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ABSTRACT
The explosive growth of mobile data traffic poses severe pressure
on cellular providers to better manage their finite spectrum. Pro-
posed solutions such as congestion-pricing exist, but they degrade
users’ ability to use the network when they want. In this paper,
we propose a fundamentally different approach - rather than reduc-
ing the aggregate busy hour traffic, we seek to smooth the peaks
that cause congestion. Our approach is based on two key insights
obtained from traffic traces of a large cellular provider. First, mo-
bile traffic demonstrates high short-term variation so that delaying
traffic for very short periods of time can significantly reduce peaks.
Second, by making collaborative decisions on which traffic gets de-
layed and by how much across all users of a cell, the delays need
not result in any degradation of user experience. We design a sys-
tem, CoAST, to implement this approach using three key mecha-
nisms: a protocol to allow mobile applications and providers to ex-
change traffic information, an incentive mechanism to incentivize
mobile applications to collaboratively delay traffic at the right time,
and mechanisms to delay application traffic. We provide extensive
evaluations that show that CoAST reduces traffic peaks by up to
50% even for applications that are not thought to be delay-tolerant,
e.g., streaming and web browsing, but which together account for
70% of all cellular traffic.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks ]: Network Opera-
tions —Network Management

Keywords
Cellular Networks; Peak Throughput; Delay Tolerance; Scheduling

1. INTRODUCTION
The rapid proliferation of smartphones, tablets, and mobile ap-

plications has led to a tremendous increase in mobile data traffic in
the last few years. For example, the mobile data traffic on major
US based mobile carriers has increased by more than 20,000% in
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five years [7]. Furthermore, according to forecasts by major equip-
ment manufacturers, this trend is likely to continue in future with
78% compound annual growth rate [1]. In contrast, the capacity
of cellular networks, especially the wireless spectrum, has not in-
creased proportionally. The efficient management of mobile traffic
is, therefore, critical for cellular network operators.

Various solutions have been proposed to manage the mismatch
between the ever-increasing traffic demand and finite wireless spec-
trum. These solutions can be broadly classified into two categories—
adding more network resources to increase the overall capacity (i.e.
increasing supply), or managing user demands and behavior to re-
duce the load on the network (i.e. controlling demand). Examples
of the first category include the use of small cells for augmenting
the capacity of traditional macro cells, adding WiFi hotspots to of-
fload cellular traffic to WiFi, using portable base stations (e.g. Cells
On Wheels or COWs) to meet high traffic demands in event venues
where large numbers of users gather for some time periods, etc. Ex-
amples of the second category include congestion pricing, off-peak
delivery, network-aware throttling, etc. These approaches reduce
the aggregate traffic in busy periods by either shifting the parts of
traffic that can tolerate some delay to off-peak hours (e.g. backup,
synchronization, cloud offload, etc.) [12], or causing the user to use
the network less frequently.

These existing approaches have some fundamental limitations.
Shifting traffic to off-peak hours can cause degradation of quality
of service experienced by the end users. The vast majority of mo-
bile data traffic, including video streaming and mobile web brows-
ing, cannot be shifted to off-peak hours because of latency require-
ments. Although additional network resources increase the overall
capacity, they also incur significant costs. Furthermore, solutions
like small cells can be deployed only gradually because of the de-
tail radio engineering trials required for the correct positioning and
deployment of such infrastructure.

In this paper, we take a fundamentally different approach to tackle
this problem—delaying mobile traffic like video streaming and mo-
bile web browsing that are not traditionally thought to be delay tol-
erant. This is based on two key insights derived from mobile traffic
traces of a large US cellular provider. First, we observe that the
mobile data traffic exhibits high burstiness over small time scales
(tens of seconds). Thus, to ensure adequate quality of service at
all times, it is important to reduce the instantaneous peak traffic,
not just the aggregate traffic. Second, even applications like video
streaming and mobile web browsing can, in fact, tolerate small de-
lays. For example, a video streaming client can tolerate delays of
tens of seconds as long as its playback buffer is not empty. Mobile
web browsers can delay downloading the contents that are not cur-
rently displayed on the screen. These two insights suggest that if
the right user traffic (from the set of all current user traffic in the



cell) is delayed at the right time for the right time duration, it is pos-
sible to reduce the peak traffic in a cell without affecting the user
experience on any mobile device. This requires both device-level
information (e.g. tolerable delay values at the given time instant)
and cell-level information (e.g. the total traffic demand in the cell
at the given time instant). Thus, an efficient interaction mechanism
between mobile devices and cellular infrastructure is necessary to
enable collaboration between them to make proper decisions about
delaying the user traffic.

Using these insights, we present the design, implementation, and
extensive evaluation of a novel system called CoAST (Collaborative
Application-Aware Scheduling of Last Mile Cellular Traffic). CoAST
provides an interface to enable an efficient collaboration between
mobile devices and the network element to which they are con-
nected (e.g. a base station). The interface is simple and flexible,
allowing dynamic policies and protocols to be built on top of it,
according to the requirements and capabilities of individual mo-
bile applications. CoAST also provides an incentive mechanism
for mobile applications to delay their traffic and the actual mecha-
nisms to delay the application traffic.

In addition to benefits to the mobile network operator, CoAST
also improves the application performance for the end user. By de-
laying traffic of users with enough playback buffer contents, CoAST
can aggressively fill the starving buffers of other users, thereby re-
ducing their buffering delays.

In summary, CoAST makes following novel contributions:
1) Rather than reducing the aggregate busy hour traffic, CoAST

reduces the instantaneous peak load in a cell, without compromis-
ing the quality of service experienced by the end users.

2) CoAST can handle traffic which is not traditionally thought to
be delay tolerant.

3) CoAST provides a simple and flexible interface for mobile
devices and the cellular network to exchange various information
to enable them to make proper decisions about delaying user traffic.

We implement a prototype of CoAST on the Android platform
for two sample application categories, streaming (e.g., YouTube)
and web browsing, which are the top two generators of cellular
network traffic, accounting for nearly 70% of global cellular traf-
fic [25]. We evaluate our implementation on a per-cell basis us-
ing emulation based on real YouTube and web browsing traces ob-
tained from a major US cellular provider. Our results show that
CoAST reduces traffic peaks by an average of 30-50%, or con-
versely, increases the capacity of a cell by 20% without compro-
mising the quality of the end user experience. In fact, we show
that CoAST achieves a better quality of service in terms of reduced
buffering delay compared to the cell that does not use CoAST. Our
experiments also show that the control plane overhead introduced
by CoAST is negligible.

The rest of the paper is organized as follows. In Section 2, we
describe the background of this work and present an overview of
CoAST design. We motivate the CoAST design with an analysis
on cellular traffic in Section 3. The design details of CoAST is
described in Section 4. The deployment and implementation of
CoAST system is discussed in Section 5. The system evaluation
of CoAST prototype and the trace-driven evaluation of CoAST are
presented in Section 6 and 7, respectively. We discuss the related
issues in Section 8. Section 9 summarizes the related work. We
conclude this paper and discuss future work in Section 10.

2. BACKGROUND AND DESIGN OVERVIEW
In this section, we describe the background of this work and

present a high-level overview of CoAST design.
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Figure 1: Architecture of UMTS data network.

2.1 Background of Cellular Networks
In this subsection, we first describe the basics of cellular archi-

tecture and then provide information about the data set used in our
evaluations.

Figure 1 shows the key components of a typical UMTS data net-
work. It consists of 2 major components: the Radio Access Net-
work (RAN) and the Core Network (CN) (or Packet Core). The
mobile device, called User Equipment (UE) in UMTS terminology,
is connected to one or several cell sectors in RAN. A physical base
station (called NodeB in 3G and eNodeB in LTE) can have mul-
tiple cell sectors, which provide radio resources to UEs for wire-
less communications. Cellular data traffic from several NodeBs are
then passed to the Radio Network Controller (RNC), which man-
ages handovers, and scheduling of wireless resources among the
NodeBs under its control. The RNCs connect to Serving GPRS
Support Nodes (SGSNs) at the core network. The SGSNs are con-
nected to the external networks, such as the Internet, via Gateway
GPRS Support Nodes (GGSNs). When a UE connects to the net-
work, it establishes a Packet Data Protocol (PDP) context which
facilitates tunneling of IP traffic from the UE to the peering GGSN
using GPRS Tunneling Protocol (GTP) (see [14] for details of the
UMTS network).

