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Abstract

Mobile operators are leveraging WiFi to relieve the pressure posed
on their networks by the surging bandwidth demand of applica-
tions. However, operators often lack intelligent mechanisms to
control the way users access their WiFi networks. This lack of so-
phisticated control creates poor network utilization, which in turn
degrades the quality of experience (QoE). To meet user traffic de-
mands, it is evident that operators need solutions that optimally
balance user traffic across cellular and WiFi networks. Motivated
by the lack of practical solutions in this space, we design and im-
plement ATOM- an end-to-end system for adaptive traffic offloading
for WiFi-LTE deployments. ATOM has two novel components: (i) A
network interface selection algorithm that maps user traffic across
WiFi and LTE to optimize user QoE and (ii) an interface switching
service that seamlessly re-directs ongoing user sessions in a cost-
effective and standards-compatible manner. Our evaluations on a
real LTE-WiFi testbed using YouTube traffic reveals that ATOM re-
duces video stalls by 3-4 times compared to naive solutions.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless Communication

Keywords

Cellular Networks; WiFi offload; Traffic Management

1. INTRODUCTION
Cellular networks are facing an unprecedented increase in data

traffic due to the popularity of bandwidth-intensive mobile services.
Although operators are continuously upgrading their networks to
cope with such increase, the growth in network capacity is still con-
siderably behind the bandwidth demand [1]. Hence, most operators
around the world (e.g., China Mobile, AT&T) are aggressively de-
ploying WLANs for additional capacity since WiFi is cheap and
easy to deploy at scale [2, 3, 4]. However, sustaining good QoE
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in such heterogeneous deployments requires a much more sophis-
ticated solution than simply deploying unmanaged WLANs. For
next-generation mobile networks, a solution that carefully manages
the network interface (e.g., WiFi vs. LTE) of user flows forms a
critical component of network optimization. Although such solu-
tions exist today, they suffer from the following limitations:
Drawbacks of Current Solutions: (i) Naive, static and coarse-
grained policies: Operators rely on connection managers on user
devices that are generally configured to select WiFi as the default
interface when available [5]. Since WiFi APs are usually deployed
in hot-spot areas to begin with, one can expect a large number of
users to receive a strong signal from WiFi APs during peak periods.
Hence such naive policies do not translate to higher user through-
put, since the load of the WiFi AP is not accounted for in interface
selection. In addition, most operators do not have the capability
to switch the interface of a flow seamlessly (i.e., without breaking)
across WiFi and cellular; the interface selection is thus decided only
when initiating the connection. Hence, the selection is not adaptive
to the dynamic conditions of wireless networks. Finally, the same
level of throughput translates to different levels of QoE for a user
depending on the application. Hence, loading all the application
flows [6, 7] of a user on to the same interface does not translate to
improved QoE for all the flows as the capacity of that interface has
to be shared by multiple such flows from other users as well. (ii)
Lack of practical solutions: While some studies [7, 8, 9, 10] have
focused on interface selection, they only solve a part of the problem
by simply providing algorithms for interface assignment assuming
that a framework for seamless switching exists. In addition to the
theoretical complexity of the problem, designing such a framework
alone has several practical constraints and challenges that it must
account for to deliver a readily deployable solution. While there
exist some systems efforts that schedule user data across WiFi and
cellular interfaces [11, 12], they are limited to delay-tolerant traffic
and cannot support real-time applications such as video.
Challenges: (i) Practicality: The framework must be light-weight,
scalable and designed as an overlay solution over current LTE net-
works without requiring additional standards support. (ii) Adap-
tiveness: To sustain high QoE, the system must dynamically choose
interfaces in order to adapt to flow arrivals, departures and chang-
ing wireless link conditions. (iii) Seamlessness: In the event of an
interface (and thus IP address) change during an ongoing user ses-
sion, the framework should not break the existing connections and
should seamlessly migrate user flows between WiFi and LTE. (iv)
Business interests: Seamless flow migration currently requires that
all WiFi traffic gets backhauled to the LTE core network for proper
IP anchoring, thereby significantly increasing the operational costs.
Thus, it is challenging to provide a dynamic solution given the lack
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of incentive for operators to invest heavily on user QoE for OTT
(over-the-top) traffic. Thus, the key challenge is to not just design
a scalable, dynamic and seamless traffic management solution, but
to also build an end-end system that can be easily deployed in any
operator’s core network (i.e. being operator agnostic) without re-
quiring tight data plane integration between WiFi and LTE.

To address these challenges, we design ATOM- a system that adap-
tively maps user flows to the appropriate network interface to im-
prove user QoE. ATOM has two key components: (i) A fine-grained
traffic management solution that uses a practical algorithm for in-
terface selection to maximize the network-wide utility. (ii) A switch-
ing service that seamlessly changes the interface for certain user
flows without the need for data plane integration, thereby reducing
backhaul costs for the operators. We observe that certain charac-
teristics of HTTP video streaming and browsing can be exploited
to enable seamless re-direction of such flows, via HTTP proxies,
to avoid backhauling these traffic types from WiFi to the LTE net-
work. However, ATOM’s formulation is not limited to HTTP and
also supports non-HTTP flows (although such flows would not ben-
efit from the backhaul reduction). Nevertheless, we believe that
ATOM offers important backhaul cost savings since most of the traf-
fic in mobile networks is video streaming over HTTP [13].

We have prototyped and evaluated ATOM on a heterogeneous LTE-
WiFi testbed using real Web traffic. Our evaluations show that
ATOM effectively reduces the video buffering periods for a user from
an average of 8 to 2 per minute. We also evaluated the seamless in-
terface switching functionality of ATOM with several Web video ser-
vices. To the best of our knowledge, this is the first detailed design
and implementation of a practical system that manages user traffic
across LTE and WiFi networks. A noteworthy aspect of ATOM is that
it is operator-agnostic and standards-compatible, and can hence be
readily deployed for any operator looking to manage its LTE and
WiFi networks efficiently. Our contributions are multi-fold: (i) We
establish the hardness of the interface assignment problem and pro-
pose a greedy algorithm with performance guarantees under certain
conditions. Our algorithm is scalable and practical to implement.
(ii) We design and build an end-to-end dynamic traffic management
system that seamlessly switches the interface for user flows and (iii)
we conduct extensive evaluations using both prototype experiments
and large-scale simulations.

2. BACKGROUND AND MOTIVATION
In this section, we give a brief overview of the LTE network

architecture, then expand on the evolution of the integration of WiFi
with LTE and motivate the need for an effective traffic management
solution for LTE and WiFi networks.

2.1 LTE Networks
The top-half of Figure 1 shows a simplified 4G LTE network

architecture, mainly consisting of two parts: the Evolved Packet
Core (EPC) Network and the Radio Access Network (RAN). The
EPC or the mobile core network consists of both the control and
data plane functions. The control plane functionality is provided
by the MME (Mobility Management Entity), HSS (Home Sub-
scriber Server) and the PCRF (Policy and charging rules function).
The MME handles session and subscriber management including
user authentication, mobility management and idle terminal loca-
tion management. The HSS includes a database that stores the user
profile information while the PCRF manages the service policy and
configures the QoS parameters for each user traffic flow. The data
plane functionality in the EPC is split between the S-GW (Serving
gateway) and the PDN-GW (Packet Data Network gateway). The
S-GW acts as a local mobility anchor for user sessions as clients

Figure 1: LTE Network Architecture.

move across base stations. The PDN-GW is connected to multiple
S-GWs and routes user traffic towards external networks, while also
performing policy enforcement for resource management, packet
filtering and charging functions. The RAN includes basestations
(or eNodeBs) that perform radio resource management and inter-
ference mitigation.

