Chase: Taming Concurrent Broadcast for Flooding
in Asynchronous Duty Cycle Networks

Zhichao Cao*, Jiliang Wang*, Daibo Liu', Xiaolong Zheng*
*School of Software and TNLIST, Tsinghua University, China
School of CSE, University of Electronic Science and Technology of China
{caozc, jiliang, xiaolong}@greenorbs.com, dbliu.sky @ gmail.com

Abstract— Asynchronous duty cycle is widely used for energy
constraint wireless nodes to save energy. The basic flooding
service in asynchronous duty cycle networks, however, is still
far from efficient due to severe packet collisions and contentions.
We present Chase, an efficient and fully distributed concurrent
broadcast layer for flooding in asynchronous duty cycle networks.
The main idea of Chase is to meet the strict signal timing and
strength requirements (e.g., Capture Effect) for concurrent trans-
mission while reducing contentions and collisions. We propose a
distributed random inter-preamble packet interval adjustment
approach to constructively satisfy the requirements. Even when
requirements cannot be satisfied due to physical constraints (e.g.,
the difference of signal strength is less than a 3 dB), we propose
a light-weight signal pattern recognition based approach to
identify such a circumstance and extend radio-on time for packet
delivery. We implement Chase in TinyOS and TelosB platform
and extensively evaluate its performance. The implementation
does not have any specific requirement on the hardware and can
be easily extended to other platforms. The evaluation results also
show that Chase can significantly improve flooding efficiency in
asynchronous duty cycle networks.

I. INTRODUCTION

Internet of things (IoT) [20] [18] [27] is becoming a promis-
ing way to enhance our daily life. Many battery powered wire-
less nodes in IoT have limited power supply. To save energy,
low duty cycle radio management is widely used as radio
is a major part for energy consumption [8]. Asynchronous
duty cycle, namely LPL (Low Power Listening) (e.g., Box-
MAC [21], Zisense [28]), is one of the most commonly used
low duty cycle modes [14] [2]. In LPL, instead of keeping
radio always-on, each node periodically turns on the radio
to detect potential signal by sampling the received signal
strength (RSS). If a signal is detected, the node keeps the
radio on to receive potential incoming packet. Otherwise, the
node turns off its radio and sleeps for a certain time period
(called sleep interval). In LPL, nodes are not synchronized and
have different schedules to turn on their radio (called active
schedule).

Flooding is a fundamental service and a basic building
block for LPL networks. For example, flooding is the basis for
propagating messages (such as binary image [3][5] [22] [29],
time stamp [19] [7], etc) to all nodes. Flooding is also widely
used to notify nodes [16] and update system parameters [26],
which is common for practical networks.

In LPL, each node keeps transmitting the same packet
(called preamble packet) for whole sleep interval in order to

ensure that the receiver can wake up once. In flooding, multiple
nodes may simultaneously broadcast the same packet. Thus
those nodes will keep transmitting the preamble packets at the
same time, which introduces much more packet contentions
and collisions than that in traditional networks [1]. This
further leads to a dilemma for flooding in LPL. On one
hand, a node needs to transmit the preamble packet multiple
times to ensure the packet can be delivered. On the other
hand, transmitting preamble packets from multiple nodes at
the same time results in packet contentions and collisions.
Consequently, as observed in Section I, the delay of flooding
in LPL is very large.

Despite of the practical prevalence of LPL, the basic LPL
network flooding is still not efficient. As a result, network
protocols and services (e.g., network parameter update, net-
work notification) built on top of flooding are also not effi-
cient. In this paper, we present Chase, an efficient and fully
distributed broadcast layer for LPL network flooding. The
basic idea of Chase is to remove the influence of packet con-
tentions/collisions and improve the concurrency of preamble
packets, i.e., improve the successful ratio while multiple nodes
are transmitting the preamble packets. Concurrent transmission
has strict requirement on timing and signal strength. For exam-
ple, for capture effect which enables concurrent transmission,
the strongest signal should not arrive later than a certain tiny
time offset after the first weak signal. Besides, the strongest
signal strength is at least 3 dB larger than the sum of others.

In Chase, we design a random Inter Preamble Packet
Interval (IPPI) adjustment technique to address the timing
requirement. We analytically show that different nodes can
achieve concurrent transmission with a high probability. Even
when the requirements of concurrent transmission cannot be
satisfied due to physical constraints, Chase leverages a light-
weight signal pattern recognition based approach to identify
such a circumstance and extend radio-on time to ensure packet
delivery.

We implement Chase in TinyOS with TelosB nodes. The
implementation does not have any specific requirement on the
hardware and can be easily extended to other platforms. We
conduct extensive evaluation and the evaluation results show
that Chase can significantly improve the flooding performance
in asynchronous networks. Our contributions are summarized
as follows.

| Rss sampling Preamble Packt Tail | IPPI
®
A 1 T 1 T |
S 1 T | popoppERE
® 5 — .

Fig. 1: Illustration of LPL broadcast from sender S to its
neighbors A and B.

e We propose Chase, an efficient and fully distributed
broadcast layer to support concurrent transmission for
flooding in asynchronous duty cycle networks.

o We address the difficulties in supporting concurrent trans-
mission in practical asynchronous duty cycle networks
and design light-weight and efficient countermeasures.

e We implement Chase in TinyOS with TelosB nodes [24].
The evaluation results show that Chase can significantly
improve flooding efficiency.

The rest of paper is organized as follows. Section II illus-
trates the basic model of LPL broadcast and performance of
LPL flooding. Section III shows the detailed design of Chase.
Section IV and V show the implementation and evaluation
results, respectively. Section VI introduces the related works.
Finally, Section VII concludes this work.

II. EMPIRICAL STUDY

In this section, we analyze the performance of flooding in
LPL networks, and conduct experiments to show the ineffi-
ciency of flooding in LPL networks.

A. Flooding in LPL

As shown in Figure 1, S broadcasts packets to two neighbors
A and B. The sleep interval is 7; for both A and B. In LPL, the
active schedule are asynchronous. After turning on the radio,
a node continuously samples the RSS for a time period of T
(called RSS Sampling). Sometimes, the radio is further kept
on for T; (called Tail) to receive potential preamble packets.
When S prepares to broadcast, S turns on the radio and keeps
transmitting the preamble packets for a time period of T,.
The Inter Preamble Packet Interval between two consecutive
preamble packets (i.e. IPPI) is denoted as T;p,;. The on air
time of a preamble packet is denoted as Tj,.