We evaluate CoAST using real-world cellular traffic data from a
tier-1 cellular network carrier. All device and user identifiers are
anonymized for our analysis. The first data set is collected from
the link between SGSN and GGSN in the core network. It con-
tains information about IP flows carried in PDP contexts for a 3%
random sample of devices collected every minute, e.g. start and
end time stamps, per flow traffic volume, application identifier, etc.
This data set is used to collect information about the characteristic
of video streaming traffic. To gain more fine grained information
about the actual traffic volume in a given cell sector, we use another
dataset collected every 2 seconds at RNCs in the RAN network.

2.2 Design Overview
CoAST aims to reduce the peak-to-average ratio of the cellular

last-hop traffic, and consequently improve application performance
for the end user. It is not designed for persistently congested net-
works whose average traffic is close to the capacity. Such networks
need to be upgraded to increase the capacity. We focus primarily
on downstream as the upstream traffic intensity is not as significant.
(Note that CoAST can apply equally to upstream traffic as well.
But we do not claim it is the contribution of this paper.) We accom-
plish this by delaying downstream traffic at times when the link is
experiencing heavy load. In order to avoid degrading the quality
of service experienced by the end user, the acceptable delays may
range from a few to tens of seconds depending on the applications.
As will be shown in the next section such relatively short traffic
delays are enough to produce the desired effect of reducing traffic
peaks.

One key insight of CoAST is that only mobile applications know
the delay constraints of their traffic while the eNodeB has the ag-
gregated traffic information. Thus, solutions that rely solely on the
eNodeB or on the mobile devices do not have enough information



to simultaneously achieve both high utilization and good quality
of service. Collaboration between the eNodeB and mobile devices
is required to determine if and by how much the downstream data
should be delayed. The scheme, described in detail in Section 4, en-
ables the users to optimize their download rates while minimizing
the cost of data download and maximizing the quality of service.

It is important to note that the pricing incentive used in our scheme
is, strictly speaking, internal to the system and is used to facilitate
decision making regarding whether to delay a certain chunk of the
download traffic. It is not meant to be exposed directly and as-is
to the user, nor is it meant to translate directly into billing. It will
be important, however, to incentivize users to deploy this system
in their devices. So we expect that there will be some correlation
between billing and pricing practices of operators to be influenced
by the usage of this system. However, the exact approach here is
beyond the scope of our technical discussion.

Although a wide user participation increases the effectiveness of
CoAST, it is not necessary that all users in a cell deploy CoAST—
only enough number of UEs that can make a difference in traffic
peaks is needed. Also note that users who do not deploy the sys-
tem will not necessarily have any advantage over those who use
the system since the user experience is preserved for those using
it. So there is no individual incentive to "cheat" the system from
this perspective. On the contrary, users will be interested to partic-
ipate if operator pricing does somehow reflect the usage of the sys-
tem. CoAST also monitors the behaviors of participating devices
to identify potential cheating, which will be discussed in Section 8.

3. FEASIBILITY AND BENEFITS OF DE-
LAYING MOBILE TRAFFIC

In this section we present an analysis of the real-world traffic
traces of a large US cellular carrier to provide motivation about the
feasibility and potential benefits of delaying mobile traffic for short
time durations.

3.1 Short-Term Burstiness of Mobile Traffic
First, we analyze the traffic distribution of a large number of cells

(13522 NodeBs) using a large dataset of cellular traffic collected at
several RNCs to demonstrate that the mobile data traffic of a typ-
ical cell demonstrates high variations over short time scales (e.g.
30 seconds). This dataset provides per cell as well as per UE cel-
lular data records. We focus on the downlink traffic because it is
significantly larger than the uplink traffic in cellular networks [9,
18].

Figure 2 plots the downlink throughput along with its 20 second
moving average in a typical cell in one day. The traffic is clearly
very bursty with large short-term variations. To ensure adequate
quality of service at all times, the cellular network provider needs
to over-provision the network resources based on the peak traffic
demand. Therefore, the burstiness of mobile traffic makes the re-
sources underutilized during most periods of time.

A heuristic idea to better utilize the cellular resources is to delay
a portion of mobile traffic for a short period of time to reduce the
peak throughput over time. As a simple approximation, we use the
moving average in a short period of time to demonstrate the po-
tential benefits of delaying mobile traffic. Figure 2 shows that the
peak value of the 20 second moving average is only about 60% of
the original peak throughput. This implies that delaying a portion
of mobile traffic by 20 seconds or less can result in a significant
reduction in the peak throughput demand in the cell. It will lead
to two major benefits. First, the reduction in the peak throughput
allows the network to support more users and mobile traffic with-

Figure 2: The downlink traffic and its 20 second moving aver-
age in a cell in one typical day. The throughput is normalized
with the maximal capacity used. The difference between the
original traffic and its moving average demonstrates its high
short-term variations.

out upgrading the infrastructure. In some cases, it also means that
the cellular network may be able to support better quality services.
For example, it may be feasible to support a better quality video
streaming (say HD video with better resolution) if there is suffi-
cient reduction in the overall load on the cell. Second, this also
reduces congestion and helps improve the performance of mobile
applications that are sensitive to delays (e.g., VoIP).
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Figure 3: The reduction of the peak downlink throughput for
moving averages computed over different time periods. The
average and standard deviation are plotted.

To further quantify the relationship between the extra delay and
the reduction on the peak throughput, we compare the reduced peak
throughput achieved by moving averages computed over different
time intervals for the top 200 heavy-loaded cells. The results are
plotted in Figure 3. When the window size increases from 1s to
30s, the reduced peak throughput quickly decreases from 100% to
60.5% of the original peak on average. As the window size further
increases to 100s, the peak is gradually reduced to 42.5% of the
original peak. This figure implies that most benefits in terms of
reduction of peak throughput can be obtained by delaying traffic
for short time durations (e.g., 30 seconds), with diminishing returns
for larger delay intervals.

3.2 Delay Tolerance of Mobile Applications
The real-world cell traffic traces indicate that delaying mobile

traffic for a few seconds can reduce the peak load in the cell signif-
icantly. The next natural question is: Can real-world mobile appli-
cations tolerate such delays without affecting the quality of service



experienced by the end-users? To investigate this, we consider fol-
lowing major traffic classes:

3.2.1 Streaming
Streaming applications (e.g., video streaming, audio streaming)

account for around 34% of the total mobile traffic [25]. As they
usually buffer some data, they can tolerate small delays which are
equivalent to the current buffer occupancy of their playback buffer.

0 100 200 300 400
0

2000

4000

6000

8000

Time (second)

D
at

a 
(K

B
)

 

 

Download
Playback

Delay budget

Figure 4: The download and playback progress of a Youtube
video on an Android smartphone using a cellular network. The
difference between download and playback represents the de-
lay it can tolerate.

To investigate delay tolerance of streaming applications over cel-
lular networks, we play a Youtube video on an Android smartphone
and record the cellular traffic using Wireshark. Figure 4 compares
the number of downloaded bytes and the actual playback progress
during the experiment. Initially, the Youtube client aggressively
buffers the video contents. But once the client has sufficient con-
tents to play for some time, it slows the download to avoid down-
loading unnecessary contents in case the user does not watch the
complete video. The difference between the actual download and
the playback progress at any given time is the amount of delay the
Youtube client can tolerate at that time without affecting the user
experience (i.e., pausing the video).

We also see from Figure 4 that depending on the size of the
buffered data, the tolerable delay varies from a few seconds to more
than one hundred seconds in this example. In addition, user opera-
tions like “back” and “forward” will also impact the delay that the
video client can tolerate at the specific time.

To accurately predict the future traffic and delay that the video
client can tolerate, video size, bitrate, buffered data, and playback
progress are required. Specifically, we can predict the amount of
data to download based on the video size and buffered data. Mean-
while, the bitrate, buffered data and playback progress can be used
to estimate the delay that it can tolerate. Fortunately, all of them
are available to the video client. Video size and bitrate can be ob-
tained from the video metadata, while buffered data and playback
progress are internal states of the video client. In contrast, delaying
the streaming traffic arbitrarily, say from the network side without
taking real time input from the application, may affect the user ex-
perience.