2.2 WiFi Integration in Operator Networks
Several standard bodies such as 3GPP and WiFi Alliance (WFA)

have defined solutions for the network integration of LTE and WiFi.
These solutions are mainly classified into two types: (i) Access
control: To enable subscriber validation, seamless authentication
and billing across LTE and WiFi networks is an important step to
ensure WiFi integration. However, the method of authentication
varies across operators. Most of the operators provide SIM-based
authentication [14] enabling them to maintain a unified subscriber
database for both their LTE and WiFi networks, while other oper-
ators have adopted the traditional web-based authentication which
requires the users to enter their credentials in the browser. (ii) Data-
plane integration: To enable offloading capabilities and seamless
mobility between LTE and WiFi networks, a tight data-plane inte-
gration is required across the networks. Such integration involves
the backhauling of WiFi traffic to the LTE core network. Specifi-
cally, 3GPP has standardized the I-WLAN architecture [15] to in-
tegrate WiFi traffic into LTE’s mobile core network. The architec-
ture as shown in Figure 1 enables the integration using the ePDG
(evolved Packet Data Gateway), which serves as a gateway con-
necting the WiFi access points with the PDN gateway. IPsec tun-
nels are established between each mobile device and the ePDG,
and the IP address is anchored at the PDN gateway. Since the IP
address is maintained across the WiFi and LTE networks, flows can
be seamlessly migrated across the networks. The PMIPv6 protocol
is employed and the ePDG updates the IP address binding at the
PDN gateway after authentication and tunnel establishment with
the mobile device. Although tight integration will enable opera-
tors to ensure policy control, better QoE management and seamless
mobility over their networks, it has been resisted by most operators
due to the significant increase in backhauling costs.

2.3 Current Deployments
In the near future, it is expected that operators will transition to

using their WiFi networks for new services and revenue generation
and provide better QoE for their users rather than just offloading for
coverage or during congestion. Moreover, operators are quickly up-
grading their network to LTE that offer superior rates than 3G net-
works and are deploying WiFi APs in areas of high network access.
However, current deployments are not designed to use the LTE and
WiFi network optimally to ensure good QoE for applications and
users. Although most devices are pre-configured with connection
managers, they mainly implement functions for network discovery,
selection and authentication.
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Figure 2: Limitations of Current deployments.

Short-comings: We bring to light a few key issues with current
deployments through experiments on our LTE testbed and address
them in the design of ATOM. The experiments are conducted using
a network of a single LTE basestation and a WiFi AP.
(i) Naive policies: Most connection managers [5] are configured
with simple policies that ensure the device connects to a WiFi AP
in case a connection is made. A few connection managers use the
WiFi interface only if the signal strength is above some threshold.
However since they do not take the current load on the AP into
account, the QoE of the users could suffer during congestion. To
drive our point, we setup an experiment such that 6 users are ran-
domly distributed and are within the coverage of the WiFi AP, while
2 users are outside the coverage of the WiFi AP. All the 8 users
stream videos from YouTube with an average bit-rate of about 2
Mbps. We plot the throughput obtained by 3 out of the 6 WiFi
users and the 2 LTE users in Figures 2(a) and (b) respectively. We
see that the throughput of WiFi users is less than the average bit-rate
(2Mbps) of the video resulting in stalls in the video stream while
the throughput of LTE users is above the average bit-rate resulting
in a smooth stream. Figure 2(c) depicts the resource utilization:
while the WiFi AP is over-utilized, the utilization of the LTE base-
station is only 25%.
(ii) Static decisions: Moreover, it is not sufficient to make inter-
face selection decision at the initiation of a user flow as wireless
conditions change significantly due to user arrival/departure and
mobility. To drive our point, we use a similar setup with 4 users on
the WiFi AP. As shown in Figure 2(d), initially all the WiFi users
receive throughput in excess of the video bit-rate. At around 10
seconds, we move a couple of the WiFi users away from the AP at
walking speeds. As a result of the user mobility, the WiFi AP is un-
able to support the video rates of its users as shown in Figure 2(d)
affecting the video of the users mid-stream. However, to enable
dynamic traffic management, operators are required to poses the
capability to switch the interface of user flows seamlessly across
their LTE and WiFi networks. Such a capability needs tight data-
place integration of the WiFi network with the LTE network. While
the integration of access control (authentication) methods for WiFi
have been widely adopted by operators [4], tighter integration of
data or bearer plane to the LTE network has been resisted by most
operators, mainly due to: (1) Backhauling large amounts of WiFi
traffic through their LTE core network significantly increases both
Operational costs (OP-EX) in terms of backhaul costs and Capital
costs (CAP-EX) in order to scale their LTE core gateways. (2) Most
of the traffic and services on mobile networks is OTT (Over-the-
top) that does not generate direct revenue for the operators. Hence
there is little incentive for operators to invest significantly in or-
der to provide QoE for such services. (3) In most scenarios, we
discovered that the WiFi business units of operators are managed
independently from the LTE business.
(iii) Coarse-grained policies[6, 7]: Operators will desire the ability
to perform interface selection on a per-application level rather than

a per-user or per-device level. This capability ensures (a) opera-
tors can provide QoE depending upon the application requirements
and (b) content providers may be willing to pay mobile operators
for better QoE for users accessing their applications in the future.
Operators will need to differentiate the performance of such flows
over other OTT traffic. We conduct an experiment to show the dis-
advantage of the inability to perform fine-grained traffic manage-
ment. The experiment is setup with 8 LTE users within the cov-
erage of the WiFi AP and 4 LTE users outside the WiFi coverage.
All the 8 users download a large file from the WiFi AP. One of the
WiFi users (User#5) also streams a YouTube video of average rate
2Mbps. All the 4 LTE users stream the same YouTube video from
the LTE basestation. Figure 2(e) plots the average number of stalls
in the video session of the 4 LTE users and User#5. Scenario 1
represents the case where all the traffic of User#5 is mapped to the
WiFi AP since the user is within the coverage of the AP. Clearly, the
video flow of User#5 suffers significantly as the WiFi AP is con-
gested. Scenario 2 represents the case with user-level traffic man-
agement where both the flows of User#5 (video and file-download)
are moved to the LTE network. This results in the LTE network
getting congested and the video of all the 5 users suffer. A fine-
grained traffic management solution would move the video flow of
User#5 to LTE while keeping the file-download flow on the WiFi
AP, resulting in good performance for the video of all the 5 users.

3. ATOM DESIGN
To address the afore-mentioned drawbacks, we propose ATOM,

an end-to-end traffic management system that enables operators to
flexibly and efficiently manage user traffic flows across a heteroge-
neous network of LTE and WiFi APs. Before describing ATOM in
detail, we explain our key design considerations:
(i) Network-centric: ATOM is designed as a centralized solution that
leverages a complete network view (of cell load, user QoE etc.)
to determine the optimal interface selection. This gives ATOM an
important advantage over client-based distributed solutions (e.g.,
[8]), which require proprietary signaling from the network (creating
wireless link overhead and requiring change in standards) to obtain
load information easily accessible by ATOM. ATOM is a gateway-
level solution that can be deployed within the LTE mobile core net-
work as opposed to being deployed within each LTE eNodeB. This
design has the following benefits: (a) Deep packet inspection (DPI)
modules, policy engines etc. are already present within the LTE
EPC and ATOM interfaces with these gateways to acquire appropri-
ate information. Hence it is better to co-locate ATOM with them.
(b) Deploying ATOM in each basestation hinders deployability as it
increases the basestations computational requirement.
(ii) Scalability: While maintaining a centralized view of the net-
work, ATOM is carefully designed to scale to large deployments by
treating each LTE cell (and the WiFi APs in its coverage) in iso-
lation when deciding the network interface for users.Since traffic
from an LTE cell is offloaded to the WiFi APs that are within its
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Figure 3: ATOM’s Architecture.

coverage, multiple ATOM instances run in parallel where each in-
stance independently manages the user flows in a given LTE cell.
This design choice ensures that ATOM can be scaled-up as the op-
erator deploys more LTE basestations and/or WiFi access points as
opposed to traditional middle boxes that need to be scaled-out. This
design also ensures further performance optimizations, wherein ATOM
instances are instantiated only for congested cells.
(iii) Seamless Switching: ATOM incorporates a mechanism to seam-
lessly switch user traffic flows across LTE and WiFi interfaces. This
mechanism is designed such that (1) it is cost effective (2) it enables
adaptive or dynamic traffic management given that wireless condi-
tions change over time. Moreover, it is hard to estimate or define
application requirements on the onset of a TCP connection from a
mobile device. Hence, ATOM sets simple static policies on the mo-
bile device, for instance all connections are initiated over the WiFi
interface. With seamless switching, the appropriate decision for an
application flow can be taken while the session is ongoing. This en-
sures operators can define more sophisticated policies, for instance
based on resolution of video selected by the user.
(iv) Pricing: Users are generally charged based on two plans: (i)
Price per byte: This is a fixed amount per KB of data (ii) Tiered
data-caps: Users have a data limit (e.g., 3GB per month) paying a
fixed monthly price. Moreover, operators offer WiFi free of cost
to their current customers. However, such a model may change as
operators offer similar carrier-grade service on their WiFi networks
as they do on their LTE networks. With this in mind, we design
ATOM to incorporate general pricing mechanisms to ensure that its
design is applicable to either of the above pricing scenarios.