There are two requirements for broadcast in LPL. First,
T, > T; to ensure S can meet A and B at their rendezvous.
Thus, broadcast in LPL will occupy the channel for a long
time. Second, Ty > Tj,,; to ensure A and B can detect the
signal from S. In practice, 7T} is usually several times of T, to
ensure A and B can successfully receive at least one preamble
packet.

The impact of flooding in LPL is from the following aspects.
First, flooding in LPL will result in backoff for preamble
packets, which further leads to increase of IPPI T;,,;. As we
have mentioned, the sampling time T is related to T5,,;. When

A

® ® 0 ® ® O

(a) Packet mishear (b) Packet collision

Fig. 2: Illustration of the situation of packet mishear and packet
collision.

T;pp: increases, the sampling time T; becomes less than Tj,,,;.
As shown in Figure 2(a), S; and So are broadcasting. S, takes
random backoff when it detects signal from S;. The backoff
can significantly increase Tj;,,;. Thus T, of C becomes less
than Tj,,;. Then C might fail to detect the signal from S,. We
call such a phenomenon Packet Mishear.

Second, it is even worse when two or more nodes cannot
hear from each other. They may simultaneously transmit
preamble packets which further results severe collisions. As
shown in Figure 2(b), S; and S, are hidden terminals. There-
fore, preamble packets from S; and Sy collide sequentially.
S; must rebroadcast till B successfully receives one preamble
packet.

B. Impact of Mishear and Collision

We further conduct experiments to show the impact of
packet mishear and packet collision in real networks. As
shown in Figure 4, we use the default settings of Box-MAC
[21] in TinyOS. T, is set to 532ms, which is 20ms larger than
T;. Ty is set to 12ms. The length of each preamble packet is
set to 77 bytes and the corresponding on-air time is 2624 us.
We use channel 26 in the experiments, the least overlapped
channel with interference (e.g. WiFi, Bluetooth).

First, we use two TelosB nodes S; and S, as shown
in Figure 2(a). We first record Tj,,; of S; when only S,
broadcasts. We also record Tj,,; of S when both S; and S;
broadcast. The distribution of Tj,,; is shown in Figure 3(a).
For the first case, over 99.9% of Tj,,,; is less than Ts. However,
for the second case, about 67.7% of T, is less than T§. Thus
the probability of packet mishear is significantly increased.
Even C detects the signal from Sj, about 14% of Tj,,; is
larger than T; so that C may not receive any preamble packet
in tail.

In the second experiment, the topology is shown in Fig-
ure 2(b). We set the power level of S; and Ss to 7. The average
RSS difference between S;’s and S,’s signals is about 2 dB
for B. The capture effect does not work in most of cases. We
separately measure the packet reception ratio of link S;—B
under clear environment and hidden terminal. As shown in
Figure 3(b), almost all packets can be successfully received
under clear environment. Under hidden terminal, although
B can receive a few of packets, the packet reception ratio
dramatically decreases to 12.2%.

1
k!
S o8y 08 |
s
w = 0.6 L 08
5 g 3
¢ 04t 04
I
w Contention —&— g 02y 1 0271 Ml(i]lear o
ol w/o Contention —e— o @ o ; ‘ Cc)lﬁis?;r:
0 10 20 30 40 50 60 70 80 0 Clear Hidden 0 256 512 768 1024
IPPI (ms) Delay (ms)
(a) T’;pp;i distribution (b) Packet Reception Ratio (c) Delay distribution
Fig. 3: The impact of channel contention and hidden terminal on Tj,,;, packet reception ratio and delay.
" P bl - C ted .
Parameter Description Value I nss samping B "o B o [T | en
AAAAAA R?ndom IPPJ
T sleep interval 512ms S _mmiiwmami e
Ts time of RSS sampling 12 ms s
N o | o L o oL o o NN
T time of tail 20 ms
: Soquence OO O . R ...
Ta on-air time per preamble packet |[576, 4256] us c [TC N o |
Tp time of preamble 532 ms B _ Nmw wwm wow wwm EW

Fig. 4: Default settings of Box-MAC LPL in TinyOS.

We further examine the impact of packet mishear and
collision on delay. We measure the flooding delay of C and
B under clear environment. As shown in Figure 3(c), the
broadcast delay is almost uniformly distributed between 0 and
T; in clear environment. However, the delay is significantly
increased due to packet mishear and packet collision. About
36.2% of delay is larger than 7; due to packet mishear.
Moreover, over 86.2% of delay is larger than 7; due to packet
collision.

To conclude, due to the long time transmission of multiple
preamble packets and bursty broadcasts, the probability of
packet contentions and collisions is high in LPL network
flooding, which further increases the flooding delay. Con-
current broadcast in LPL is not well supported by existing
strategies. Thus, we need to develop a practical strategy for
reliable concurrent broadcast in LPL. With reliable concurrent
broadcast, each node can immediately broadcast its received
packet during flooding. The speed of network flooding is
accelerated.

III. Chase DESIGN

The goal of Chase is to improve reliability of concurrent
broadcast in LPL. To achieve the design goal, there are several
requirements:

« First, to support concurrent packet transmission, there are
strict requirements on packet transmission. We leverage
capture effect in Chase by distributedly and constructively
satsifying two requirements: 1) signal time: the strongest
signal must be received no later than 160us after the first

Fig. 5: Overview of Chase.

signal, and 2) signal strength: the strongest signal must
be 3 dB larger than the sum of other signals.

e Second, when the signal time or the signal strength
requirement cannot be satisfied due to physical constraint,
Chase should ensure that broadcast packet can also be
successfully delivered.

A. Design Overview

We illustrate the design overview of Chase in Figure 5. The
design of Chase mainly consists of two components.

First, instead of using explicit signal time controlling tech-
nique as in existing approaches, a randomized IPPI tech-
nique is proposed to satisfy the signal time requirement. The
technique is fully distributed while introduces no additional
overhead. With randomized IPPI technique, we show that as
long as the signal strength requirement of multiple received
signals can be satisfied, receiver can successfully receive a
preamble packet in short time.