3.2.2 Web Browsing
Web browsing applications, which are also one of the top gen-

erators of cellular mobile traffic [25], are generally not regarded
as being delay-tolerant. Due to their small size, mobile devices
like smartphones and tablets can display only a small portion of a
webpage (e.g., texts, images, and other multimedia contents) at any
given time. Thus when a user browses a web page, only contents
that are shown on the screen need to be downloaded immediately,

while off-screen contents can be downloaded a little bit later with-
out impacting the user experience. In other words, off-screen con-
tents can be treated as being delay-tolerant. In fact, some websites
(e.g., Huffington Post [2]) already support progressive download
and display of the web pages. When web pages contain many mul-
timedia contents (e.g., images), the amount of traffic that can be
delayed will be significant.

To identify the delay tolerance of web browsing, we analyze the
on-screen and off-screen contents of the top 500 Alexa websites [6]
in various categories. We only treat off-screen images as off-screen
contents and the rest components as on-screen contents. We use
PhantomJS [4] to download and render the web pages. For every
website, we only download and analyze its home page. We set the
user agent of all HTTP requests to that of the Android web browser
and let those websites decide whether to return the mobile version
or the full version. The screen size is set to 480×800, a typical
setting for smartphones. For each web page, we identify all the off-
screen images and treat them as off-screen content, while all other
contents are treated as on-screen content.
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Figure 5: The ratio of off-screen content to the total content on
the homepages of the top 500 websites. We also select 4 cate-
gories and plot the top 500 websites in these categories.

Figure 5 shows the ratio of the size of the off-screen contents
to that of the total contents on the homepage of the top 500 Alexa
websites [6]. The category “Global” represents the overall top 500
websites. We also select and plot 4 categories among 16 special
categories listed by Alexa. The distributions of other categories are
between that of “News” and that of “Shopping”. Generally a sig-
nificant portion of the web content is off-screen and can tolerate
short extra delays. For categories like “News”, more than 50% of
those websites have more than 50% of the contents that can tolerate
extra delay. In addition, since the homepages of the websites that
we analyzed usually contain less content than other pages, our esti-
mation of the potential benefits as shown in Figure 5 is likely very
conservative.

Like streaming applications, we also notice that only the web
browser knows which images are off-screen and can tolerate short
delay, especially when the user scrolls the web page. Specifically,
by parsing the HTML file, the web browser can identify the images
that are not shown on the screen. In addition, using the height and
width attributes of the corresponding “img” tags, it can estimate
their sizes.

4. COAST DESIGN
CoAST enables collaboration among mobile devices for schedul-

ing their mobile traffic, when necessary and feasible, to reduce the
peak traffic load on a cell. The basic idea is to use dynamic pric-
ing to motivate the mobile applications to proactively shift their
traffic in small time scales (up to 30 seconds) while still satisfying



their delay constraints. To realize this idea, CoAST uses three ma-
jor mechanisms: a protocol to allow mobile applications and their
associated cell to exchange traffic information, an incentive mech-
anism to incentivize mobile applications to collaboratively delay
traffic at the right time for the right time duration, and a mechanism
to enable applications to delay their traffic. The first two mecha-
nisms are incorporated into the control plane of CoAST, while the
last one is realized in its data plane. However, it should be noted
that all CoAST mechanisms are data plane functions from 3GPP
protocol perspective, i.e. CoAST does not change the 3GPP proto-
col itself.

4.1 Design Principles
Minimal modification to mobile applications: For ease of de-

ployment, CoAST requires no modification on the server side, but
only small changes on the client side because only mobile applica-
tions know the delay constraints of their traffic. CoAST modifies
the underlying socket API implementation to allow client appli-
cations to specify the tolerable delay information via these socket
calls in a transparent manner. The actual value of the tolerable de-
lay at a given time instant depends on the application itself. In this
paper, we describe how playback buffer size can be used to figure
out the value of tolerable delay for video streaming applications.
For other applications, mobile developers may use existing instru-
mentation systems [13] to determine the tolerable delay, thereby
reducing the development efforts.

Privacy preservation: To reduce the peak load on the cell, CoAST
relies on collaboration and sharing of traffic information among all
mobile devices in that cell. A malicious mobile device may par-
ticipate CoAST and collect the traffic information of other mobile
devices to infer their application usage. To prevent privacy leak
under such attack, the control plane is divided into UE proxies on
mobile devices and a market proxy on the eNodeB. Each mobile
device shares its aggregated traffic demand only with the market
proxy and obtains the prices for downloading data only from the
market proxy, avoiding the direct sharing of traffic demands among
participating devices. With this design, it will be impossible for
malicious mobile device to obtain accurate traffic information of
mobile applications running on other mobile devices.

Control of demand through pricing: To motivate mobile ap-
plications to delay their traffic when necessary, CoAST uses dy-
namic “prices” to charge mobile traffic at different time instants.
The prices used by CoAST can be $ per bit as used in [12]. More
generally, it can also be treated as the discount ratio on the ac-
counted traffic. For example, when the price is 0.8, 1 Mb mobile
traffic can be accounted as 0.8 Mb. The latter case is compatible
with the usage-based pricing model used by most cellular providers
nowadays. In this paper, we don’t specify the pricing model used by
the cellular providers. We treat the price as the ratio of accounted
traffic to the transferred traffic.

Tackling system abuse: CoAST requires UEs to report traffic
demands to the market proxy, which sets the prices based on de-
mand information from all UEs in the cell. Malicious UEs may
attempt to report fake information to abuse the system. To prevent
such cheating behavior, CoAST records and compares the reported
traffic demands and the real traffic to identify suspicious behavior
(please see Section 8 for a detail discussion).

4.2 Overview of CoAST Operation
Figure 6 provides a high-level overview of the CoAST architec-

ture. It consists of two major components: a market proxy that re-
sides on a cell-level network element like eNodeB and a UE proxy
on each mobile device. The market proxy collects the traffic de-
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Figure 6: CoAST Architecture.

mands for some future time window from all mobile devices in a
cell. These are used by the market proxy as parameters of an op-
timization problem (eOpt) which determines new future prices for
each UE (for the next time window) with the goal of minimizing
the traffic peak in the cell. The traffic demands and prices may also
be reported to the LTE network for accounting and billing purpose.
On the user side, applications determine their traffic demands in a
manner that satisfies their delay constraints and sends this infor-
mation to its UE proxy through the user library. The UE proxy
uses these demand information as inputs to an optimization prob-
lem (uOpt) that attempts to minimize the cost of satisfying these
demands based on prices obtained from the market proxy. CoAST
also includes a mechanism by which applications can control their
traffic according to the outputs of uOpt.

4.3 Control Plane
CoAST ensures that the traffic demand does not exceed the net-

work capacity at any time without affecting the user experience of
mobile applications. Let’s denote the capacity of a cell sector by c,

the throughput at time t of the ith flow under the control of CoAST
by thi(t), and the total throughput of all other flows by thb(t).
CoAST’s goal can be expressed as optimizing an objective function
of the difference between the throughput and capacity over time, as
follows:

min Φ({
n∑

i=1

thi(t) + thb(t)− c}) (1)

where Φ can be any meaningful utility function. For simplicity of
description, we omit the constraints in Eqn 1 and will present them
in Eqn 4.

One design challenge is the fact that CoAST has neither control
nor accurate information about the background traffic in the cell.
By background traffic, we mean all mobile traffic generated by ap-
plications that do not use CoAST. Given the burstiness of mobile
traffic as shown in Figure 2, it’s also hard to accurately predict the
background traffic using historical information. To solve this prob-
lem, CoAST optimizes the maximal throughput of the flows under
its control over time, as follows:

min max
t

n∑
i=1

thi(t) (2)

Therefore, no information of the background traffic is required.
Let th∗

b = maxt thb(t). A pleasant property of this objective func-
tion is that it is equivalent to minimizing

∑n
i=1 thi(t)+th∗

b , which



will be proved in Section 4.5. When enough numbers of UEs use
CoAST, the peak throughput of total traffic will be minimized.

