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Abstract—Duty cycling mode is widely adopted in wireless
sensor networks to save energy. Existing duty-cycling protocols
cannot well adapt to different data rates and dynamics, resulting
in a high energy consumption in real networks. Improving those
protocols may require global information or heavy computation
and thus may not be practical, leading to empirical parame-
ters in real protocols. To fill the gap between the application
requirement and protocol performance, we design a light-weight
adaptive duty-cycling protocol (LAD), which reduces the energy
consumption under different data rates and protocol dynamics.
We theoretically validate the performance improvement of the
protocol. We implement the protocol in TinyOS and extensively
evaluate it on 40 TelosB nodes. The evaluation results show the
energy consumption can be reduced by 28.2%∼40.1% compared
with state-of-the-art protocols. Results based on data from a
1200-node operational network further show the effectiveness
and scalability of the design.

I. INTRODUCTION

Recent advances in Wireless Sensor Networks (WSNs) have

fostered a large collection of applications [1] [2]. In those

networks, a collection of battery powered sensor nodes are

self-organized to form a network, interact with the physical

world and perform certain tasks, e.g., data collection. Due to

the limited energy budget on wireless sensor nodes, the duty-

cycling mode is often used to achieve a long lifetime. In the

duty-cycling mode, each node periodically turns on the radio

to sense the channel and receive packets. Then the node turns

off the radio when there are no packets in order to reduce

energy consumption of idle listening.

Due to the importance of duty-cycling mode, a large col-

lection of duty-cycling protocols are developed in WSNs. In

synchronous duty-cycling protocols [3] [4] [5], the sender and

receiver are synchronized, which enables the sender transmit

packets right after the receiver wakes up. Synchronous duty-

cycling protocols require time synchronization [6] with extra

overhead and hence are not flexible and efficient [4]. To

overcome those shortcomings, asynchronous duty-cycling pro-

tocols, e.g., [7] [8] [9] [10], are proposed. In those protocols,

each node employs the Low Power Listening (LPL) technique

to periodically wake up after sleeping for a certain period

(namely sleep interval). After waking up, a node stays awake

for channel sensing and packet reception (namely awake time).

With packets to transmit, a node first transmits preambles until

the receiver wakes up. Recently, some variant techniques, such

as low power probing (LPP) [11], are proposed to support

receiver initiated duty-cycling protocols, e.g., [12].

With those basic designs, there are many works to further

improve energy efficiency and support adaptive duty-cycling.

For example, MiX-MAC [13] improves the energy efficiency

by switching between different duty-cycling MAC protocols.

In IDEA [14], a centralized method is proposed to tune the

parameters in LPL protocols. In GDSIC [15], a distributed

method is presented to achieve energy fairness. In X-MAC [9],

energy efficiency is improved by tuning the sleep interval.

In [16] [17], heuristic approaches are proposed to improve

energy efficiency. In [18], an efficient method is presented to

reduce unnecessary awake time due to interference.

Those existing protocols propose promising approaches to

improve energy efficiency. However, there exist several prob-

lems while applying those protocols to practical WSNs. First,

many impacting factors, e.g., data rate, which significantly

impact the performance, are not thoroughly addressed in

practical designs. Besides, existing works focus on the duty

cycle ratio, i.e., the ratio of awake time to sleep interval.

However, even for the same duty cycle ratio, different lengths

of awake time can lead to different energy consumption.

Second, many existing protocols require global information,

centralized or heavy computation to improve the performance.

Third, in practical protocols, e.g., TinyOS LPL MAC, the

awake time is dynamic and depends on the traffic pattern. Such

dynamic behaviors, which have a significant impact to system

performance [19], are not thoroughly analyzed and addressed.

Due to the existence of those problems, the performance

of duty-cycling protocols may significantly deviate from the

optimal performance. Such problems are also experienced in

a real network CitySee [2], in which 1200 nodes are deployed

in the urban area. The duty-cycling mode is adopted to save

energy. Based on the collected data, we find that without

carefully considering the traffic impact and the awake time,

the duty cycle radio is significantly different from small scale

tests. We also find that state-of-the-art protocols with empirical

parameters [19] are not adequate to optimize the performance,

and also not adaptive for nodes with various traffic patterns in

the network.

In this work, we propose a framework for distributed duty-

cycling protocol design under different traffic patterns with

protocol dynamics. The framework incorporates the awake

time and traffic pattern to reduce the energy consumption. We

theoretically analyze the performance gain of the proposed

framework. Further, as an example, we apply the analysis to

the de facto duty-cycling protocols in WSNs, i.e., TinyOS
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Fig. 1: A motivating example. Both the sleep interval and

awake time should be carefully set.

LPL MAC [20]. We find that the LPL MAC, though widely

adopted by application developers, is inefficient under various

network conditions. Our design can significantly improve the

performance.

We implement our design LAD in TinyOS [21] and conduct

extensive experiments on a network with 40 TelosB nodes. We

also examine the performance based on data from a 1200-

node network to show the scalability of our design. The

contributions are summarized as follows.

• We present a framework to qualitatively analyze the sig-

nificant impact of traffic patterns and protocol dynamics

in duty-cycling protocols.