Second, it is also possible that signal strength cannot be
satisfied. We propose a signal pattern based tail extension
method. With such a method, each node can detect whether
there are broadcast packet collisions even without receiving
packets. If there are, the node will extend the radio on time
until a packet is successfully received.

We take Figure 5 as an example to illustrate the principles of
Chase. S1 and Sy concurrently broadcast the flooding packet.
The average received RSS difference between strong and weak
signals is 2 dB for B and 13 dB for C. Compared with weak
signal from S, the time offset for strong signal from S» varies
with random IPPI. As long as there exists a difference less than
160us, C can receive the So’s preamble packet.

— T, —

Avalid

Strong
Signal

Collision Tippi Collision Collision Tippi | Valid Packet

—el—

Weak
Signal

Collision Tippi Collision Tippi Collision Valid Packet

Fig. 6: Definition of valid packet that satisfies the time
requirement of capture effect in concurrent broadcast.

Meanwhile, due to signal strength constraint, B in no means
can successfully receive any overlapped preamble packet as
shown in Figure 5. Therefore, B will turn off the radio and
thus miss the chance to hear the following preamble packets
in LPL. In such a case, B needs to first detect the existence of
collided broadcast packets. Chase achieves this by analyzing
the signal pattern since the signal pattern of collided broadcast
packets is different from that of single LPL transmission
(details are in Section III-C). We add a time extension to T}
for node B such that B can receive the incoming preamble
packets after S; or S, finishes its transmission.

In asynchronous duty cycle network flooding, it is rare that
all broadcast packets from different senders (e.g., S1 and S2
in Figure 5) are transmitted at the same time. Once it happens,
receiver (e.g., B in Figure 5) may fail to receive any preamble
packet. In such a case, the receiver will immediately send
a request to ask senders to rebroadcast when the signals of
collided broadcast packets disappear, but no broadcast packet
is successfully received. When sender receives the request
from receiver, it will start to broadcast after a random backoff.

In Figure 5, we illustrate the situation of two senders. It is
possible more than two senders exists. In capture effect, re-
ceiver can classify multiple transmissions into two categories,
the strongest signal and all others. More specifically, as in
other capture effect based protocol designs [7] [13], the sum
of all other signals can be treated as a signal. Thus, Chase can
work in the situation of multiple senders.

B. Random IPPI Adjustment

To reduce packet collision, we set the interval Tj,,; to
be random in order to achieve a time offset to satisfy the
time requirement. Meanwhile, Tj;,,; must be less than RSS
sampling time T to avoid that receiver misses the rendezvous
with sender. In Chase, we require Tj,,; be in the range
[0, Ts—¢], where ¢ serves as a guard time. Assume [,k is the
frequency of MCU clock, Tj,p; is mapped to random integer
X in the range of [0, (Ts — 0) ferock)- As shown in Figure 6,
the valid packet indicates the preamble packet satisfies the
time requirement of capture effect. Given the on-air time T,
of preamble packet and the initial time offset 6, the objective
is to choose X to minimize the expected delay A4 before
valid packet.

To evaluate the impact of X, we set the distribution of
X to be Exponential, Uniform and Gaussian distribution and
calculate the expected A,q;4- On TelosB node, the finest
granularity of stable MSP430 MCU clock is 32768 Hz.

According to default Box-MAC [21], we set T and J to 12ms
and 1ms respectively. Thus the range of Tj;,; is in [0,11]ms. It
is discretized to about 360 values. The range of X is [0, 360].
Correspondingly, the expected value of uniform distribution
is 180. The A of exponential distribution and p of gaussian
distribution are 180. For exponential distribution, the range
of X is [0, +00) so that we set X to 360 for X > 360. For
gaussian distribution, the o is set as 60 so that most of random
values fall into [0, 360]. The CDFs of three distributions of
X are shown in Figure 7(a). To show the influence of 7}, on
X selection, we select 6 different values of 7, ranging from
574ps to 4256ps.

The results are shown in Figure 7. We can see that for
all three distributions, A,q;;¢ increases while T, increases.
The reason is that the length of overlapped signals is long
with large T,,. The long overlapped signals need more time
to reverse their order. Moreover, compared with Uniform
(Figure 7(c)) and Exponential (Figure 7(b)), the A,u;q of
Gaussian distribution (Figure 7(d)) increases much faster. No
more than 20% of A,gq is less than 100000us when Ty,
is larger than 2796us. The reason is that the variance of
Tippi under gaussian distribution is less than the other two
distributions as shown in Figure 7(a). It needs more time to
reverse the order of overlapped signals with small variance
of T;ppi. The trend of Exponential (Figure 7(b)) and Uniform
distribution (Figure 7(c)) is much similar. After about 5000us
waiting, it is possible to capture one valid packet when 7}, is
4256us. After 100000us waiting, at least one valid packet can
be captured for all Tj,.

With Exponential distribution, as shown in Figure 7(a), the
probability of selecting large (X > 280) and small (X < 147)
Tippi is higher than Uniform. On one hand, the T,,;s of weak
and strong signals separately fall into small and large part
with high probability. Due to large variance, A,q;;4 can be
short. On the other hand, it is possible that Ty, of weak
and strong signals simultaneously falls into the same small
or large time interval. Due to the lack of variance, Ayqiq 18
enlarged. In Figure 7(b) and Figure 7(c), we can see the ratio
of small A, ;4 in Exponential distribution is higher than that
in Uniform. The ratio is getting lower as the increasing of
T, due to long overlapped signals. The maximum A, q;;q4 of
Exponential distribution is larger than Uniform. The differ-
ence of the maximum A,,;;q between these two distributions
increases from about 1ms to 18ms with the increasing of 7,.
In summary, Chase chooses Exponential distribution when T,
is smaller than a threshold T, and Uniform distribution for the
rest of Tj,.