Considering the above, ATOM is instantiated as a gateway-level
solution in the operator’s access network external to the basesta-
tions as shown in Figure 3. Since the gateway will typically handle
traffic for multiple basestations, it hosts multiple ATOM instances,
each handling traffic for one LTE basestation. ATOM’s design has
two components: (i) Network Interface Assignment (NIA) compo-
nent and (ii) the Interface Switching Service (ISS).

4. NETWORK INTERFACE ASSIGNMENT
This is the component that manages all user flows that belong to

a given LTE cell. Specifically, it takes as input the signal strength of
every user to its potential set of WiFi APs and the LTE basestation,
relative QoS priority (or weights) and the current network interface
of each user flow. It then computes the appropriate network inter-
face (i.e., a specific WiFi AP or the LTE basestation) for each user
flow. In this section, we formulate the network assignment as a util-
ity optimization problem with a per-flow utility function to ensure
differentiated QoS across applications.
Network Model: ATOM operates at the level of a LTE cell where
one or more WiFi APs are deployed within the coverage of that cell

as in Figure 3. ATOM also handles scenarios where the coverage
of several WiFi APs overlap resulting in certain users having the
option to connect to multiple WiFi APs. Hence, NIA computes
the specific WiFi AP or LTE basestation that is used by each user
flow. Since NIA operates at coarse time-scales (T is in orders of
seconds), it leaves the fine-grained packet scheduling function to
be performed by the LTE basestation and the WiFi APs locally. To
allow this decoupling, the throughput is modeled as the average
throughput of the client over the time T based on the scheduling
policy. The problem can be formulated as:

x∗ = argmax
x

B∑

j=0

N∑

i=1

xjiU(tji) (1)

subject to
B∑

j=0

xji = 1

where B is the total number of WiFi APs within the coverage of
the LTE basestation (represented by j = 0). The indicator variable
x = {xji, ∀j} denotes the association vector for user flows i.e.,
xji = 1 if flow i is assigned AP j. tji is the average throughput
estimated for flow i when associated with the AP j. The constraint
ensures that exactly one WiFi AP or LTE basestation is chosen for
a user flow. Different flows of a user are allowed to pick poten-
tially different WiFi APs. In practice, this can be realized using the
virtualization capability found in most WiFi cards to create virtual
WiFi networks that can run on a single WiFi physical interface [16].
The challenge in solving the above optimization lies in the utility
(and throughput) function that couples the decisions of user flows
assigned to the same interface.
Throughput and Fairness Models: LTE and WiFi have different
MAC protocols with potentially distinct fairness (bandwidth shar-
ing) policies that directly affects the throughput of the user flows.

LTE eNodeBs typically employ proportional fair scheduling. They
also schedule the resources to the user flows in proportion to a
weight that defines the relative priorities of the flows. In this case,
the throughput of a user can be shown to depend on the total num-
ber of the other users and their relative weights as follows.

tji =
wi × rij∑

i∈Nj
wi

∀i ∈ Nj (2)

where wi is the weight for user flow i; rij is the average link-layer
rate (or the PHY rate) of user i on AP j (the eNodeB in this case)
depending on the average signal-to-noise ratio (SNR) of the user
on that AP and Nj is the total number of active users on AP j.

On the other hand, WLANs when operated distributively, typ-
ically use a throughput-based fairness model. Here, all the users
served by the same AP get the same throughput at steady state.
This is because the APs implement a round-robin scheduling sch-
eme for the downlink packets. In this case, the average downlink
throughput of a WiFi user can be expressed as:

tji =
L∑

i∈Nj

wiL
rij

∀i ∈ Nj (3)

where L is the average size of a packet in bits.
However, when the operator controls both the LTE and WiFi net-

works, then it is possible to instrument a uniform fairness policy
(say proportional fairness) across both these networks. In this case,
the throughput of WiFi users would follow a throughput model
similar to that for LTE. Also, we assume that interference between
neighboring LTE cells and WiFi APs is taken care of through their
respective interference management algorithms (frequency reuse in
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LTE and channel selection in WiFi), so as to not affect the through-
put models.
Choice of Utility Function: While the design of NIA would work
with concave utility functions in general, we incorporate the loga-
rithm function as the utility function for all user flows. Although
applications might have diverse requirements for QoE and oper-
ators will want to provide differentiated services to different ap-
plication flows, NIA employs the log utility function generally to
all application flows since: (a) It ensures a simple system design
(b) recent advancements in end-to-end adaptation by application
flows (for instance adaptive video streaming [17]) allows model-
ing most application traffic as elastic. Such a function ensures that
the marginal utility of a flow decreases as the throughput increases.
(c) log functions are extensively used as the utility function for re-
source management in wireless networks [18, 19]. Hence, NIA de-
fines the utility function for every user flow as the product of the
weight of the flow and the log of the average throughput obtained
by the flow. Operators can set the weights of the flows accordingly
to differentiate among applications and/or users.

U(ti) = wi × log(ti) (4)

Pricing Model: The notion of pricing the different interfaces based
on their consumption can be easily incorporated in our utility frame-
work. The utility of an interface assignment for a user flow i can be
updated as (U(tij)−Eij), where Eij is the associated cost for flow
i using the interface j and is defined based on the pricing model of
the operator: (i) Pricing per byte: Eij can be made to capture con-
sumption in the current epoch as Eij = Cjwi [8], where Cj is the
cost per unit weight of the flow. Since the actual flow throughput
in an epoch depends on multiple factors, the cost is typically based
on the weights [8], which influences how throughput is shared. (ii)
Tiered Data-caps: On the other hand, Eij can capture data usage

till the previous epoch as Eij = Cj
Dkj

nk
. Cj would now be the

cost per unit KB of data (given by dividing the data cap of the user
by the monthly cost of the plan), Dk is the total data usage till the
previous epoch by user k on network j, and nk is the total num-
ber of flows at user k, thereby splitting the cost of a user equally
across all its flows. Hence, the associated cost of an interface Eij is
higher for the flows of the users with higher data usage in the past
on that interface. Instead of a linear function, one could also con-
sider other functions of data usage. Note that the pricing is mainly
used to serve as a deterrent in picking an interface. By appearing
as a constant in a given epoch, it does not directly influence the
per-epoch optimization problem.

4.1 Problem Hardness
Considering even the simplest topology with one LTE eNodeB

and one WiFi AP, the complexity for solving the problem grows
exponentially with the number of user flows. Intuitively, the prob-
lem is hard because the correct choice of a network interface for
a given user flow depends on the exact combination of other user
flows assigned to the APs. Specifically for WiFi, the throughput of
a user flow depends on the PHY rates of the other users attached to
the AP (throughput fairness) and in the case of LTE, the throughput
of a user flow depends on the weights of the other users attached to
the eNodeB (see Equations (2) and (3)). The proof that Problem 1
is NP-Hard for a network of an LTE basestation and a WiFi AP is
deferred to the Appendix. The complexity of the problem further
increases when considering multiple WiFi APs within a LTE cell,
especially the case where some of the APs may have overlapping
coverage. Note that Problem 1 is NP Hard even for the case where
the WiFi APs employ Proportional Fair scheduling. However, for a
certain case when the user weights are unity and both LTE and WiFi

Algorithm 1 NIA Algorithm

1: INPUT: ∀i ∈ N : # of Active user flows, ∀j ∈ B: # of WiFi APs,
S0: Set of Active flows not within the coverage of WiFi,
Sj Set of Active flows within the coverage of AP j.