A centralized solution to Formula 2 would require the market
proxy and the UE proxies to share information of all flows, re-
sulting in a lot of control overhead. Moreover, it violates our pri-
vacy preservation design goal. Thus, a distributed control protocol
that exchanges limited information is required. To solve this prob-
lem, we use the dual decomposition method [20] to decompose the
original problem into a master problem and multiple independent
sub-problems. The master problem (eOpt) is solved by the market
proxy, while the independent sub-problems (uOpt) are solved by
the UE proxies. We describe this control protocol next.

At a high level, the control plane functions as follows: The mar-
ket proxy periodically computes the projected prices for mobile
traffic for some time window in the future. These prices are cal-
culated based on the traffic demand collected from all connected
UEs. The prices are broadcasted to all connected UEs. Each UE
proxy uses the price information from the market proxy and the
demand information from its mobile applications to schedule the
mobile traffic such that the demand of each application is satisfied
and the overall cost is minimized. The UE proxy then sends back
the traffic demands that it calculates for some future time window
to the market proxy, and the process is repeated.

4.3.1 Market Proxy Operations
The market proxy operates in time slots with length τ (e.g., 1

second). The time slot that time t belongs to is denoted as �t�τ =
� t−t0

τ
�, where t0 is the start time. Let p(�t�τ ) represent the price

for the downlink traffic through a cell sector during time slot �t�τ .
Let the(�t�τ ) represent the downlink traffic demand of UE e dur-
ing time slot �t�τ .

In every δ seconds (e.g., 0.1), the market proxy receives a vector
of traffic demand for the next κ (e.g., 30) time slots, i.e., the =
{the(�t�τ ), the(�t�τ +1), . . . , the(�t�τ +κ)}, where t is the cur-
rent time. Then it updates the price vector , i.e., p = {p(�t�τ ), . . . ,
p(�t�τ + κ)}, as follows:

p′ = [p+ β(
∑
e

the − α)]H (3)

where α = maxt

∑
e the(t), [p]H represents the projection of p

onto the hyperplane H = {p(t)|∑t p(t) = 1, p(t) ≥ 0}, and β
is the step length. The value of β is set to ensure that ∀t, |p′(t) −
p(t)| < p(t)/10 in our implementation.

The market proxy then broadcasts the prices to all UEs in the
cell.

4.3.2 UE Proxy Operations
The UE proxy collects the information about traffic demand per

slot (τ ) for κ slots into the future from all mobile applications and
periodically receives the future price information from the market
proxy. It generates the future traffic demand, the, and sends it to
the market proxy.

Each mobile application reports its delay constraints for the next
κ time slots to its UE proxy. Let’s use 〈D, t〉, i.e., a tuple of the
amount of data D and its deadline t, to express the delay con-
straint that data D should be downloaded before deadline t. There-
fore, for a specific flow i, its delay constraints can be expressed
as a set of tuples, i.e., {〈Di,0, ti,0〉, 〈Di,1, ti,1〉, . . . , 〈Di,n, ti,n〉},
where ti,0 < ti,1 < · · · < ti,n. Let’s define function di(t) =∑T

j=0 Di,j , where ti,T ≤ t ≤ ti,T+1. It represents the amount of
data required to be transferred before time t.

When a UE proxy receives the price information from the mar-
ket proxy, it tries to minimize the cost of transferring data under

the constraint that the delay constraints of all flows are satisfied.
Specifically, at time t∗ the UE proxy solves the following optimiza-
tion function:

min
∑
i

∑
t∈T

thi(t)× p(t)

s.t.
∑
i

thi(t) ≤ bd, ∀t ∈ T

∑
i

∑
t≤t′

thi(t)× τ ≥ di(t), ∀t′ ∈ T (4)

where thi(t) is the throughput of flow i at time t, bd is the band-
width, and T = {�t∗�τ , . . . , �t∗�τ + κ}.

By solving the above optimization function we obtain the de-
sired throughput of all downlink flows over time. thi(�t∗�τ ) cor-
responds to the bandwidth allocated to flow i in the current time
slot. The UE proxy will send this value back to the mobile ap-
plications to control their traffic in the data plane accordingly as
described in Section 4.4. It should be noted that those constraints
may not be satisfied, i.e., the available bandwidth may be smaller
than the traffic demand. Under such scenario, CoAST will allow
mobile applications to transfer data as fast as possible and let users
decide if they want to stop some applications.

The UE proxy will send {the(t)|the(t) =
∑

i thi(t), t ∈ T} to
the market proxy. The market proxy collects such traffic demands
from all UEs in the cell and updates the prices in the next round.

4.4 Data Plane
The primary functionality of the CoAST data plane is to control

the downlink traffic based on the throughput cap assigned by the
control plane. As most of the mobile applications we are consid-
ering use TCP and we don’t want to modify the server, we focus
on controlling the TCP traffic from the receiver side. It is also im-
portant to note that while the control plane operates with a window
of projected demands and prices, the data plane only controls the
traffic for the current slot.

In TCP the amount of data that the sender can send within an
RTT is limited by min{cwnd, rwnd} where cwnd is the conges-
tion window size, and rwnd is the receiver’s window size adver-
tised in the acknowledgement packets. When cwnd is larger than
rwnd, rwnd will determine the throughput of a TCP flow. To control
the downlink traffic from the receiver side, we set an upper-bound
on rwnd as:

DL_CAP = max{throughput × RTT,MSS} (5)

where throughput is the target throughput assigned by the control
plane. When throughput is very small, DL_CAP is set to MSS to
avoid totally blocking the flow. In our implementation, we add a
new socket option, DL_CAP, to allow applications to dynamically
specify the upper-bound on the advertised receiver’s window size
at runtime.

It’s noteworthy that the receiver will obtain the required down-
link throughput after one RTT since the sender receives the new
advertised rwnd after RTT/2 and then spends RTT/2 to deliver the
new packets to the receiver. When RTT is large (e.g., 1 second), the
receiver should use the estimated future throughput to set DL_CAP.

4.5 CoAST Performance Guarantee
The primary goal of CoAST is to schedule the last-mile traffic

to ensure that the total traffic demand does not exceed the network
capacity. For scalability, CoAST is designed as a distributed system
that only schedules the traffic under its control. A natural question



is whether the CoAST design meets its goal. Here we present a
theoretical analysis to answer this question.

CoAST uses an iterative control protocol between a market proxy
and a set of UE proxies to schedule the traffic. This control protocol
allows CoAST to minimize the maximal throughput of flows under
its control over time. Formally, we have the following theorem:

THEOREM 1. With the interaction interval, δ, approaching 0,
CoAST approaches the optimization goal defined in Formula 2.

Its proof can be found in Proof 1 of the Appendix. As CoAST
minimizes the maximal throughput of flows under its control, it
also reduces the maximal throughput of all flows including those
background traffic. Formally, we have the following theorem:

THEOREM 2. Assume
∑n

i=1 thi(t) and thb(t) are independent
random variables. With t → +∞, the expected value of the peak
throughput obtained by using CoAST approachesmaxt

∑n
i=1 thi(t)+

maxt thb(t).

The proof can be found in Proof 2 of the Appendix. Thus, when
the number of UEs that uses CoAST is large enough, CoAST can
significantly reduce the overall peak traffic.

5. DEPLOYMENT AND IMPLEMENTATION
In this section, we discuss various ways in which CoAST can be

deployed on a real network and describe our prototype implemen-
tation.

5.1 Deployment
CoAST proposes two new functions to be added to the cellular

network: a UE proxy for each mobile device and a market proxy
for each cell sector. The UE proxy interacts with mobile applica-
tions running on the UE to collect their delay constraints and al-
locates bandwidth to them. The market proxy aggregates demand
information from all the UEs in a cell and sets the prices. UE and
market proxies communicate with each other to exchange demand
and pricing information. The network elements on which these
functions are deployed determines both the information available
to CoAST and the changes needed to the network. We consider
three deployment options and their merits.