C. Tail Extension Strategy

It is possible that the requirements of capture effect cannot
be satisfied in 7}. In such a case, the receiver will extend its tail
time in order to receive more preamble packets when collision
occurs. Thus our objective is to distinguish the collided
broadcast packets. Here, we exploit the RSS features resulted
from the sum of preamble packets with random IPPI. More

1
Exponential ——
0.8 Uniform ——

0.8
06 0.6

Gaussian

04 2067ps
2796ps
0.2 3526ps

4256ps ——

608us —=—

1337us ——

CDF
CDF

0.4

0.2

0 0
0 60 120 180 240 300 360
X

20000 40000 60000 80000 100000
Avaig (1)

(a) X distribution (b) Exponential Distribution

0.8 0.8
0.6 0.6
w w
8 8
0.4 0.4
0.2 0.2

0 0
0 20000 40000 60000 80000 100000 0
Avaig (15)

20000 40000 60000 80000 100000
Avaig (15)

(c) Uniform Distribution (d) Gaussian Distribution

Fig. 7: (a) shows CDFs (Cumulative Distribution Function) of three distribution of random variable X. The CDF of A, 44
given (b) X ~ Exponential(1/180), (c) X ~ Uniform(0,180) and (d) X ~ Gaussian(180,60) separately with diverse

T, € [576,4256).

-20 -20

RSS

-120 -120
0 10 20 30 40 50 60 0 10 20 30 40 50 60

(a) Signal transmission (b) Concurrent broadcast
Fig. 8: Illustration of the difference between RSS sequences

of (a) signal transmission and (b) concurrent broadcast.

specifically, we explore two features (i.e., variances of on-
air time and segment interval) of continuously sampled RSS
sequence to detect the collided broadcast packets. If collided
broadcast packets are detected and no preamble packet is
successfully received, T} is extended.

1) RSS Sequence Sampling and Features: After each node
wakes up, it continuously samples the RSS. The RSS sampling
rate is fs. The sampled RSS sequence is denoted as R =
{r1,72,...,mn} in tail. Take TelosB node as an example, the
fs 1s set as about 3 samples per microsecond. When T3, Ty,
and 7T is 20ms, 3ms and 4ms, respectively, the sampled RSS
sequences of single transmission and concurrent broadcast are
shown in Figure 8. The bottom RSS (about -96 dB) indicates
the noise floor, which corresponds to the signal strength of
background noise. The consecutive samples that are higher
than noise floor consist signal segment. Each RSS sequence
consists of segments connected by noise floor.

The first feature is the variance of on-air time, which
indicates the time difference of signal segments. As shown
in Figure 8(a), the on-air time of each segment of single
transmission is a fixed value in the range of [574,4256]us.
However, as shown in Figure 8(b), due to overlap of multiple
preamble packets of different senders in concurrent broadcast,
the on-air time of each segment varies and may be longer than
that of single transmission. The on-air time of each segment
is randomly distributed in the range of [574, +00)us. Thus the
variance of on-air time of single transmission is almost zero,
while that of concurrent transmission is not.

The second feature is variance of segment interval, which in-

dicate the difference of the interval between two adjacent seg-
ments. For single transmission, the segment interval, namely
Tippi>» 1s almost fixed, as shown in Figure 8(a). However,
with the random IPPI adjustment, the segment intervals of
concurrent broadcast are randomly distributed in the range
of [0,7s — 6]. Thus, the variance of segment interval of
concurrent broadcast is larger than that of single transmission.
The detailed steps for extracting features are as follows.

2) RSS Sequence Segmentation: Given RSS sequence R =
{r1,ra,...,rn}, the objective of segmentation is to extract
segments. If the RSS value increases from noise floor (denoted
as Noise) by a threshold A,zs, a start point is detected.
Similarly, when a RSS sample falls back to noise floor, an
end point is detected. Thus, the sets of start (S) and end (F)
points of segments are:

S ={s||rs—1 — Noise| < A,gs, |rs — Noise| > Apgs} (1)
E ={e||re—1 — Noise| > Apss,|re — Noise| < Apsst (2)

We set S and E in ascending order and put them in two
separated arrays Ig and Ip. We use Ig(k) and Ig(k) to
indicate the k*" start and end points separatively. It is possible
that the start point of the first segment or the end point of the
last segment are not in S or E. To address the first case,
we remove Ig(1l) from Ig if Ig(1) is larger than Ig(1).
To address the second case, we remove Is(|Ig|) from Ig if
Ig(|Ig|) is smaller than Is(|Is|). Hence, we have |Is| equals
to |Iz| as the total number of segments K. The k' segment
can be represented by Ry = {774 (k), 15 (k)15 -+ "o (k) }-

3) Feature Extraction: Variance of On-air Time. The on-
air time of the k" segment is calculated as:

Ton (k) = (I () — Is() £ @)

where f; is RSS sampling rate. For K segments of RSS
sequence R, the variance of on-air time is calculated as the
difference between the largest and smallest T5,,,.

Vor(R) = maz{Ton (i) — Ton(j)I1 <d,j < K} (4
Variance of segment interval. The segment interval be-
tween the k' and (k + 1) segments is calculated as:
1

Segl(k) = (Is(k+1) = (k) -)

where f; is RSS sampling rate. For K segments of RSS
sequence R, the variance of segment interval is the maximum
gap among total K — 1 segment intervals.

Vsegi(R) = max{SegI (i) — SegI(j)|1 <i,j < K —1} (6)

4) Decoded Preamble Packets Mapping: For overlapped
preamble packets, one segment at least contains one preamble
packet. For RSS sequence R, decoded vector D are used to
indicate whether the signals of K segments are successfully
decoded i.e.,

0, No decoded preamble packet
D; = . (7
1, Otherwise

for 1 <3 < K. If all elements in D are zero, all preamble
packets in T; are corrupted. Then, receiver needs further to
extend 73 when these corrupted preamble packets belong to
concurrent broadcast. Otherwise, receiver will start to broad-
cast when the decoded preamble packet is a flooding packet.

5) Identification Algorithm: Given the feature tuple
(Von_airs Vsegi) of sampled RSS sequence R and decoded
vector D, Algorithm 1 shows the process to verify whether
collided broadcast packets exist. At line 1, if one preamble

Algorithm 1 Identification Algorithm

Input: Feature temple (Voy,, Viegi), decoded vector D.
Output: Whether the corrupted preamble packets belong to
concurrent broadcast.
if 3i € [1, K], D; equals to 1. then
return FALSE.
else if V;,,, < x and V.4 < 7. then
return FALSE.
end if
return TRUE.

AN A o o

packet is successfully received, receiver needs not extend 7;.
At line 3, k is the threshold of variance of on-air time. 7 is
the threshold of variance of segment interval. As shown in
Section III-C1, when there is no concurrent transmission, ~
and 7 is close to 0. Otherwise, x and 7 is usually larger than
0, due to the diverse pattern of signal overlapping. 73 will not
be extended if both V,, and V,.4; of the signal are smaller
than « and 7. Thus, with smaller x and 7, the signal tends to
be identified as concurrent transmission. The time and space
complexity of identification process is O(K).