2: OUTPUT: User flow Association Aj , ∀j ∈ B
3: π ← {B},A0 ← {S0}
4: Lj ← {Sj}, ∀j ∈ B
5: % Outer Loop
6: for x ∈ [1 : |B|] do
7: % Inner Loop
8: for j ∈ π do
9: Aj = ∅

10: A0j = A0 ∪ Lj
11: for i ∈ Lj do
12: i∗ = argmax(i)s.t. i/∈Aj

{
∑

k∈Aj∪i U(tjk) +
∑

k∈A0j−i U(t0k)−
∑

k∈Aj
U(tjk)−

∑
k∈A0j

U(t0k)}

13: Aj ← Aj ∪ i∗

14: A0j ← A0j − i∗

15: end for
16: Uj =

∑
i∈Aj

U(tji) +
∑

i∈A0
U(t0i)

17: end for
18: b← argmaxj Uj
19: π ← π − b
20: Lj ← Sj −Ab, ∀j ∈ B, j '= b
21: A0 ← A0b
22: end for

perform proportional fairness scheduling, the problem is optimally
solvable (proof similar to the load balancing problem in [20]). But
this case is not applicable to ATOM, since ATOM is designed to pro-
vide differentiated QoS to applications and users.

4.2 Algorithm
NIA employs a practical yet efficient greedy algorithm. The al-

gorithm executes in two steps as shown in Algorithm 1. It takes as
input the number of active user flows N , the number of WiFi APs B
within the coverage of the LTE cell, the subset of active user flows
Sj that are within the coverage of the WiFi AP j and the subset S0

that includes flows which are not in the coverage of any WiFi AP.
Note that the sets Sj may not be independent since some users may
be covered by more than one WiFi AP. Initially all active user flows
that are not within the coverage of a WiFi AP are assigned to the
LTE eNodeB (i.e., A0 ← S0). π represents the set of all the WiFi
APs whose users have not been assigned an interface yet and Lj

represents the set of user flows that belong to a WiFi AP’s coverage
but have not been assigned an interface yet (i.e., Lj ⊆ Sj). The
final solution is given by the subsets A0 and Aj that consist of the
flows that are assigned to the LTE cell and WiFi AP j respectively.

In the outer loop at every step, NIA considers each WiFi AP ∈ π
in isolation. It finds the best combination of user flows across the
LTE cell and a particular WiFi AP. It then finalizes the interface
assignment for all the user flows of that WiFi AP, which yields
the highest utility among all the WiFi APs that are part of the set
π (step 18). Having fixed the interface assignment for user flows
of a WiFi AP in a single round, the initial condition is reset with
this assignment. Specifically, the WiFi AP for which the interface
assignment is finalized is removed from the set π (Step 19). The
user flows that are assigned to an interface are removed from the set
Lj of the other WiFi APs (Step 20) that also cover these flows so
that they are not considered in the following rounds. The user flows
assigned to the LTE basestation are added to the set A0 (Step 21).
The steps are repeated for each of the remaining WiFi APs until
the user flows of all WiFi APs have been assigned an interface.
As discussed above, since the assignment of user flows to a LTE
basestation and a single WiFi AP is also computationally complex,
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NIA employs a greedy algorithm to compute the assignment in the
inner loop (steps 8-17).

The inner loop performs the assignment of user flows for each
pair of WiFi AP (whose flows have not been assigned an interface
yet) and the LTE basestation. Initially, no user flows are assigned
to the WiFi AP (Step 9). The assignment for the LTE basestation
(Step 10) is initialized with the user flows that are already assigned
to LTE (A0) and the unassigned user flows that are within the cover-
age of the WiFi AP j (Lj). Starting with these initial assignments,
NIA moves user flows one by one from the LTE basestation to the
WiFi AP such that the incremental utility is maximized. For each
user flow, the incremental utility is the difference in utility with the
current assignment (i.e. LTE) and the interface assignment with the
user flow moved to the WiFi AP (Step 12). NIA stops moving flows
from the basestation to the WiFi AP when none of the remaining
flows result in a positive increase in the marginal utility. After this
step, NIA commits the utility for the particular WiFi AP as shown
in step 16.
Performance Guarantee: Given the complexity of the problem in
the general case, it is hard to claim a worst-case guarantee for our
algorithm. However, extensive evaluations show that average-case
performance is convincing. The algorithm runs in O(B2N) where
B is the number of WiFi APs and N is the number of flows.

5. INTERFACE SWITCHING SERVICE
The goal of the ISS framework is to provide a service to the

NIA to enable dynamically switching the interface of user flows to
ensure effective traffic management. Every T seconds, based on
the decisions made by the NIA, the ISS switches the network for
the appropriate user flows. The fundamental problem in providing
seamless connectivity across networks is maintaining the end-to-
end TCP connection since the IP address of the user changes. While
standards bodies such as 3GPP adopt the approach of maintaining
the same IP address by anchoring all the traffic through a com-
mon gateway, ISS takes a different, yet seamless and low-overhead
approach for HTTP-based traffic flows based on two key observa-
tions: (i) Mobile operators are resisting tight integration of the data
planes of their LTE and WiFi networks to avoid significant increase
in backhauling costs for the WiFi traffic (as discussed in Section 2).
(ii) HTTP is the dominant mobile protocol (over 90% traffic car-
ried over HTTP [21]). More importantly, HTTP-based video traf-
fic accounts for more than 60% of the total bytes carried on mo-
bile networks and is expected to increase to more than 75% [22,
13]. Although UDP protocol is more suited for video streaming,
HTTP/TCP protocol has been employed widely to leverage exist-
ing benefits of HTTP, namely caching, CDNs, traversal through
NAT, content naming etc. Keeping the above mentioned obser-
vations in mind, ISS intelligently leverages certain characteristics
of HTTP-based video streaming and web-browsing (discussed be-
low) to design a switching service that switches network interface
of flows without anchoring the connection through a single gate-
way, thereby avoiding backhauling of WiFi traffic through the LTE
core network. Please note that although ISS takes a different ap-
proach from the 3GPP standard based approaches like I-WLAN,
it is a complementary solution and can be deployed as an overlay
over existing I-WLAN deployments. This ensures that backhaul-
ing can be avoided for atleast HTTP-based flows using ISS, while
remaining flows are backhauled using I-WLAN to ensure dynamic
interface switching. Given that bulk of the internet traffic is HTTP
based including video flows, ISS provides significant cost savings
for the operators by avoiding backhauling HTTP flows.
Quick Primer on HTTP: Traditionally HTTP-based videos used
to be treated as file downloads. However, with recent advance-

ments, two popular schemes have emerged: (i) HTTP progressive
download (PD): In this scheme, video players typically request
the video in byte ranges instead of downloading the whole file.
HTTP-PD was introduced for video pacing i.e., the client requests
chunks of videos at a download rate that matches the playing rate
and avoids wasting bandwidth in case the user quits the player be-
fore the video ends. HTTP-PD also allows users to seek to a later
point in the video. (ii) Dynamically adaptive streaming over HTTP
(DASH): The design of DASH [17] is aligned with HTTP-PD, how-
ever it allows the player to request different encoded versions of
the video ensuring adaptability to network conditions. The original
video is encoded into multiple bit-rates and divided into segments
or chunks that typically contain 4-10 seconds of video. First, the
player downloads a file containing the URL for each chunk for ev-
ery encoded version of the video. The player sends HTTP-GET
requests to the server to download the chunk of the appropriate
bit-rate according to measured TCP throughput. Similarly, brows-
ing traffic typically consists of several relatively small sized objects
(e.g., html, images etc.) and each object is requested by an individ-
ual HTTP-GET request.
Leveraging HTTP: The ISS framework leverages the above char-
acteristics of HTTP-based video streaming and browsing wherein
the content within a session is downloaded using multiple HTTP
GET requests over time. Specifically, when the interface or net-
work of these flows have to be switched, subsequent HTTP-GET
requests of these flows can be performed over the new interface.
Although, typically HTTP-GET requests are multiplexed over ex-
isting TCP connections, sending HTTP requests over multiple TCP
connections in parallel is supported by HTTP. Hence, the subse-
quent HTTP-GET requests are made over one or more TCP con-
nections that are set up over the new interface or network. Although
this applies only to HTTP-based video streaming and browsing
flows, these traffic flows do not need to be backhauled to the LTE
network, thereby saving significant costs for the operator. This is
especially important, given that video traffic accounts for a size-
able portion of the total bytes carried by mobile networks and web
traffic is the most popular traffic type.