Clean Slate: The market proxy for a cell and the UE proxies for
all UEs in the cell are hosted in the cell’s eNodeB. Mobile appli-
cations directly communicate their requirements to their UE proxy
through extensions to the 3GPP RAN control plane (via mobile OS
APIs to expose these extensions). The UE proxy directly controls
bandwidth allocations through the eNodeB scheduler. Because the
market proxy also resides on the eNodeB, it has full access to cell
utilization information when setting prices and no latency between
the UE and market proxy. The market proxy can also compare re-
ported traffic and real traffic to detect price manipulation. While
this represents the cleanest and most functional design, it requires
changes to the 3GPP protocol to exchange demand and price in-
formation, to eNodeBs, and to the mobile OS, and thus may be
difficult to deploy.

Incremental: The UE proxy is deployed on the mobile device
as a daemon process, while the market proxy is deployed by the
network provider as a new network element in the packet core. The
UE proxy interacts with mobile applications through user library
calls for collecting delay constraints and allocating bandwidth (via
a controlled socket abstraction). Interaction between the UE and
market proxy for exchanging demand and price information oc-
curs using the normal cellular network data plane, through a well
known UDP port and a special destination IP address that points to

the market proxy for the current cell. This configuration imposes
higher latency between the UE and market proxies, but because the
market proxy is deployed by the network provider, it can be made
as low as possible. Also, the market proxy may be given access
to real-time traffic information through a private interface to the
eNodeB as well as the provider’s charging and data metering sys-
tems [21]. Thus, it provides most of the benefits of the clean slate
design while being easier to deploy - 3GPP protocols or eNodeBs
do not have to be extensively modified on the provider side, while
the UE proxy can be implemented as a user space library without
modifying the mobile OS on the UE side.

Over-the-top: The UE proxy is deployed as a library on the UE
just as in the incremental design, but the market proxy is deployed
as a third-party service on an external cloud server, possibly even
on an application-by-application basis. E.g., a large video stream-
ing provider may have its own market proxy that serves to smooth
only its own traffic within a cell and improve the performance for
its own users. In this design, when a mobile device connects a cell,
its UE proxy uses the cell ID to find the IP address of the corre-
sponding market proxy through standard DNS mechanisms. UE
and market proxies exchange information through UDP as in the
incremental design, but the third party nature of the market proxy
precludes the market proxy from basing its pricing decisions based
on real-time traffic information (e.g., it cannot lower prices during
periods of low utilization to incentivize more aggressive transfers)
or from actually providing real monetary incentives to users. How-
ever, the design requires no modification to any cellular network
elements, or to the mobile OS, and thus is the easiest to deploy.

Due to its ease of deployment, we chose the over-the-top design
for our prototype. However, the goal of this paper is to evaluate
the feasibility of CoAST and quantify its benefits and costs instead
of advocating a particular deployment choice. Our evaluation will
hold irrespective of the design chosen.

5.2 Prototype Implementation
We implemented market proxy on a Linux system with a dual-

core 2.53 GHz CPU and 4GB of RAM. The market proxy divides
time into 1-second slots and dynamically sets the prices for future
30 time slots. Every 100ms the market proxy collects the traffic
demands for the future 30 time slots from all mobile devices that
connect to it. Then it updates the prices based on the aggregated
traffic demand and sends the new prices to all the mobile devices.

Ideally the market proxy should reside on a cell-level network
element like the eNodeB in a 4G LTE network or the RNC in a 3G
network where it can also monitor the traffic over the cell. How-
ever, because we have no access to such network elements, we have
to run the market proxy on a remote server whose RTT to the mo-
bile devices through a 4G LTE network is 57ms on average. Since
the RTT between the market proxy and UE proxies is much smaller
than their interaction interval (i.e., 100ms), the functionality of the
control plane will not be affected.

We implemented the UE proxy on Android 4.1. It is imple-
mented as an Android application collecting delay information from
mobile applications and the prices from the market proxy and as-
signing throughput caps to the mobile traffic. To dynamically con-
trol the downlink traffic from the receiver side, we also patched the
Android kernel to add a new socket option, DL_CAP, to limit the
maximal throughput of the TCP flows at runtime.

5.2.1 Communication and Computation Overhead
The traffic demands and prices are the only data exchanged be-

tween the UE proxy and the market proxy. In the current imple-
mentation, we use 2 bytes for the traffic demand and 1 byte for the



price in each time slot. Therefore, each UE proxy uploads 60 bytes
and downloads 30 bytes from the market proxy in every round.
Since they exchange information every 100ms, the control over-
head in this case is 600 Bytes/s in the upload direction traffic and
300 Bytes/s in the download direction in the worst case. The over-
head is much lower in reality because of two reasons. First, the
UE proxy will exchange information with the market proxy only
if some communication-intensive applications (e.g., video stream-
ing) are running. Second, compared with the high traffic volume
of those target applications, the extra communication overhead of
CoAST is negligible. As the experiment in Section 6.2 will show,
CoAST only leads to 0.07% extra traffic.

The computation overhead is also very low. The market proxy
updates the prices by solving a projection problem. Its computa-
tional complexity is O(κ) where κ is the number of time slots (30
in our implementation). The UE proxy needs to solve an optimiza-
tion problem that minimizes the cost under the delay constraints.
As we discretize time into time slots, the maximal number of delay
constraints for a flow is O(κ). The optimization problem can be
solved by gradually finding the minimal cost for each constraint.
Therefore, its computational complexity is O(f × κ2 × log(κ)),
where f is the number of concurrent flows. On an old Motorola
ATRIX smartphone with Android 2.3, it takes less than 1ms for the
UE proxy to solve the problem for 100 concurrent flows.

6. SYSTEM EVALUATION
In this section, we evaluate the CoAST prototype as described in

Section 5.2. We will demonstrate how CoAST improves the per-
formance of mobile applications under various LTE network con-
gestion states.

6.1 Experimental Setup
Our testbed is composed of 5 Linux workstations and 4 Android

smartphones with 4G LTE capability. The first workstation acts as
the market proxy. Its average RTT to these smartphones through the
LTE network is 57ms. The other 4 workstations act as the remote
mobile application servers, each of which serves one smartphone.
The Linux traffic control tool tc is used on application servers to
control their available bandwidth. We make sure that all these
smartphones connect to the same cell during the experiments by
checking the cell id of their connected cell. All experiments are
conducted in a residential area around midnight to reduce the im-
pact of other cellular users.

CoAST is designed to improve the performance of mobile appli-
cations when the LTE network is congested. We use following mo-
bile streaming strategies to create different levels of network con-
gestion and streaming behavior. The evaluation for other types of
mobile applications (e.g. web browsing) will be presented in Sec-
tion 7. We find that the streaming strategies impact the distribution
of mobile traffic and how they interact with each other in CoAST.

• All-at-once: strategy aggressively transfers data from the
server to the client as fast as possible. This strategy is usu-
ally used by some audio streaming [22] and video streaming
applications on some specific phones [28].

• Pacing: strategy controls the download throughput at the
“steady state” after initial buffering. This strategy is widely
used in video streaming services such as Youtube, Hulu, and
Netflix [10].

• Bundling: strategy is proposed to reduce the energy con-
sumption of video streaming applications [28]. It divides
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Figure 7: The interaction between two video streams

the entire stream into several large chunks and aggressively
transfers each chunk periodically.

We use two metrics to evaluate the impact of CoAST on mobile
users:

• Buffering time: It is a direct measure of the user experience
for streaming applications. We consider both initial buffering
period and rebuffering period in the steady state.

• Energy consumption: The energy consumption of video
streaming is primarily caused by the device screen in the
“on” state and the LTE network interface. For fair compar-
ison, we use the LTE energy model that calculates energy
consumption based on traffic traces [15].

6.2 The Reduction of Buffering Time in Video
Streaming

We first demonstrate the basic mechanism through which CoAST
enables collaborative traffic scheduling via a simple two-device
video streaming experiment. Let the two devices start streaming
two HD videos at time 0s and 7s, respectively. Both of them use
the all-at-once strategy. The LTE cell is the only bottleneck of both
streams.