D. Influence on Other Traffics

It is possible that both flooding and other network traffics
coexist in networks. Chase can also work with other kinds of
network traffics, for instance, for widely used data collection
traffic [1] [9], where packets are forwarded to sink with multi-
hop unicast relay. In LPL, unicast traffic adopts carrier sense
and random backoff to avoid packet collision. With Chase
broadcast, unicast traffic can be transmitted when the channel
is temporally clear. Thus the efficiency of those kinds of traffic
will not be influenced by Chase.

TABLE I: The summarization of system parameter settings

Parameter | Description Value
Ty T, boundary of random function 2067 us

0 guard time of Tpps 0.1ms
felock stable MCU clock 32768Hz
fs RSS sampling rate 31250Hz

Arss RSS threshold of segmentation 3 dB

K threshold of on-air time variance 64us

T threshold of segment interval variance 64118

IV. IMPLEMENTATION

We implement Chase with TinyOS 2.1.2 on TelosB nodes.
Besides the default Box-MAC LPL parameters as shown in
Figure 4, other parameter settings are summarized in Table I.

A. Random Function

We empirically choose the boundary T, as 2067us. The
decision criteria of X distribution is shown in Equation 8.

X ~ Exp(zfclock/(Ts - 5))7
Uni(07 fclock (Ts - 5))7

To ensure the stability, we select the clock source of feock
as the watch crystal of MSP430f1612 MCU with frequency
32768 Hz on TelosB. The guard time § is set as 0.1ms to make
sure Tj,,,; is smaller than T and keep the range of T}, large.

We use LCG (Linear Congruential Generator) to obtain uni-
form distribution. To guarantee the diversity among different
nodes, the initial seed is set according to node ID. Further,
we generate exponential distribution by the transformation of
uniform distribution.

0 < T, <= 2067

®)
2067 < T, <= 4256

B. Precise IPPI Control

It is important to guarantee the actual Tj,,; is exactly
corresponding to the random function. MCU controls the
operation of radio through SPI. Due to the arbitration of SPI
resource in TinOS, MCU can not transmit any packet when
it uses SPI to read the data of received packet from radio
buffer (RxFIFO in CC2420). To remove the potential delay
of resource arbitration, sender disables the interrupt service
of packet reception during broadcast. For CC2420 radio on
TelosB, the packet reception can be turned off by strobing
SRFOFF register.

C. RSS Sampling Control

After TelosB node has detected wireless signals, it contin-
uously samples RSS by reading the register RSSI.LRSSI_VAL
of CC2420. The higher the frequency of MCU DCO (Digital
Crystal Oscillator) is, the faster the RSS sampling rate is. The
maximum frequency of MCU DCO is about 4MHz. To achieve
higher RSS sampling rate, we set MCU DCO frequency as
4MHz after radio has been turned on. The resulted RSS
sampling rate f, is 31250Hz (i.e., 32us per sampling) to obtain
fine grain channel profile. To ensure the detection reliability
of collided broadcast packets, we empirically set the threshold
of k and 7 as a small value 64us, which is the time of two
RSS samples. In 20ms tail, the time of RSS sampling is set as

RSS(dBm) A B Cc
S1 -45 -58 -34
S2 -44 -51 -44
S3 -48 -53 -64

Fig. 9: Tllustration of the topology and link state in controlled
experiments.

16ms. Total 500 RSS samples can be recorded. The average
time of RSS sequence processing is about 2.73ms, which is
completely covered by the 4ms rest tail. If no preamble packet
is successfully received and collided broadcast packets are
detected in tail, the tail is extended another 20ms each time.

Moreover, due to the SPI resource arbitration, the
RSS.RSSI_VAL register can not be accessed when MCU reads
the received data from radio buffer (RxFIFO in CC2420). Even
with 4MHz MCU DCO, RxFIFO buffer swapping takes about
[130, 1280]us for different T;,. The long time blank space
of RSS sampling incurs uncertainty on segmentation. In our
implementation, instead of reading all data of RxFIFO, we
directly read the CRC byte after the frame length byte has
been read. If the packet CRC is valid, we read the rest of
bytes. Otherwise, we flush RxFIFO and continuously sample
RSS again. The delay of reading length and CRC bytes is only
about 20 us, in which few RSS sample is lost.

V. EVALUATION

In this section, we verify the efficiency of Chase through
both controlled and testbed experiments.

A. Random Strategy Efficiency

We use 6 TelosB nodes in control experiments. The topol-
ogy and link state are shown in Figure 9. A, B and C are three
receivers, waiting for packets broadcasted by three senders S1,
S2 and S3. The power is set to 7 and the average receivers’
RSS of the packets from different senders is shown in Figure 9.

1) Delivery Reliability: For each testing round, three
senders concurrently broadcast 100 packets with different se-
quence number to receivers. To guarantee concurrent broadcast
of each packet, all senders are synchronized at the initialization
phase and start to broadcast preamble packets with a random
[5,100]ms delay to imitate the asynchronous transmission in
practical. At the end of each testing round, each receiver
calculates the packet reception ratio (PRR), i.e., the number
of received non-duplicate packets divided by 100. For each
experiment setting, we run 30 testing rounds and calculate
the average PRR and radio duty cycle of individual receiver
to measure the delivery reliability and energy efficiency. The
packet length is 37 bytes, with an on-air time of about 1.34m:s.
We shorten T to 2.9ms for reducing the baseline of energy
consumption as Zisense[28] does.

To examine the influence of different components of Chase
on delivery reliability, we compare Chase with other three
concurrent transmission strategies: (1) set IPPI as zero (default
LPL), (2) set a large and fixed IPPI as 2ms (adaptive LPL
for concurrent broadcast [17]), and (3) use uniform random
IPPI in the range of [0,2.8]ms (optimized LPL for concurrent
broadcast in Section III-B).