5.1 Design of ISS
ISS is designed using HTTP proxies in the LTE network and

a HTTP proxy at the mobile device to enable seamless interface
switching on existing mobile networks as shown in Figure 4. The
applications and the browser on the mobile device are configured
to use the HTTP proxy on the device, which ensures that the HTTP
requests are sent over the appropriate interface. In other words, all
HTTP traffic generated from the device is routed through the HTTP
proxy on the device. The HTTP proxy is a light-weight user-space
program that is capable of proxying the HTTP request from the
application or the browser to either the network proxy or directly
to the content servers. The HTTP proxy listens for commands to
switch interfaces from the Control Logic on the device. Similarly,
on the LTE network-side the ISS framework consists of a HTTP
Proxy and a Control Logic. The Control Logic exposes an interface
for the NIA to send commands for switching the network interfaces
of user flows based on the output of the algorithm. The network-
side Control Logic maintains a persistent TCP connection with the
Control Logic on every device through the LTE network to relay
the commands from the NIA to the appropriate devices as shown in
Figure 4. The HTTP Proxy within the LTE network is employed for
HTTP traffic that excludes video streaming and browsing to ensure
seamless switching for other types of traffic. Most mobile oper-
ators already deploy HTTP proxies for optimizations and caching
purposes. ISS switches the user flows based on the traffic type:
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Figure 4: Interface Switching Service.

1. HTTP-based downloads: These flows include downloading of
medium to large files (e.g., Dropbox), software updates etc. To
ensure that such flows are seamlessly switched between LTE and
WiFi, they are always routed through the in-network HTTP proxy
as shown in Figure 4. Routing HTTP traffic through the same proxy
for both LTE and WiFi ensures that the flow is anchored at a single
server and hence the interface switching at the device is transparent
to the content servers. Specifically upon instruction to switch inter-
faces from the ISS, the HTTP proxy on the device sets up a TCP
connection with the in-network proxy using the new interface. The
in-network proxy tears down the TCP connection over the current
interface before sending data over the new TCP connection to keep
the HTTP session alive.
2. HTTP-based video streaming and browsing: Unlike the previ-
ous traffic type, these flows are not routed through the in-network
HTTP proxy as shown in Figure 4. After receiving a command
from the control logic to switch the network interface for a spe-
cific web session, the HTTP proxy on the device simply requests
the subsequent objects from the new interface, while continuing to
receive existing objects from the current interface. In a similar fash-
ion, for video flows, the HTTP proxy on the device simply requests
the subsequent video chunks from the new interface.

By leveraging HTTP proxies, ATOM realizes a seamless inter-
face switching service that can be readily deployed. Further, with
video traffic not requiring an in-network HTTP proxy, ATOM avoids
backhauling the bulk of the traffic (being video) from the core net-
work. Although, we can avoid backhauling of HTTP-based down-
load flows using HTTP byte-range manipulation at the proxy on
the device, we avoid HTTP header modifications to ensure a simple
design and proper operation across different platforms and applica-
tions.
3. Non HTTP-traffic: ATOM resorts to using standards-based approa-
ches such as I-WLAN to support seamless switching for non-HTTP
traffic. Hence, these flows will need to be backhauled through the
mobile core network.

6. PROTOTYPE
Our test-bed consists of a LTE basestation (or eNodeB), openEPC

software EPC [23], Madwifi-based WiFi APs and Linux laptops as
clients with both Verizon Pantech LTE dongles [24] and Broad-
com WiFi cards (see Figure 5). The eNodeB is a 3GPP Release
9 compliant LTE small cell on the 700 MHz band. Considerable
effort, involving code modifications to the openEPC components,
was spent to integrate the eNodeB (closed-source) with the EPC
to ensure interoperability with commercially available LTE clients
(closed-source). Our EPC network [23] consists of MME, HSS,
PCRF for control plane and S-GW and PDN-GW for data plane
functions. In addition, the Internet gateway provides connectivity
to the Internet and includes key functions such as NAT and DNS.

Figure 5: ATOM Prototype.

The LTE clients are Pantech USB dongles with USIM cards pro-
grammed with the appropriate identification name and secret code
to connect with the eNodeB. Since the eNodeB and the clients
communicate on Verizon’s licensed band, we use custom built fre-
quency converters. These convert the frequency in both downlink
and uplink from 700 MHz to 2.6 GHz, where we have an experi-
mental license to conduct over the air experiments.
Network: We implemented ATOM on the Internet gateway that con-
nects directly to the PDN-gateway. NIA is implemented within
the Click modular router using C++, while the ISS-control is a
standalone C++ application. NIA periodically gathers the follow-
ing information from ISS (a) number of user flows active on LTE
basestation and WiFi APs, (b) current interface used by each flow
(c) weights of application flows and (d) link-layer or PHY rate of
each flow. A control logic component is also implemented within
the WiFi gateway that provides information about active user flows
over the WiFi APs and the link-layer rate of each WiFi user (col-
lected from the APs) to the ISS-control. Once NIA has all the infor-
mation in an epoch, it executes the algorithm to assign the network
interface to each flow and sends a message to the ISS-control with
information about all user flows that need to be switched to a new
interface. The prototype also includes two Squid [25] HTTP prox-
ies in the network side for both LTE and WiFi networks.
Client Device: We implement ISS-control within the Shrpx based
HTTP proxy module [26] that runs as a user-space process. The
Chrome browser is configured using the PAC (Proxy Auto Con-
figuration) file to use the Shrpx proxy as the default proxy for all
applications. Hence, all HTTP requests from Chrome are made to
the Shrpx proxy. Initially when the device comes online, the ISS-
control establishes a persistent TCP connection and registers using
a unique ID with the ISS-control on the network side. When a new
application flow is initiated, the Shrpx proxy always connects using
the WiFi network if available. We now explain the steps involved
when the interface of a particular flow is moved from WiFi to LTE.

In the case of HTTP-based download flows, the following steps
are involved: (a) Upon the initiation of a new connection from the
browser, the shrpx proxy initiates a TCP connection to the Squid
proxy on the LTE network through the WiFi interface.(b) Upon re-
ceiving a command from the ISS-control to switch the network in-
terface from WiFi to LTE, the Shrpx proxy establishes a new TCP
connection with the same Squid Proxy through the LTE network.
(c) The Squid proxy then terminates the previous TCP connections
over WiFi, before sending HTTP data over the LTE network to en-
sure seamless continuity of the HTTP session.
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Figure 6: ATOM ensures good throughput.

In the case of HTTP-based video streaming or browsing flows,
the following steps are involved: (a) Upon the initiation of a new
connection from the browser, the shrpx proxy initiates a TCP con-
nection to the Squid proxy on the WiFi network through the WiFi
interface avoiding backhauling traffic through the LTE network.
(b) Upon receiving a command from the ISS-control to switch the
network interface from WiFi to LTE, the Shrpx proxy establishes
a new TCP connection with a Squid Proxy on the LTE network
through the LTE interface. (c) The Shrpx proxy then forwards
all HTTP requests for subsequent objects from the browser to the
Squid prpxy through the LTE network. (d) The Shrpx proxy breaks
the TCP connections with the Squid proxy over the WiFi network
after all the pending HTTP requests have been downloaded. For
both traffic types, the same procedure is repeated when a connec-
tion has to be switched to WiFi from LTE.