Figure 7 plots the throughputs of two streams for the native LTE
network and CoAST cases. In the native LTE case, stream1 is un-
aware of the traffic demand of stream2 and, thus, continues down-
loading data from its server even after stream2 starts. Therefore,
the initial buffering period for stream2 is twice as long as that of
stream1. In CoAST, when stream2 starts at 7sec with an empty
buffer, it tries to download aggressively, thus causing the market
proxy to increase prices due to the increased demand. Because
stream1 has a relatively full buffer, it is less willing to pay the in-
creased price than stream2, and thus delays its traffic. After some
time, when stream2 has buffered enough data for playback, it re-
duces its willingness to pay higher prices, and thus begins delaying
its data more. In the meantime, stream1 has already played back a
portion of data in its buffer and becomes more aggressive to meet
its delay constraints. Due to this cooperative inter-play between
the UEs — the UE with full buffer deferring its download in fa-
vor of the UE with empty buffer— the buffering time of stream2 is
reduced by 50% while that of stream1 is not affected.

By exchanging traffic demands and prices between the UE prox-
ies and the market proxy, CoAST incurs a total of 47.5 kB extra
traffic in the experiment. Compared with the total download traffic
(i.e., 64 MB), CoAST only incurs a 0.07% communication over-
head.

6.3 The Impact of Network Congestion
Next we evaluate the impact of traffic demand on CoAST per-

formance by varying the stream bitrate from 400 kb/s (i.e., average
Youtube bitrate [11]) to 3200 kb/s while keeping the number of
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Figure 9: The impact of streaming strategies on CoAST perfor-
mance

streams unchanged. We randomly start 4 streams within 30 sec-
onds. The length of each stream is 3.33 minutes, i.e., the median
Youtube video length [11]. The upload bandwidth of servers are
unlimited, i.e., the LTE cell is the only bottleneck. Each experi-
ment is repeated 3 times with different random seeds. The average
values are reported.

Figure 8 plots the reduced buffering time and average energy
consumption of the smartphones. It is clear that the benefits of
CoAST start increasing with the increase in traffic demand (i.e. bi-
trate in the experiments). When the bitrate is 3200 kb/s, CoAST
is able to reduce buffering time by more than 10% on average. It
is exactly the design goal of CoAST, i.e., to reduce the impact of
increased mobile traffic on user experience.

Figure 8(b) also shows that CoAST increases the energy con-
sumption by less than 8% in all the experiments. More importantly,
with the increase in traffic demand, the extra energy consumption is
even smaller (e.g. 7% for 3200 kb/s case). The increase in energy
consumption is caused by longer streaming time in CoAST. Note
that energy consumption is based on the assumption that there is
no background traffic. Otherwise, CoAST will incur even smaller
energy consumption overhead.

6.4 The Impact of Streaming Strategies
Finally we evaluate the impact of streaming strategy on the per-

formance of CoAST. The stream bitrate is 3200 kb/s. Other pa-
rameters are the same as previous experiments. The experiment
results are shown in Figure 9. When the all-at-once strategy is
used, CoAST reduces buffering time by 66%. However, it also
increases the energy consumption significantly if the entire video
is downloaded. Compared to the pacing strategy, CoAST incurs
similar buffering time and slightly more energy consumption in the
bundling strategy.

7. TRACE-DRIVEN EVALUATION
In this section, we demonstrate the potential benefits of CoAST

by using trace-driven evaluations of real-world cellular traffic traces
from a large US mobile network operator.

7.1 Experimental Setup
We implement CoAST on a packet-level simulator, ns-3 [3], which

supports the simulation of LTE networks. The network is com-
posed of an eNodeB, a remote server and multiple mobile devices.
The market proxy is installed on the eNodeB, while the applica-
tion servers are installed on the remote server. All mobile devices
connect to the same eNodeB during the experiments. We use the
default parameters for all the experiments.
Traffic traces: We identify the top 100 heavily-loaded cell sectors
in our cellular traffic dataset and evaluate how CoAST reduces their
peak throughputs within 1 day. For each cell, we generate the flows
for Youtube video streaming and web browsing as follows.

• YouTube video streaming: We identify all flows from Youtube
servers to the mobile devices in the cellular traffic dataset.
But only flows whose size and duration are large enough (i.e.,
size > 100 kB and duration > 10 s) are treated as streaming
flows. Since we don’t have video information (e.g., bitrate,
video length) in our dataset, we use the empirical models
from [11] to generate the video profile for each flow. The
pacing strategy is used to control the stream.

• Web browsing: We first identify all web traffic using port
number 80. If two flows between the same source and des-
tination start within 5 seconds, they are considered as be-
longing to the same browsing event. Using this method, we
obtain a set of browsing events with their start time instants.
Since the dataset doesn’t contain the identity of the web page,
we randomly pick one of the top 500 Alexa websites for each
browsing event.

Metrics: We compare CoAST against the native network using
the following metrics:

• Peak reduction: This is the most important metric because
the goal of CoAST is to reduce the peak cell throughput. It
is defined as Peaknative−PeakCoAST

Peaknative
.

• Discount: A key promise of CoAST is that mobile users
will also benefit from CoAST and, thus, be willing to use
it. We use Dt−Da

Dt
to denote the user benefit, where Dt is the

amount of transferred data, Da is the amount of accounted
data.

• Overhead: We also analyze if CoAST causes any overhead,
including energy consumption and RRC signaling overhead
[14].

We acknowledge that our trace-based evaluation has some limi-
tations. First, there is no system feedback. By scheduling the traf-
fic better, CoAST may cause mobile users to use more data and,
thus, increase the peak traffic. However, our experiments cannot
capture this phenomenon. Second, the user behavior in using ap-
plications is not available. For video streaming, the user may skip
ahead or pause the video. For web browsing, the user may quickly
scroll down in the webpage. These user behaviors impact the delay
constraints of the corresponding traffic and, thus, affect the perfor-
mance of CoAST.

7.2 Experimental Results

7.2.1 Video Streaming Experiments
We first perform simulation-based video streaming experiments

using 100 heavy-loaded cells for 1 day. In all experiments we only
consider Youtube video streams. As shown in Figure 10, CoAST



0 20 40 60
0

0.2

0.4

0.6

0.8

1

The Reduction on the Peak Throughput (%)

C
D

F

(a) The Peak Reduction

0 20 40 60
0

5

10

15

20

25

Average Reduction on the Peak Throughput (%)

A
ve

ra
ge

 D
is

co
un

t (
%

)

(b) Discount

Figure 10: The performance of video streaming supported by
CoAST on various sectors.

successfully reduces the peak throughput for all cells. We also ob-
serve the following phenomena. First, the peak reduction ranges
from 5% to 55% for different cells, as shown in Figure 10(a). More
than 30% cells reduce their peak by 30%. The high variation of the
peak reduction among different cells is probably caused by diverse
distribution of Youtube video streams among various cells. Cells
with more video streams are able to achieve better performance.
Second, the average discount obtained by the mobile users corre-
lates with the peak reduction on the cells, as shown in Figure 10(b).
Finally, none of the videos is paused during the experiments.

Next we explore how the reduced peaks actually help increase
the capacity of cellular networks by examining the impact of in-
creasing user demand on application level performance with and
without CoAST. Specifically, we increase the users/spectrum ratio
and measure how long the video streams pause waiting for more
data. However, rather than increasing the number of users in a cell
artificially, we increase the ratio by reducing the effective band-
width (spectrum) available to a cell by a fraction α ∈ [0, 1), i.e.,
Capacity = (1 − α)× MaxCapacity. The average values of video
pause time over 100 cells are reported for different values of α in
Figure 11. We see that CoAST results in very little application per-
formance degradation while supporting a capacity increase of up
to 20% (α = 0.2). Also, for the same value of application per-
formance degradation, CoAST can support more users per unit of
available spectrum.
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Figure 11: Comparison of video pause time for different num-
ber of users with and without CoAST.

7.2.2 Experiments on Web Browsing
Web browsing is another important application that can benefit

from CoAST because of its delay tolerance. Unlike video stream-
ing, web browsing flows are relatively small. In this subsection, we
analyze the performance of CoAST-based web browser.

First, we consider the simple scenario that all cellular traffic are
web traffic. For each browsing event, we randomly choose one of
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Figure 12: The performance of web browsing supported by
CoAST on various sectors.

the top 500 Alexa websites in the “news” category. We report the
results for the 100 heavy-load cells in Figure 12.