The results are shown in Figure 10. With large IPPI 2ms, the
PRR of all receivers is increased, about 2.7 times improvement
for A. The reason is that 2ms IPPI leaves more space for
those preamble packets transmitted when other senders are
waiting during IPPI. Moreover, the PPR of all receivers further
increases and becomes larger than 85% with random IPPI.
Compared with fixed IPPI, random IPPI makes different arrival
timing for different overlapped preamble packets to avoid the
strongest signal arrives too late every time. With large and
random IPPI, the increasing of duty cycle also indicates the
receivers have more chances to successfully receive packet
than zero IPPL

Further, the PRR of A and B is increased to nearly 100%
with Chase. As shown in Figure 9, at A and B, the RSS
difference between strong and weak signals may be smaller
than 3 dB so that capture effect does not work. Without
capture effect, the fixed tail 20ms may not be long enough to
resolve continuous collision of preamble packets. In Chase, the
adaptive tail extension further ensures the delivery reliability.

In above experiments, the delivery reliability of Chase
achieves almost 100% under fixed T}, (1.34ms) and T, (2.9ms).
We further test the delivery reliability under different T,
and T on the controlled topology. The results are shown in
Figure 11. When T, is 1344us, the average PRR is close
to 100% under all ZigBee detection time T,. However, as
increasing of T,, the PRR falls down with the decreasing of
T,. The reason is that when T is small, the range of random
Tippi becomes small. With large T, of preamble packet, the
frequency of long overlapped ZigBee signals increases so that
the number of segments in RSS sequence may decrease. With
few segments, false negative ratio of identification algorithm
increases. Therefore, receiver fails to extend the tail. Thus the
loss of broadcast packet occurs. However, the probability of
false negative is relatively low, the average PRR is still higher
than 95% in the worst case.

2) Energy Efficiency: With the controlled topology, we test
the distribution of the length of tail to successfully receive one
preamble packet under different 7,, and T,. The results are
shown in Figure 12. When T > 7ms, for all different T, the
average tail length is about 20ms and the maximum tail length
is no larger than 60ms. However, when T is less than 7ms,
the tail length with long 7, increases faster than it with short
T,. The reason is that short random range is probably not long
enough to construct capture effect, especially for long 77,. It
needs to extend the tail to wait for the receiving opportunity of
non-collision preamble packets. When T, increases to 3904 us,
the average tail length increases to about 270ms and the
maximum tail length is 440ms, about 13.6 and 22 time of

480

. 1344ps 2
420 | He =
0.8 7 2624ps 6+
§ Zero IPPI XY %60 3004ys - ||
Y L us]
0.6 NN) 1 2 300
x 7 N Fixed 2ms IPPI 72 x 2
4 N X 4 = 240t
o 0.4 Y, N Random IPPI 111 | o 0.94 | 1 E 180
. N, X . L
7 § Chase 1344us 2
02 R 092 | 26245 &~ | { 120 |
NN
AN N . 60
E NN 3904us 1)
0 : AN X 09 L— ‘ : 0 ‘ ‘ : :
A B o] 3 5 7 9 1 3 5 7 9 11

Node ID

Fig. 10: PRR performance under differ-
ent IPPI adjustment strategies.

TABLE II: The Accuracy of Identification Algorithm

[Correct [False Negative | False Positive

Concurrent Broadcast 98.7% 1.3% 0
Single Transmission 100% 0 0
Channel Contention 99.2% 0 0.8%

Hidden Terminal 30.5% 0 69.5%

default tail length. Thus, when 7T, is long, it is better to set
T, larger than 7ms to keep energy efficiency in Chase,

To conclude, Chase largely improves the delivery reliability
of concurrent broadcast under various settings. The cost of
reliable concurrent broadcast becomes larger when the gap
between T, and T, becomes smaller.

B. Identification Accuracy

According to the performance analysis of delivery reliability
in the controlled experiments, the accuracy of identification
algorithm is key factor. With the controlled topology shown
in Figure 9, we make A, B and C identify whether the type of
received signals is concurrent broadcast with Chase. We test
the identification accuracy for 4 types of data flows. The first
type is all three senders concurrently broadcast. The second
type is only one sender unicasts or broadcasts. The third type
is all three senders content the channel to unicast or broadcast.
The last type is all three senders are hidden terminal and
concurrently unicast or broadcast. For each transmission of
different data flows, the T, and T is randomly chosen. Each
node identifies 1000 RSS sequences for each type of data flow.

The results are shown in Table II. 98.7% of concurrent
broadcast can be correctly identified. The rest of 1.3% is
false negative due to the lack of features when the number
of segments is small since the signal overlapping is severe.
For single transmission and channel contention, the correctness
of identification is very high, i.e., 100% and 99.2%. With
similar random segment interval and on-air time in channel
contention, the false positive may occur when no preamble
packet is successfully received. However, the loss of preamble
packet is rare due to contention backoff, the false positive is
only 0.8%. For hidden terminal, only 30.5% can be correctly
identified. The reason is that IPPI and on-air time are much
similar between hidden terminal and concurrent broadcast, it
fails to identify whether corrupted preamble packets belong to

ZigBee Detection RSS Sampling (ms)

Fig. 11: PRR performance under differ-
ent detection RSS sampling duration.

ZigBee Detection RSS Sampling (ms)

Fig. 12: Tail length under different de-
tection RSS sampling duration.

Fig. 13: The picture of real testbed with 50 TelosB nodes.

concurrent broadcast. To conclude, Chase can correctly rec-
ognize concurrent broadcast in most cases. Thus, the delivery
reliability of Chase is guranteed. For other data flows, the false
tail extension may appear when hidden terminal is severe.