Currently, we employ SPDY [27] as the protocol between Shrpx
and the Squid proxies. Although the network (both LTE and WiFi)
proxies are not required for HTTP-based video streaming or Web
browsing traffic types, they are employed in our prototype since
Shrpx is currently not designed to connect to multiple servers. Since
most Web servers require multiple simultaneous TCP connections,
Shrpx is configured to relay the HTTP requests to the respective
Squid proxy based on the current network interface used by the de-
vice. An important aspect of our implementation is that it can be
readily deployed by instrumenting existing mobile protocols and is
completely standards compatible.

In summary, ATOM executes as follows: (i) User flows always
initiate the connection from WiFi if available and register with the
ISS in the network; (ii) NIA executes periodically to select inter-
faces for all active user flows and (iii) NIA sends a command to the
ISS including user flows with new interface information.

7. PERFORMANCE EVALUATION
In this section, we demonstrate the efficacy of ATOM using exper-

iments on our prototype and large-scale simulations.

7.1 Prototype Evaluation
We consider two types of workloads including video streaming

from YouTube and HTTP based file downloads. We evaluate ATOM
using metrics such as throughput and number of stalls due to buffer-
ing in the video streams (interested readers can see our prototype
demo in [28]). NO-ATOM represents the baseline that maps user
flows to WiFi APs if the user is within the coverage of a WiFi AP.
1) Static Experiment: We setup a network of one LTE eNodeB
and two WiFi APs with a total of 11 users; 5 users are within the
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coverage of WiFi AP1, 4 users are within the coverage of WiFi
AP2 and 2 users can only access the eNodeB. AP1 is placed close
to the eNodeB while AP2 is placed further from the eNodeB and
all the users are distributed randomly. In WiFi AP1, 4 users steam
YouTube videos of average bit-rate 1.5 Mbps while 1 user down-
loads a large-file. In WiFi AP2, 2 users stream YouTube videos
of average bit-rate 1.5 Mbps while 2 users download large-files.
Both the LTE users stream YouTube videos of average bit-rate 1.5
Mbps. We compare the throughput of WiFi users for the case with
and without ATOM (NO-ATOM).

Figure 6(c) and (d) plot the throughput for 3 video streaming
flows on WiFi AP1 and 2 video streaming flows on WiFi AP2.
Clearly, the throughput cannot be sustained to meet the average
bit-rate of the video since both the APs are congested. On the other
hand, ATOM ensures that flows of Users#3 and 4 from WiFi AP1
and User#6 from WiFi AP2 are moved to the eNodeB to ensure
that the throughput received by all users meets their requirement of
1.5 Mbps. Figures 6(a) and (b) plot the throughput received by the
users on the WiFi AP1 and 2 respectively. Hence, by effectively
distributing user flows across LTE and WiFi APs, ATOM decreases
the number of stalls from an average of 8 − 10 stalls per minute
with NO-ATOM to at most 1 − 2 stalls per minute (Figure 7(a)).
ATOM also improves the resource utilization of the eNodeB from
40% to almost 80% as seen in Figure 7(b).

We repeated the same experiment by selecting the interface based
on the strongest signal, labeled as Highest-RSSI. In this case, most
of the users of WiFi AP1 (Users#1,3 and 4) select the eNodeB while
users of WiFi AP2 chose WiFi since users of WiFi AP2 are placed
further from the eNodeB than those of WiFi AP1. Hence, the eN-
odeB gets congested resulting in high number of stalls for all users
including Users#7 and 8 that can only connect to the eNodeB (see
Figure 7(a)). Although this scenario improves the utilization of the
eNodeB (Figure 7(b)), the overall network utilization is lower than
ATOM as WiFi AP1 is largely under-utilized. Hence, even in static
conditions, current solutions cause severe degradation in user QoE
and network under-utilization.
2) Network Dynamics: (i) User Flows Arrival/Departure: In this
experiment, we have a network of one eNodeB and one WiFi AP.
There are 4 users streaming YouTube videos of average bit-rate of
1.5 Mbps. Users#1, 2 and 3 are within WiFi coverage while User#4
can only access the eNodeB. We introduce 2 WiFi users with back-
ground traffic at around 30 seconds into the experiment such that
the flows are active for about 40 seconds. Figure 8(c) plots the
throughput for the 3 WiFi users with NO-ATOM. Initially, the users
receive throughput above their requirement of 1.5 Mpbs. However,
during the time period from 30 to 70 seconds, the throughput of
all the 3 users falls below 1.5 Mbps due to the presence of the 2
background flows on the WiFi AP. On the other hand, ATOM moves
the video flow of User#1 to the eNodeB at around 30 seconds as
shown in Figure 8(a), (b). ATOM is aware that the eNodeB has suf-
ficient capacity to support the video flow of User#1 without affect-
ing the video of User#4. The throughput achieved by Users#1 and
4 on the eNodeB is shown in Figure 8(b); traffic from the video

196



 0

 1

 2

 3

 0  20  40  60  80  100  120

Th
ro

ug
hp

ut
 (M

bp
s)

Time (seconds)

USER#2
USER#3

USER#1
 0

 1

 2

 3

 0  20  40  60  80  100  120

Th
ro

ug
hp

ut
 (M

bp
s)

Time (seconds)

USER#4

USER#1
 0

 1

 2

 3

 0  20  40  60  80  100  120

Th
ro

ug
hp

ut
 (M

bp
s)

Time (seconds)

USER#2
USER#1

USER#3

 0
 2
 4
 6
 8

 10
 12

543215432154321

# 
St

al
ls 

Pe
r M

in

User Video Flows

Scenario 1

Scenario 2

ATOM

(a) ATOM(AP) (b) ATOM (LTE BS) (c) NO-ATOM(AP) (d) Fine-grained traffic management

Figure 8: Efficacy of ATOM with network dynamics.
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Figure 9: Efficacy of ATOM with user mobility.

flow of User#1 starts around 30 seconds on the eNodeB. Around
70 seconds, ATOM moves the video flow of User#1 back to the WiFi
AP since the 2 background flows ended during that time releas-
ing resources of the WiFi AP. After 70 seconds, the video flows of
Users#1,2 and 3 receive throughput above 1.5 Mbps as clear from
Figure 8(a) resulting in a smooth video for all the 3 users.
(ii) User Mobility: We set up a network with one eNodeB and one
WiFi AP. There are 8 users and 6 of them are within the coverage
of the WiFi AP. All users stream YouTube videos of average bit-
rate 1.5 Mbps. Initially, all 6 users are placed close to the WiFi AP
such that they receive good throughput and hence a smooth video.
At about 30 seconds, 2 users are moved away from the WiFi AP
at walking speeds such that they are still in the coverage of the
WiFi AP. We plot the throughput obtained by 3 (Users#1, 2 and 3)
out of the 6 users over WiFi in Figure 9(b). Clearly, as the users
move away from the WiFi AP, more resources are needed to meet
the throughput requirement of the users causing network conges-
tion. This in turn causes stalls in the WiFi users’ video streams.
However the 2 LTE users, specifically Users#7 and 8 get sufficient
throughput as shown in Figure 9(d) to stream the video smoothly as
the eNodeB has enough resources. On the other hand, ATOM moves
Users#1 and 4 to the eNodeB relieving the congestion in the WiFi
AP. As seen from Figure 9(a), Users#2 and 3 receive throughput
above their requirement of 1.5 Mpbs sustaining good video qual-
ity. Although User#1 is moved to the eNodeB at around 40 seconds
into the experiment as shown in Figure 9(c), the eNodeB has suffi-
cient capacity to support the video rates of Users#1, 7 and 8. Hence,
ATOM adapts to link quality fluctuations due to user mobility.
3) Fine-grained Adaptation: In this experiment, we show the abil-
ity of ATOM to perform fine-grained traffic management. There are
8 LTE users within the coverage of the WiFi AP and 4 LTE users
outside the WiFi coverage. All 8 users download a large file from
the WiFi AP. One of the WiFi users (User#5) also streams a You-
Tube video of average rate 2 Mbps. All 4 LTE users stream the
same YouTube video from the eNodeB. Figure 8(d) plots the aver-
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Figure 10: Benchmarking the ISS.