As expected, CoAST-based web browser reduces the peak through-
put for all cells. Like in video streaming experiments, the peak re-
duction varies significantly among cells, ranging from 6% to 50%.
However, different from video streaming, CoAST-based web browser
helps more than 55% cells achieve more than 30% peak reduction.
In addition, as shown in Figure 12(b), the average discount obtained
by the mobile users ranges from 22% to 31%, which is more than
video streaming case. This is because web browsing flows are usu-
ally very small and are able to take advantage of the variation in
price.
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Figure 13: The performance of both video streaming and web
browsing supported by CoAST.

Next, we evaluate the scenario in which both video streaming
and web browsing use CoAST to schedule their traffic. Video
streaming and web browsing are the most important mobile appli-
cations, accounting for more than 70% mobile traffic. The experi-
mental results are plotted in Figure 13. In this more realistic sce-
nario, CoAST helps all cells to reduce their peak throughputs. We
also plot the discount obtained by video streaming and web brows-
ing in Figure 13(b). Web browsing is still able to obtain higher
discount than video streaming.

In Section 6, we noticed that CoAST slightly increases the en-
ergy consumption in some scenarios. This is because by delaying
mobile traffic, mobile devices need to keep the network interface
active for longer duration, resulting in extra energy consumption.
To analyze the overhead of CoAST, we assume that the mobile de-
vice is initially in the RRC_IDLE state, and there is no other traffic
on the mobile device. We use the RRC state model [15] to ana-
lyze the overhead. For both video streaming and web browsing,
the mobile devices always stay at the RRC_CONNECTED state
when using these applications. Thus, CoAST does not introduce
extra RRC state transitions. However, CoAST does keep cellular
interface alive for slightly longer duration and, thus, consumes a
little more energy. Figure 14 shows that in CoAST, the mobile de-
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Figure 14: The time duration at RRC_CONNECTED state for
video streaming and web browsing.

vices stay slightly longer in the RRC_CONNECTED state than the
native case.

7.2.3 The Impact of Partial Deployment
CoAST reduces the peak throughput by rescheduling the traffic

of mobile devices under its control. The number of participating
mobile devices will impact the CoAST performance. In this sub-
section, we evaluate the performance of CoAST when only a por-
tion of mobile devices support it.
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Figure 15: The impact of partial deployment on CoAST per-
formance.

In this set of experiments, we randomly select r% mobile de-
vices to support CoAST, where r varies from 50 to 100. The video
streaming application is used in the evaluation. Each experiment
is repeated 10 times with different random seeds. We report the
average value of all the 100 cells.

The experimental results are shown in Figure 15. It’s clear that
the participation rate has significant impact on the CoAST perfor-
mance. When r reduces from 100 to 50, the average peak reduction
decrease from 27% to 8%. We also observe that the slope of the
curve decreases with the increase of the r value. This is because
the peak value of the background traffic will be higher when the
participation rate is low. Thus, according to Theorem 2, the peak
reduction achieved by CoAST will be much lower. This set of ex-
periments indicate the importance of increasing the participation
rate in CoAST.

To analyze whether partial deployment will impact the user expe-
rience of early adopters or non-adopters, we compare the buffering
time of streaming applications in the above experiments and that in
LTE networks. The buffering time of each stream in both scenarios
are the same in all experiments. This is because CoAST tries to sat-
isfy the delay constraints of all adopters. When the network is not
very congested, their delay constraints can be easily satisfied. In
contrast, when the network is persistently congested which is un-
common in our dataset, adopters behave the same as non-adopters,

i.e., downloading as fast as possible without rescheduling their traf-
fic.

Therefore, the partial deployment will primarily impact the peak
reduction with little impact on the user experience of mobile appli-
cations.

7.2.4 The Impact of Design Choices
In this subsection, we evaluate the impact of CoAST parameters

and network factors on the performance of CoAST.
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Figure 16: The impact of interaction frequency between UEs
and the market proxy.

In the first set of experiments, we analyze the impact of the inter-
action frequency between the UE and Market proxies. We change
the interaction interval (i.e., δ) from 50 ms to 700 ms, while other
parameters are kept unchanged. The video streaming application is
used in the evaluation. We report the average value of all the cells.

The experimental results are shown in Figure 16. When the in-
teraction interval is less than 100 ms, CoAST achieves similar per-
formance in terms of peak reduction. As the interval increases from
100 ms to 500 ms, the average peak reduction slightly drops from
27% to 24%. When it further increases to 700 ms, the obtained
peak reduction is quickly reduced to 15%. This is because the con-
trol plane of CoAST utilizes an iterative protocol that gradually op-
timizes its performance in each iteration. When interaction interval
is too large, it is hard for the system to converge to the optimal so-
lution. On the other hand, increase in interaction frequency results
in more communication overhead. From our experiments, we find
that 100 ms is a good choice as it achieves good tradeoff between
performance and overhead.
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Figure 17: The impact of the delay between UEs and the mar-
ket proxy. The interaction interval is 100 ms.

In the second set of experiments, we analyze the impact of the
distance between the UE and market proxies. We vary the RTT
between them from 10 ms to 90 ms. The results are reported in
Figure 17. We observe that the RTT between UE proxy and market
proxy has very small impact on peak reduction. This indicates that
CoAST can still achieve good performance even if it is not possible



to deploy the market proxy in cellular network elements close to the
end user devices, like eNodeB in LTE or NodeB in 3G networks.

8. DISCUSSION
In this section, we discuss how the mechanisms proposed by

CoAST interact with other existing and proposed mechanisms in
the RAN.

3GPP quality of service: The LTE specification provides a QoS
model based on Quality Class Indicators (QCI) [5]. A UE may
create bearers with one of up to 9 QCI classes, each with a differ-
ent priority (diffserv), packet delay budget, loss rate, and bitrate
guarantee. Many cellular providers today reserve QCI only for
managed services (e.g., IMS), and do not expose QCI classes to
third party applications. Because CoAST is an over-the-top proto-
col that can operate without any support from 3GPP infrastructure,
it is applicable even on networks which do not expose QCI. Fur-
thermore, QCI provides a static and inflexible partitioning of ap-
plications into a small number of priorities. It is not sufficient for
scenarios presented by both our examples — streaming and web
browsing — in which the same application requires different QoS
and delay tolerance at different times, depending on the context.
Furthermore, any non-collaborative mechanism cannot coordinate
behavior across multiple UEs the way that CoAST does.

Congestion aware pricing/control: Access to real-time conges-
tion information at the eNodeBs is not exposed through 3GPP stan-
dardized interfaces. Therefore, to remain independent of vendors-
specific implementations, CoAST does not assume any access to
the eNodeB, including information about whether there is cell con-
gestion or not. Instead, it tries to continuously minimize the peaks
across the applications whose traffic is managed through its APIs,
independently of other background traffic. If real-time congestion
information could be made available, it could easily be used to
trigger when CoAST optimization mechanisms kick-in and provide
improved fidelity and price control to the market proxy’s demand
estimation step. We leave this extension to future work.

RNC/eNodeB schedulers: The UMTS RNC or LTE eNodeB
have a scheduler that allocates scrambling codes (variable sized
slices of the spectrum) to UEs every 2ms based on their demands,
QCI, channel noise, and overall cell congestion. Beyond differen-
tiation using QCI, this scheduler is application context agnostic.
CoAST does not interfere with this scheduler because it operates
at a much coarser granularity (hundreds of msec). CoAST adds an
additional application aware layer of control on the top, and helps
the RAN scheduler by reducing demand peaks themselves, thus re-
ducing the need for the RAN scheduler to allocate less than what
UEs demand. However, the RAN scheduler can have an impact on
applications that use CoAST because it may restrict the bandwidth
available to a UE (because of noise or congestion), and thus de-
crease the amount of time an application’s data can be delayed. To
solve this problem, CoAST should take the radio link condition into
consideration. We leave it for future work since it requires deeper
integration with the eNodeB scheduler.