C. Network Flooding

We evaluate Chase on the real testbed with 50 TelosB nodes,
which are deployed as a grid topology as shown in Figure 13.
The distance between two adjacent nodes of both vertical and
horizontal direction is about 20cm. We set the radio output
power to 3. With such a power, the hidden terminals and packet
contentions often appear in the centre area during flooding.
The packet length is 77 bytes corresponding to on-air time
2623 us. Another parameters follow the settings in Section I'V.
We also control the reception range of each node to ensure the
enough multi-hop transmission on our testbed. The network
density is 4 neighbors per node on average. The network
diameter is about 10 hops. We compare Chase with three
other protocols. The first is deluge flooding with Box-MAC,
in which node will immediately broadcast the received packet
with duplicate suppression [12] and carrier sense. The second
is the widely used flooding protocol Drip [25] with Box-MAC.
In Drip, the broadcast is controlled by trickle timer [15] after
receiving the packet to further reduce the influence of collision.
The last is Drip with AMAC [6], which is the state-of-the-

20000 100
125% - 75%] ——=

15000

N

5000

Compeltion time (ms)
CDF (%)

Chase —»—
AMAC-Drip —s—
LPL-

-Drip —e—

0 Flooding ——

Chase LPL-Drip AMAC-Drip Flooding 0 3000 6000 9000 12000 15000
Protocols Completion time of each node (ms)

[25% - 75%) ——

méé%é

Chase LPLDrip AMAC-Drip Flooding
Protocols

Duty cycle (%)
N
8
CDF (%)

Flooding ——

3 6 9 12 15 18 21 24 27 30
Duty cycle of each node (%)

(a) Distribution of network comple- (b) CDF of per node completion time in (c) Distribution of average duty cycle (d) CDF of per node duty cycle in dif-

tion time in different protocols different protocols

in different protocols

ferent protocols

Fig. 14: The illustration of the results for real testbed experiments. (a) and (c) show the distribution of the network completion
time and average duty cycle of all flooding packets in different protocols. (b) and (d) show the CDF of the per node completion
time and duty cycle of all flooding packets in different protocols.

art energy efficient receiver-initiated asynchronous duty cycle
MAC.

We show the efficiency of Chase through testbed exper-
iments in terms of the completion time and the energy con-
sumption measured by radio duty cycle. For each protocol, the
sink continuously floods 100 packets to collect performance
data. With Chase, multiple senders can concurrently broadcast
with reliable packet delivery. The idle radio waiting and
packet retransmission can be significantly reduced. Thus, both
completion time and energy consumption of Chase are more
efficient than other flooding protocols in asynchronous duty
cycle networks. The results are shown in Figure 14.

As shown in Figure 14(a), the network completion time of
Chase is smaller than the others three protocols. The median
network completion time of Chase is about 6723ms. The
median network completion time of deluge flooding is 8523ms
and LPL-Drip is 9157ms. The improvement is 21.1% and
26.6% with Chase. The network completion time of AMAC-
Drip is smaller than LPL-Drip due to more efficient channel
access. Compared with the AMAC-Drip whose median net-
work completion time is about 7723ms, the improvement of
Chase is 12.9%. The reason is the probe collision of AMAC
reduces the reliability and increases the completion time. The
completion time of LPL-Drip is more dynamic due to the
exponentially increased interval between adjacent broadcast
so that severe packet loss incurs more delay on the interval.

Figure 14(b) shows the CDF of per-node completion time
in different protocols. The improvement of completion time
with Chase is also observed, since the curve of Chase is
increasing faster than other three protocols. With Chase,
81.2% nodes can receive flooding packet within 3000ms. The
ratio is only 63.7% and 60.2% with AMAC-Drip and LPL-
Drip, respectively.

As shown in Figure 14(c), the average radio duty cycle of
Chase is smaller than LPL-Drip and deluge Flooding. The
median average radio duty cycle of Chase is about 16.32%.
The median average duty cycle of deluge flooding is 19.72%
and LPL-Drip is 19.56%, leading to an improvement of 17.2%
and 16.6% by Chase. With faster network completion time,
Chase further provides higher energy efficiency than LPL-
based flooding. We observe that the average radio duty cycle

of AMAC-Drip is better than Chase. Compared with the
AMAC-Drip whose median average radio duty cycle is about
14.12%, the degradation is about 13.5%. The reason is the long
preamble and extra extension of tail makes high average radio
duty cycle of Chase, but the idle waiting and tail of AMAC
[6] is much smaller. However, as the network completion
time of Chase is faster than AMAC-Drip, the overall energy
consumption of Chase and AMAC-Drip is fair.

Figure 14(d) shows the CDF of per node duty cycle in
different protocols. The improvement of average radio duty
cycle with Chase is also observed. We notice that the baseline
energy of Chase is higher than other three protocols. The
reason are Chase extends the tail to guarantee the reliability
and all nodes will broadcast to relay flooding packet in Chase.
Chase makes the tradeoff between reliability and energy.
Considering the faster network completion time, the overall
energy efficiency is higher than other flooding protocols.

VI. RELATED WORK

Always-on Radio. Many approaches focus on full-coverage
dissemination problem in always-on radio mode. Drip [25] and
Deluge [12] are structureless with pure broadcast transmission
hop by hop. They utilize the trickle timer [15] to control the
dissemination flow for reducing the contention and transmis-
sion. ECD [4] further considers the influence of link quality
on sender selection. CFlood [30] considers the influence of
link correlation on sender selection. Cord [11] and Sprinkler
[22] are structure based. An approximate minimum dominating
set of nodes are selected as core nodes. Chase is based on
LPL asynchronous duty cycle radio mode and enables reliable
concurrent broadcast to accelerate flooding.

Synchronous Duty Cycle Radio. Synchornization is re-
quired in synchronous duty cycle protocols. Glossy [7] exploits
the constructive interference to fast flooding the data in
network wide. Splash [3] adopts the reverse data forwarding
structure to increase reliability. Pando [5] further explores the
fountain code to reduce the number of retransmission. With
local synchronization, each node knows the sleep schedule of
its neighbors. The sender just begins transmission after the
receiver turns on the radio. Based on the energy-optimal tree,
S. Guo et al. [10] exploit opportunistic chance over unreliable

links, which can reduce the expected end-to-end delay, as
relay. In contrast, Chase works in an asynchronous way. Both
synchronous and asynchronous duty cycle models are widely
adopted and used in different scenarios. Chase is proposed to
mainly address the inefficiency of flooding in asynchronous
duty cycle protocols.

Asynchronous Duty Cycle Radio. With receiver-initiated
asynchronous duty cycle radio mode, the broadcaster transmits
the packet to the receivers after successfully receives the
receivers’ probes. ADB [23] utilizes the progress information
of local neighbors to select broadcaster to increase the de-
livery reliability and reduce the energy consumption. Chase
enables reliable concurrent broadcast in the sender-initiated
asynchronous duty cycle flooding.