age number of video stalls for 4 LTE users and User#5. Scenario
1 represents the case where all the traffic of User#5 is mapped
to the WiFi AP since the user is within the coverage of the AP.
Clearly, the video flow of User#5 suffers significantly as the WiFi
AP is congested. Scenario 2 represents the case with user-level
traffic management where both the flows of User#5 (video and file-
download) are moved to the LTE network. This results in the LTE
network getting congested and the video of all the 5 users suffer.
With ATOM’s flow-level interface management, the video flow of
User#5 is moved to LTE while the file-download flow is kept on
WiFi. Since ATOM operates at the granularity of user flows, the in-
creased flexibility allows ATOM to ensure good QoE by reducing the
average stalls per user from 6-8 with NO-ATOM to 1-2.
4) Benchmarking the ISS: We investigate the switching time taken
by the ISS specifically for HTTP-based video streaming since video
traffic accounts for significant percentage of the total traffic. We
measure the switching time using two metrics defined as: (i) Start
Time (Ts): It is the time taken for downlink traffic to start on the
new interface. (ii) Termination Time (Tt): It is the time taken for
traffic to completely stop on the current interface. Both the met-
rics are measured relative to the time that the command to switch
the interface is received by the client. Figure 10(a) shows how we
measure Ts and Tt by plotting the throughput of a video flow that
is moved from WiFi AP to LTE basestation at around 25 seconds.
Ts is the time taken for traffic of the flow to start over LTE and
Tt is the time taken for traffic to completely stop over WiFi. We
setup the experiment by streaming a single video over WiFi ini-
tially and configure the ISS to switch the interface of the flow every
30 seconds between WiFi and LTE. We repeat the experiment for
several different videos from YouTube (represents HTTP-PD) and
Hulu (represents adaptive video streaming). Figure 10(b) plots the
CDF of the two metrics Ts and Tt for the different video streams.
Clearly, the median switching times are within a couple of sec-
onds and hence, within the expected time-scale for the execution of
ATOM. Notice that the times are larger for HTTP-PD streams (You-
Tube) than the adaptive video streams (Hulu). On further investiga-
tion, we noticed that players supporting adaptive video streaming
typically request video chunks of lower size (typically 2-4 secs of
video) than those requested by regular video streams like YouTube.
Also, adaptive video players request the chunks at a rate that closely
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Figure 11: Large-scale evaluation of ATOM.

matches the play-out rate to ensure adaptiveness to changing net-
work conditions. This behavior results in Hulu streams having a
lower Ts and Tt than those shown by YouTube streams. Given the
growing popularity of adaptive video streaming, we expect most
video services to show results similar to those shown with Hulu
(we did see similar results with CBS, Netflix). Moreover, note that
although YouTube streams have a relatively higher value of Tt, as
seen in Figure 10(a), the amount of traffic downloaded during that
time (25 to 35 seconds) is significantly less than the average rate
of the video (2 Mbps) since the traffic consists of the residual bytes
for video chunks that were requested before receiving the interface
switching command and all subsequent chunks are requested from
the new interface.

7.2 Simulations
Set-up: We developed MATLAB! code simulating a network of
one eNodeB and multiple WiFi APs (randomly distributed within
the eNodeB coverage) and used 3GPP path-loss models to generate
user SNRs. We use different rate tables for LTE and WiFi to choose
the best link-layer rate for a user based on its SNR. We distribute
the users in a uniformly random fashion within the cell such that
there is a non-zero probability of a user not falling in the range of
any WiFi APs. The inter-access times of flows for each user are
exponentially distributed and each user flow is active for 120 sec-
onds. When active, each flow has backlogged downlink traffic. The
SNRs vary across different flows over time. The number of users
and the parameter of the exponential distribution are jointly cho-
sen such that the number of active user flows in the system varies
from 20 to 40 in steady state. The MAC scheduler executes every
10 milliseconds and uses a PF-based policy for the eNodeB and a
RR-based policy for the WiFi APs. ATOM is executed every second
and it is assumed that interface switching occurs instantaneously.
Reference schemes: We compare ATOMwith the following schemes
for interface selection: (i) WiFi-Default: This is the case where the
users always connect to an available WiFi AP. (ii) MOTA: MOTA [8]
is a client-side solution that asynchronously executes the interface
selection decision at the client to maximize the utility of a user.
MOTA requires additional signaling about the load of each WiFi
AP and eNodeB to each client. Similar to ATOM, we employ a log
utility function of the throughput for each user in MOTA. MOTA
is executed every second on each client and the eNodeB and WiFi
APs broadcast the required information every 10 seconds. Each
client computes the expected throughput on every interface based
on the update received from the APs and the eNodeB every 10 sec-
onds. However, clients always have accurate information about the
throughput on the current interface, i.e., the interface on which they
have an active flow. Although MOTA may be hard to deploy as
it requires additional signaling overhead and standards support, it
represents the ideal client-level solution for interface selection.
1) Performance: We setup a network of a single LTE basestation
with 3 WiFi APs in its coverage and vary the number of user flows.
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The aggregate throughput obtained by all the clients for the 3 sce-
narios is shown in Figure 11(a). Figure 11(b) depicts the aggregate
number of user flows that are mapped to the WiFi APs over time
for a small period in the simulation. As a centralized technique,
ATOM maps the appropriate number of user flows to WiFi APs and
LTE resulting in better resource utilization and load balancing than
MOTA. Although MOTA accounts for the load conditions of the
eNodeB and the APs, it is not as efficient resulting in significantly
lower throughput than ATOM. In this particular case, ATOM achieves
an average aggregate throughput of almost 140 Mbps with a 5 per-
centile throughput in excess of 100 Mbps. On the other hand,
WiFi-Default and MOTA achieve an average aggregate throughput
of 90 and 110 Mbps respectively, with a 5th percentile throughput
of about 70 and 80 Mbps respectively. A by-product of dynamic
traffic management is that it leads to interface switching for user
flows. As seen in Figure 11(c), ATOM is effective in achieving a
higher throughput while keeping the average number of switches
per user per session below 0.5, while MOTA causes an average of
2 switches per user per session. Switching the interface of a user
flow causes additional signaling in the mobile network and hence,
excessive switching may be undesirable for an operator. To inves-
tigate the fairness and QoE of user flows, we plot the aggregate
utility obtained by each scheme. As seen in Figure 11(d), ATOM
achieves better aggregate utility than MOTA with increasing num-
ber of WiFi APs. ATOM thus achieves significant gains not only
over naive schemes such as WiFi-Default but is more efficient than
distributed schemes such as MOTA.
2) Computational Efficiency: While ATOM is scalable operating at
the granularity of a single LTE cell, we also investigate an approach
to trade-off performance of ATOM for reducing its computational re-
quirements further. At each epoch, the modified algorithm, namely
eff-ATOM is executed only for the WiFi APs that have a change in
state and the assignment of the user flows of the other WiFi APs is
kept unchanged. Change of state for a WiFi AP occurs if there was
at least a user flow that arrived or departed from the WiFi AP or
there was a change in the average link layer rate of a user belong-
ing to that WiFi AP in the previous epoch. We use a similar setup
for this experiment as the previous one, with 5 WiFi APs. Fig-
ure 12(a) compares the performance of eff-ATOM with both ATOM

and MOTA. Clearly, although there is a slight degradation in the
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aggregate throughput for eff-ATOM compared to ATOM, it still per-
forms better than MOTA. Figure 12(b) depicts the percentage of
cycles spent on computing the interface assignment for the number
of WiFi APs. Specifically, eff-ATOM only computes the interface
assignment for 1,2 and 3 WiFi APs 30, 40 and 20% of the times,
while ATOM always computes the interface assignment for all the
5 WiFi APs. Hence, if we consider the computation expense of a
WiFi AP as a single unit, eff-ATOM is 65% more efficient than ATOM.
3) Pricing: To study the effect of different pricing models, we con-
ducted simulations with a similar setup but added a cost to the LTE
interface. The scenario mimics the case in today’s networks, where
the users have a data cap and pay for usage on the LTE network,
while the usage on WiFi networks is free. We plot the CDF of the
throughput obtained by one of the users in Figure 13(b) with and
without incorporating pricing. With pricing, there is a deterrence
for ATOM to move the user flow to the LTE network due to the as-
sociated cost. This results in a slightly lower throughput for the
user. However, the data usage of the user over LTE is lower over
time as shown in Figure 13(a) with the pricing function since the
flows of the user are kept over WiFi more often than the case with
no pricing. Hence, ATOM allows an operator to balance the utility
for additional throughput (QoE) in an interface with its associated
cost or data usage on a per user and/or flow basis.