Energy vs. congestion tradeoffs: Several proposals have been
made in the literature to help mobile devices save energy by batch-
ing mobile traffic into short concentrated bursts and reducing the
time UE radios spend in the active state, e.g., [24, 15]. It would
seem that CoAST proposes the opposite philosophy—spread out
traffic to minimize congestion. However, in reality, these two mech-
anisms are relatively complementary. CoAST can just as easily
work with applications where data transfers occur in bursts—e.g.,
web browsing. All CoAST advocates is that when there is con-
tention, priority be given to the traffic on which users are waiting as
opposed to applications that are just filling up their buffers. While

this can increase the amount of time needed to transfer an appli-
cation’s background data, as Figure 14 shows, the increase is not
substantial. An interesting future use of CoAST is for applications
to increase their price based on how much available battery they
have, thus prioritizing their transfers over everyone else.

Potential for price manipulation: Because CoAST’s mecha-
nisms do not force users to transfer any data after they have indi-
cated their demand forecast, it is possible that malicious users may
increase the price others have to pay by falsely forecasting high
demands. While it is not easy to detect one-off instances of such
behavior (a user’s demand may legitimately have changed), it is
easy to detect systematic abuse over a period of time by statistically
comparing forecasts to actual data transfers using cellular providers
existing data tracking mechanisms. Abusers may then have their
bids ignored in the future, thus effectively removing them from the
set of CoAST managed devices. With incremental deployment, it
is possible that some legitimate applications don’t support CoAST,
resulting in the discrepancy between reported traffic and the real
traffic. To solve this problem, the UE proxy needs to report the flow
information of those adopters, while the CoAST will only monitor
those flows.

Impact of handover: Finally, we briefly describe CoAST’s in-
teractions with mobility mechanisms, i.e., handover. UEs detect
when a handover takes place by querying their baseband chip for
the current cell id. They inform the market proxy for every han-
dover, which then simply assigns the UE’s projected demand to
the new cell and recomputes the demand for both the old and new
cells. Because we expect each market proxy to cover a relatively
large area (we expect one market proxy per P-GW), the number
of inter-proxy handoffs are few and are handled by the UE simply
reconnecting to the new market proxy.

9. RELATED WORK
The idea of time shifting traffic to reduce the peak throughput

over a link is not brand new. Many ISPs use traffic sharping against
bulk flows to reduce the peak of inter-domain traffic [19]. Laoutaris
et al. [17, 16] proposed intentionally using diurnal variations in
Internet traffic to transfer delay tolerant bulk data over the Inter-
net at off-peak times. With peak pricing, these shifts can also re-
duce cost. Recently, Ha et al. [12] applied the idea of medium-to-
long time scale shifting to cellular networks and proposed a time-
dependent pricing mechanism, TUBE, to motivate mobile users to
shift some cellular traffic sessions from peak time to off-peak times
in exchange for lower prices. CoAST is fundamentally different
from TUBE in many aspects. First, TUBE utilizes medium-to-long
time-scale variation of the background traffic and thus are only suit-
able for applications that can tolerate substantial delays. Second,
CoAST requires no involvement of mobile users, while TUBE re-
quires user change their behavior. Third, CoAST also has a data
plane to schedule traffic, while TUBE only focuses on the control
plane. In addition, our approach is compatible with medium and
long time scale traffic shifting: our work can reduce the short time
scale peaks that will remain after other data is time shifted by hours
or 10s of minutes.

In addition to reducing traffic peaks, time shifting mobile traffic
can be beneficial in saving device energy. For example, one set of
approaches [8, 27] utilize the observation that aggregation of traf-
fic can reduce energy by avoiding the excessive energy-consuming
RRC transitions and tail energy that occur in 3G and LTE net-
works [24, 15] when traffic is transfered in disjoint time periods.
Studies show that mobile applications have sufficient periods of
sparse traffic transfer to make these approaches useful for energy
saving with relatively little traffic delay [23]. Another approach



saves device energy by scheduling transfers when signal strength
is strong [26], leveraging the observation that energy consumption
per bit increases when signal strength degrades.

Our approach is not directly compatible with approaches that use
scheduling to reduce energy because both approaches operate on a
similar time scale but with different objective functions. To use
an energy saving scheduler with a peak reduction scheduler would
require an integrated objective function that minimizes a combina-
tion of device energy and cost to use the shared link, while meeting
deadlines. An adaptive approach may be most appropriate, where
reducing cost is favored when device energy is plentiful, and re-
ducing energy is favored when device energy is low. In its most
simplistic form, a controller could simply switch from one sched-
uler to the other based on a device energy threshold. More complex
approaches are obviously possible and are left to future work.

10. CONCLUSIONS AND FUTURE WORK
In this paper, we present a new approach to improving the capac-

ity of cellular network cells through application-aware collabora-
tive microscheduling and delaying of traffic. Our implementation,
CoAST, supports applications such as streaming and web-browsing
that are not normally considered to be delay tolerant, but yet ac-
count for over 70% of cellular network traffic today. Our extensive
evaluation demonstrates shows the approach’s potential by show-
ing that it can reduce traffic peaks by up to 50%, and increase the
capacity of cells to serve such workloads by up to 20% without any
degradation to user experience. There are a number of future issues
to consider. These include implementing a fully functioned web
browser that supports CoAST and field test of the system with mo-
bile users, and incorporating additional factors such as energy use
and congestion awareness into CoAST’s scheduling algorithms.
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Appendix
PROOF 1. The goal of the market proxy is to minimize the max-

imal throughput on a cell sector over time, as shown in Formula 2.
To decompose this problem and derive a distributed protocol, we
rewrite the objective of the market proxy as follows:

min α (6)

s.t. ∀t,
∑
i

thi(t) ≤ α (7)

Introducing a dual variable p(t) > 0 (i.e., price for downlink
traffic through the cell sector at time slot t) for each constraint
of (7), we define the Lagrange dual function

L({p(t)}) = minα+
∑
t

p(t)(
∑
i

thi(t)− α) (8)

To make L({p(t)}) finite, the coefficient of α should be 0:

∑
t

p(t) = 1 (9)

Then, we simplify L({p(t)}) to

L({p(t)}) = min
∑
t

p(t)
∑
i

thi(t) (10)

= min
∑
i

∑
t

p(t)thi(t) (11)

The original problem can be decomposed into independent prob-
lems for each mobile applications. If we aggregate the throughput
by UEs, we obtain

L({p(t)}) = min
∑
e

∑
i∈e

∑
t

p(t)thi(t) (12)

=
∑
e

min
∑
i∈e

∑
t

p(t)thi(t) (13)

Therefore, the original problem is decomposed into independent
sub-problems for each UE. The objective of each UE is to select
the(t) among all feasible values so that

∑
i∈e

∑
t p(t)thi(t) is

minimized. The derived objective of each UE is exactly the same
as (4).

The market proxy, running the master program of the decompo-
sition method, gets feedbacks (i.e., the(t)) from UE proxies and
updates {p(t)} using a projected sub-gradient method as described
in (3). Therefore, the objective of Formula (2) is equivalent to the
control protocol in Section 4.3.

PROOF 2. Let xt =
∑n

i=1 thi(t) have a probability density
function f(xt) and a cumulative probability distribution function
of F (xt). Let yt = thb(tt) have a probability density function
g(yt) and a cumulative probability distribution function of G(yt).
Let xmax and ymax be the lowest value of xt and yt such that
F (xt) = 1 andG(yt) = 1, respectively. Since the number of flows
associated with a cell is limited, xmax and ymax are finite. Let p
be the convolution of f and g, and P be its cumulative probability
distribution function. Then the sum zt = xt + yt is a random vari-
able with the density function p(zt) and the cumulative probability
distribution function of P (zt). Since xt and yt are independent,
P (zt ≤ xmax + ymax) = 1.

Let z∗ = maxt zt where t ∈ {1, 2, . . . , T}. The probability
density function of z∗, h(z∗) is

h(z∗) = T [P (z∗)]T−1p(z∗) (14)

The expected value of z∗ is

E(z∗) =

∫ +∞

−∞
z∗T [P (z∗)]T−1p(z∗)dz∗ (15)

=

∫ 1

0

P−1(z∗
1
T )dz∗ (16)

Therefore, when T → +∞, we have

lim
T→+∞

E(z∗) =
∫ 1

0

P−1(1)dz∗ = xmax + ymax (17)

Since CoAST minimizes xmax with ymax unchanged, it is equiv-
alent to minimizing maxt

∑
i thi(t)+ymax when T → +∞.


