrumentation and online fuzzing. The offline 
instrumentation part is to instrument the EVM code in order 
for the fuzzing part to monitor the execution of the contract. 
In the online fuzzing part, after analyzing the application 
binary interface (ABI) and the EVM bytecode of the contract, 
ContractFuzzer will extract the information of ABI functions, 
which helps the tool generate valid fuzzing inputs. The 
fuzzing inputs of function calls to the external contracts will 
be randomly selected from the smart contracts crawled on 
Ethereum by the tool. 

ContractFuzzer supports the detection of vulnerabilities 
including exception handling error, reentrancy, predictable 
random number, frozen tokens, etc. 

B. Tools for EOSIO Contracts
1) EVulHunter
As the first vulnerability detection tool designed for

EOSIO, EVulHunter is a static analysis tool for EOSIO 
WASM contracts based on pattern matching [18], [19]. 
Unlike other tools, this tool is designed specifically for fake 
EOS and fake notice detection. 

EVulHunter consists of three modules: CFG Builder, 
WASM Simulator, and Detector Engine. In the CFG Builder 
module, EVulHunter builds the CFG of the contract based on 
a ready-made tool Octopus, a security analysis framework 
for WASM and smart contracts. WASM Simulator module 
works as a virtual machine for further analyses, modifying a 

Stack and Memory structure during tracing instruction of the 
WASM code. In order to recover the semantic type 
information, the module also observes and summarizes 
several special patterns including some important parameters 
and strings (in a format of 32-bit encoding integer). In the 
Detector Engine module, two detectors for fake EOS and 
fake notice are implemented respectively, each detector 
including a pattern of corresponding vulnerability for 
matching. 

Considering the difference between the various versions 
of CDT, EVulHunter covers and analyzes all variants, 
including patterns, pairs, and elements in the comparison 
mechanism. In the validation, the tool got full accuracy for 
fake notice vulnerability. For fake EOS vulnerability, 
EVulHunter got some false positives for the reason that the 
contracts acknowledged the legitimacy of an additional 
account. 

2) EOSafe
EOSafe is a static analysis framework for vulnerability

detection in EOSIO WASM smart contracts, based on 
symbolic execution [20], [21]. EOSafe supports the detection 
of vulnerabilities such as fake EOS, fake notice, predictable 
random number, and permission verification missing. 

EOSafe is composed of three modules mainly: Engine, 
Emulator, and Scanner. The engine is short for Symbolic 
Execution Engine, designed as a platform for execution 
imitation of a contract. Receiving the CFG and dissembled 
instructions of the contract as the inputs, Engine symbolic 
executes the code within basic blocks, exploring all workable 
paths and gathering path constraints. The emulator is short 
for EOSIO Library Emulator, emulating the side effects of 
imported functions in the contract. The scanner is short for 
Vulnerability Scanner, locating suspicious functions, and 
detecting vulnerabilities. 

In the validation, EOSafe got full accuracy in detecting 
permission verification missing, fake EOS and fake notice. 
EOSafe got one false negative in detecting predictable 
random number, for the reason that the tool did not explore 
enough paths before timeout. 

V. DISCUSSION

Although there have been considerable achievements in 
the vulnerability detection of smart contract bytecode, these 
tools still have some common problems or areas that can be 
improved. 

A. Platform and Language
As the most popular blockchain platform, Ethereum is

naturally the main target of these tools. Compared to 
Ethereum, the emergence and popularity of EOSIO are the 
latter. With the overall architecture of the platform design far 
more complicated than Ethereum, it is reasonable that the 
tools for EOSIO are far less than Ethereum. However, with 
the development of decentralized applications on EOSIO, the 
security analysis of EOSIO contract should naturally receive 
attention. In addition, Ethereum is also designing Ethereum 
flavored web-assembly (ewasm), a subset of WASM to be 
used for Ethereum contracts, so the development of 
vulnerability detection tools for WASM contracts will be an 
important direction next. 
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B. Vulnerable Types
Difficulties in detecting different types of vulnerabilities

vary. For example, simple pattern matching can detect fake 
EOS and fake notice precisely, but neither symbol execution 
nor fuzzing can guarantee 100% accurate detection of TOD. 
Even if the methods used are similar, the range of 
vulnerability types detected by different tools is also 
inconsistent. Therefore, how to accurately detect all currently 
known types of vulnerabilities in a single system is still a 
problem to be solved. 

C. Automated Validation of Result
There are two tools in this survey, teEther, and MAIAN,

that validate the results of static analysis through dynamic 
analysis, but the specific methods of these two tools are 
manually testing the contract on private blockchains. If the 
results of static analysis can be automatically validated by 
the tools, not only can the accuracy of tool detection be 
improved, but also the labor cost can be reduced. 

VI. CONCLUSION

Whether on the most popular blockchain platform 
Ethereum or the rising platform EOSIO, smart contracts and 
distributed applications are gradually gaining attention and 
promotion. Compared to tools for high-level languages, tools 
for bytecode are more versatile for users and developers. 
There are currently many tools that use various methods to 
detect various vulnerabilities in smart contract bytecode on 
different platforms. These tools have their advantages and 
disadvantages in supporting language versions, detecting 
vulnerability types, accuracy, and performance. This survey 
summarizes the types of vulnerabilities that have emerged in 
smart contracts, sorts out the methods and types of 
vulnerabilities detected by current vulnerability detection 
tools, and finally puts forward some ideas for possible 
directions for future work. 
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