VII. CONCLUSION

We present Chase, an efficient and fully distributed concur-
rent broadcast layer for flooding in asynchronous duty cycle
networks. In Chase, we propose a distributed random inter
preamble packet interval adjustment approach to meet the
strict time and signal strength requirements for concurrent
transmission. In case that the time and signal requirement
cannot be satisfied (e.g., the difference of signal strength is less
than a 3 dB) due to physical constraint, we propose a light-
weight signal pattern recognition based approach to identify
such a circumstance and extend radio-on time to resolve the
collision. We implement Chase in TinyOS and TelosB node.
The implementation can be used as a building block for upper
layer protocols. The evaluation results show the effectiveness
of Chase in asynchronous duty cycle networks.

ACKNOWLEDGMENT

We gratefully acknowledge our shepherd Ting Zhu and
ICNP reviewers. Jiliang Wang is the corresponding author.
This study is supported in part by the NSFC program under
Grant 61472217, the NSFC program under Grant 61572277,
the NSFC key program under Grant 61532012, the NSFC Joint
Research Fund for Overseas Chinese Scholars and Scholars in
Hong Kong and Macao under grant 61529202, and the NSFC
program under Grant 61672320.

REFERENCES

[1] Z. Cao, Y. He, and Y. Liu. L?: Lazy forwarding in low duty cycle
wireless sensor networks. In Proceedings of INFOCOM, 2012.

[2] M. H. Daibo Liu, Zhichao Cao and Y. Zhang. Preamble counter:
Achieving accurate and real-time link estimation in low power wireless
sensor networks. In Proceedings of IPSN, 2016.

[3] M. Doddavenkatappa, M. C. Chan, and B. Leong. Splash: fast data
dissemination with constructive interference in wireless sensor networks.
In Proceedings of NSDI, 2013.

[4] W. Dong, Y. Liu, C. Wang, X. Liu, C. Chen, and J. Bu. Link quality
aware code dissemination in wireless sensor networks. In Proceedings
of ICNP, 2011.

[5] W. Du, J. C. Liando, H. Zhang, and M. Li. When pipelines meet
fountain: Fast data dissemination in wireless sensor networks. In
Proceedings of Sensys, 2015.

[6]

[7]

[8]
[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

(24]
[25]

[26]

[27]

(28]

[29]

[30]

P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and A. Terzis.
Design and evaluation of a versatile and efficient receiver-initiated link
layer for low-power wireless. In Proceedings of Sensys, 2010.

F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient network
flooding and time synchronization with glossy. In Proceedings of IPSN,
2011.

R. Fonseca, P. Dutta, P. Levis, and I. Stoica. Quanto: Tracking energy
in networked embedded systems. In Proceedings of OSDI, 2008.

O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection
tree protocol. In Proceedings of Sensys, 2009.

S. Guo, L. He, Y. Gu, B. Jiang, and T. He. Opportunistic flooding in
low-duty-cycle wireless sensor networks with unreliable links. [EEE
Transactions on Computers, 63(11):2787-2802, 2014.

L. Huang and S. Setia. Cord: Energy-efficient reliable bulk data
dissemination in sensor networks. In Proceedings of INFOCOM, 2008.
J. W. Hui and D. Culler. The dynamic behavior of a data dissemination
protocol for network programming at scale. In Proceedings of Sensys,
2004.

O. Landsiedel, F. Ferrari, and M. Zimmerling. Chaos: Versatile and
efficient all-to-all data sharing and in-network processing at scale. In
Proceedings of Sensys, 2013.

O. Landsiedel, E. Ghadimi, S. Duquennoy, and M. Johansson. Low
power, low delay: opportunistic routing meets duty cycling. In Proceed-
ings of IPSN, 2012.

P. A. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self regulating
algorithm for code propagation and maintenance in wireless sensor
networks. Computer Science Division, University of California, 2003.
D. Liu, Z. Cao, X. Wu, Y. He, X. Ji, and M. Hou. Tele adjusting: Using
path coding and opportunistic forwarding for remote control in wsns.
In Proceedings of ICDCS, 2015.

J. Lu and K. Whitehouse. Flash flooding: Exploiting the capture effect
for rapid flooding in wireless sensor networks. In Proceedings of
INFOCOM. 2009.

X. Mao, X. Miao, Y. He, X.-Y. Li, and Y. Liu. Citysee: Urban CO,
monitoring with sensors. In Proceedings of INFOCOM, 2012.

M. Maréti, B. Kusy, G. Simon, and A. Lédeczi. The flooding time
synchronization protocol. In Proceedings of Sensys, 2004.

L. Mo, Y. He, Y. Liu, J. Zhao, S.-J. Tang, X.-Y. Li, and G. Dai. Canopy
closure estimates with greenorbs: sustainable sensing in the forest. In
Proceedings of Sensys, 2009.

D. Moss and P. Levis. Box-macs: Exploiting physical and link layer
boundaries in low-power networking. Technical Report SING-08-00,
Stanford, 2008.

V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinkler: A reliable and
energy efficient data dissemination service for extreme scale wireless
networks of embedded devices. IEEE TMC, 2007.

Y. Sun, O. Gurewitz, S. Du, L. Tang, and D. B. Johnson. Adb:
an efficient multihop broadcast protocol based on asynchronous duty-
cycling in wireless sensor networks. In Proceedings of Sensys, 2009.
TelosB. Crossbow inc, 2013.

G. Tolle and D. E. Culler. Design of an application-cooperative
management system for wireless sensor networks. In Proceedings of
EWSN, 2005.

J. Wang, Z. Cao, X. Mao, and Y. Liu. Sleep in the dins: Insomnia
therapy for duty-cycled sensor networks. In Proceedings of INFOCOM,
2014.

T. Xiang, Z. Chi, F. Li, J. Luo, L. Tang, L. Zhao, and Y. Yang. Powering
indoor sensing with airflows: a trinity of energy harvesting, synchronous
duty-cycling, and sensing. In Proceedings of Sensys, 2013.

X. Zheng, Z. Cao, J. Wang, Y. He, and Y. Liu. Zisense: towards
interference resilient duty cycling in wireless sensor networks. In
Proceedings of Sensys, 2014.

X. Zheng, J. Wang, W. Dong, Y. He, and Y. Liu. Bulk data dissemination
in wireless sensor networks: Analysis, implications and improvement.
IEEE Transactions on Computers, 65(5):1428-1439, 2016.

T. Zhu, Z. Zhong, T. He, and Z.-L. Zhang. Exploring link correlation
for efficient flooding in wireless sensor networks. In Proceedings of

NSDI, 2010.