8. RELATED WORK
Commercial Solutions: Technologies from Qualcomm [29] and
Interdigital [30] provide WiFi offloading with intelligence mainly
at the mobile devices. They claim to manage user flows across
WiFi and 3G/LTE networks based on throughput and delay mea-
surements. They rely on integration with the I-WLAN architecture
to provide seamless connectivity. Although not widely deployed,
the existence of such solutions indicates the importance of man-
aged WiFi offloading. Since these technologies incorporate context
in their solution and provide management across 3rd party WLANs
that are not managed by the operator, they can be used as comple-
mentary solutions to ATOM.
Client-side Optimizations: Recent studies [7, 8, 9, 10, 31] have
proposed distributed algorithms for interface selection. Most of
these solutions either require additional signaling from the network
or leverage P2P to disseminate the current network. As shown in
our evaluations, even with network load information, such solu-
tions are not as efficient as a centralized solution such as ATOM.
Some studies also argued the feasibility of using public WiFi for
offloading 3G traffic [11, 12]. However, the scope is limited to de-
lay tolerant traffic and may require changes to the applications to
support the framework. There is also a recent study [32] that pro-
poses seamless switching of user traffic but it does not provide any
intelligence for optimal interface selection.
Network Solutions: Several studies have proposed network-driven
algorithms for interface selection or user association to optimally
balance the load across heterogeneous networks. A few of these
works [6, 33, 34, 35] use utility-based optimization to maximize

the throughput obtained by the users. However, these works (i) as-
sume idealized settings with little or no consideration of practical
constraints (ii) are tightly integrated with the basestation schedulers
hindering their deployability and (iii) do not provide an end-to-end
solution that dynamically selects interfaces adapting to changes in
the mobile network. ATOM on the other hand is a comprehensive
solution for traffic management for heterogeneous WiFi-LTE net-
works that is adaptive, light-weight, scalable and deployable in to-
day’s mobile networks.

9. DISCUSSIONS
Mobility: While ATOM works well for static and mobile clients at
moderate speeds, clients with vehicular mobility may require ad-
ditional support to use context information (e.g., speed) to ensure
that such users are treated as LTE-only users to avoid unnecessary
switching due to limited WiFi coverage.
Scalability: Since ATOM is designed to execute for every LTE cell
independently, it can be scaled-up easily as LTE cells are added to
the network. Typically in current LTE deployments, the coverage
of macro, metro and small cells is greater than that of WiFi APs.
Hence, considering each LTE cell in isolation ensures scalability
without much compromise in performance. However, we envision
that future cellular networks may be significantly more denser with
smaller cell sizes resulting in overlapping coverage across several
cells. It is an interesting avenue for future work to design a scalable
system for such dense deployments to manages flows belonging to
several LTE cells and WiFi APs.

Cellular networks have large number of cells and user flows, pro-
visioning both CPU and storage (for state information) resources
for ATOM instances to manage each LTE cell can be expensive.
In practical deployments, operators could execute ATOM instances
to manage only the subset of LTE cells that are loaded beyond a
threshold. Moreover, the epoch time T can be increased to reduce
processing overhead (say 1 minute) and ATOM can be executed as
and when user flows arrive and/or depart.
Signaling Overhead: ATOM relies on feedback messages from the
basestations and WiFi access points which introduces extra over-
head on the network. In order to provide quantitative insights into
the traffic overhead introduced by ATOM, we performed back of the
envelope calculations. The feedback message contains the flows
current IP address/port numbers, average transmission rate for that
user on the LTE basestation and on the WiFi AP(s). Assuming two
WiFi APs on average, these values can be composed in 10 bytes
and an average of 50 active flows per LTE basestation, the feedback
packet would be about 500 bytes per basestation. If we assume that
a particular data center manages a network of about 1000 basesta-
tions and also an epoch time (T ) of 10 seconds, the total data rate
for feedback messages is around 400 Kbps. In the same network
assuming an average user data traffic rate of 10 Mbps per base-
station (typically peak rate of LTE basestations is about 60 Mbps),
the total average user data traffic would be around 10 Gbps. Thus,
the network overhead for ATOM under the above assumptions would
amount to less than 0.05% of aggregate user data traffic.
Excessive Switching: Although the execution time for ATOM will
be in the order of several seconds in practice to ensure stability of
the system, in certain highly dynamic scenarios, ATOM may cause
certain flows to switch frequently between interfaces. However,
excessive interface switching for a flow can be avoided by using a
deterrence for flows based on the history of switches performed for
that flow in the recent past.
Energy Consumption: Although we do not explicitly consider in-
terface energy consumption in ATOM, the energy consumption could
be easily incorporated in the utility framework. Depending on the
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interface, the energy cost can be added as a deterrent for using a
particular interface. This can capture scenarios where clients with
critical battery levels are assigned to a more energy-efficient in-
terface even though that may not be the best interface in terms of
throughput. However, since energy models are complex and de-
pend on the energy consumption of other system components, we
exclude it in the design of ATOM to ensure simplicity.

10. CONCLUSION
To summarize, we designed and implemented a standards com-

patible framework, ATOM that enables an operator to effectively
manage traffic flows across a heterogeneous network of LTE and
WiFi APs. ATOM consists of two novel components: (i) NIA dy-
namically assigns interfaces to user flows and (ii) ISS provides
seamless interface switching for HTTP-based flows to enable dy-
namic traffic management, while saving significant backhaul costs
for the operators for HTTP-based video streaming and Web brows-
ing, making it an attractive solution for current networks.
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Appendix: To prove that Problem 1 is NP-Hard, we consider a
simple instance of the problem: Given a set of S user flows, find a
solution to split the flows among a LTE basestation L and a WiFi
AP W so as to maximize the overall utility (given by equation 4).
Each flow belongs to a user whose PHY rates for LTE basestation
L are rWi = 1 and WiFi AP W are rLi = 1

wi
resp.

Proof: The throughput for a particular user on WiFi AP with
SW user flows is given by (Equation 3):

tWi =
1∑

i∈SW

wi
rWi

=⇒ tWi =
1∑

i∈SW
wi

∀i ∈ SW

Hence the utility UW for all the flows assigned to WiFi is given as:

UW =
∑

i∈SW

wi × log(tWi)

UW =
∑

i∈SW

wi × log(
1∑

i∈SW
wi

) (5)

Similarly, the throughput for a particular user on the LTE base-
station with SL user flows is given by (Equation 2):

tLi =
wi × rLi∑

i∈SL
wi

=⇒ tLi =
1∑

i∈SL
wi

∀i ∈ SL

Hence the utility UL for all the flows assigned to LTE is given as:

UL =
∑

i∈SL

wi × log(tLi)

UL =
∑

i∈SL

wi × log(
1∑

i∈SL
wi

) (6)

Let X =
∑

i∈SL
wi. Applying normalized weights, without loss

of generality: 1−X =
∑

i∈SW
wi

Hence, the overall utility of the system U is given by

U = UW + UL

U = X log(
1
X

) + (1−X) log(
1

1−X
) (7)

The solution that maximizes the above utility function is X = 1
2 .

Hence, Problem 1 can be defined as: Given a set of flows S, the
solution should return a set of flows SW and a set of flows SL such
that the sum of the weights of the flows belonging to the two sets
are equal. This is an instance of the subset sum problem (partition
problem): Given a set of k integers, the solution should return two
subsets such that the sum of the integers of the first set is equal
to that of the second set. Our problem can be mapped to a subset
sum problem where the input is the set S with elements that have
a weight wi, and the output will be two sets such that the sum of
the weights of the elements of each set are equal. Since, subset
sum problem is proven to be NP Complete, the proof is sufficient
to show that Problem 1 is NP Hard.
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