• We propose a light-weight distributed duty-cycling pro-

tocol design (LAD) which can achieve optimal energy

efficiency with different data rates and protocol dynamics

in real networks.

• We implement the protocol in TinyOS with TelosB nodes.

The experimental results demonstrate that our protocol

can achieve 28.2%-40.1% performance gain compared to

existing duty-cycling protocols.

The remainder of this paper is organized as follows. Sec-

tion II presents the analysis of the energy consumption in

the duty-cycling mode and the analysis on a real protocol

implementation. Section III shows our protocol design based

on the analysis. Section IV presents the implementation and

evaluation results. Section V introduces related work and

Section VI concludes this work.

II. PROTOCOL ANALYSIS

In this section, we first show the basic mechanism of LPL

protocol with a simple motivating example. Then we analyze

the impact of different parameters to protocol performance.

Based on the analysis, we explain why existing adaptive

protocols cannot achieve optimal performance and how to

achieve this. We also analyze the de facto duty-cycling proto-

col implementation in TinyOS and show that our design can

significantly improve the performance.

A. Background

1) LPL mechanism: While there exist a variety of duty-

cycling protocols, they share a similar design principle. As

shown in Figure 1(a), each node periodically (with a cycle ts)
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Fig. 2: Illustration of the duty-cycling mechanism.

wakes up and senses the channel. If the channel is busy, the

node remains awake for a certain period of time tw. Upon

receiving a packet, the receiver extends the awake time for a

certain period td (e.g., TinyOS LPL MAC). With packets to

send, a node sends preambles or short strobes until the receiver

wakes up.
2) Motivating example: Figure 1 shows three examples.

Case (a) shows the simplified original LPL protocol. In case

(b), with a larger sleep interval, the energy consumption at the

receiver is reduced. However, the energy consumption at the

sender increases because the sender needs to wait for a longer

time until the receiver wakes up. While adjustment on the

sleep time can significantly reduce the energy consumption,

it is still not adequate. As in case (c), the traffic rate also

impacts the energy consumption. If the awake time is large

for different traffic rates, the energy consumption at the sender

can be significantly reduced since multiple packets can be sent

during the same waking up period of the receiver. However,

the energy consumption at the receiver will increase. Thus the

sleep interval and awake time should be carefully designed to

reduce the total energy consumption.
3) Parameters: In this work, we focus on analyzing the

sender-initiated protocol. Both sender-initiated and receiver-

initiated protocols are evaluated in Section IV.
We have the following parameters.

• ts: the sleep interval.

• tw: the time a node stays awake after waking up, tw = 0
means the node will immediately go to sleep when no

signal is sensed.

• td: the dynamically extended awake time, i.e., a node

extends the awake time to t+ td after receiving a packet

at t.
• τ : the overhead to sense the channel.

In our analysis, we assume the data rate is λ and different

nodes may have different λ.

B. Energy Analysis
According to the mechanism, there are two cases for sending

a packet in duty-cycling protocols:

• If the receiver is sleeping, the sender should wait until the

receiver wakes up. We denote this kind of transmission

as preambled transmission, e.g., x3 in Figure 2(a).
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• Otherwise, the packet is transmitted without preambles.

We denote this kind of transmission as non-preambled
transmission, e.g., x1 and x2 in Figure 2(a).

In our analysis, we mainly focus on the radio-on (awake)

time, which is the main source of energy consumption on

sensor nodes [9][15]. We denote the period from the time

a node goes to sleep state to the next time the node goes

to sleep state as a cycle, i.e., the period of length ts + L in

Figure 2(a). Note that the cycle length may not be fixed if

td �= 0. In each cycle, the energy consumption consists of the

following two parts [9][15]: (1) radio-on time for receiving

packets, including the time for receiving packets and channel

sensing; (2) radio-on time for sending packets. To calculate the

average energy consumption for each packet in each cycle, we

first calculate the expected total radio-on time for sending and

receiving packets in each cycle.

1) Energy consumption for receiving packets: We first

calculate the energy consumption for receiving packets. If

td = 0, the radio-on time at the receiver for each cycle is

tw. tw = 0 means that a node immediately goes to sleep

when no signal is detected [9]. In real protocols the receiver

may dynamically extend the awake time upon a reception. We

assume there are k packets to extend the awake time, namely

extending packets. Denote those k packets as x1, x2, . . ., xk

and the corresponding receiving time as t1, t2, . . ., tk. To

facilitate the analysis, we denote the packet after xk as xk+1

at time tk+1. Then we calculate the expected radio-on time

for two cases, tw ≥ td and tw < td. We first calculate the

probability of k extending packets. Without ambiguity, we use

the notation to denote the corresponding period in the figure

as well as the length of the period. Assume in each cycle, the

time starts at 0.

Case 1 (tw ≥ td): As shown in Figure 2(b), a packet can

extend the radio-on time only when it is received after ts +
(tw − td). Denote the probability for k extending packets as

P1(k) and the number of transmissions in a time interval t by

N(t). We have P1(0) = p(N(td) = 0). For k > 0, we have

• N(td) > 0: there should be at least one transmission in

the time window from ts+(tw − td) to ts+ tw as shown

in Figure 2(b), otherwise k = 0.

• ti − ti−1 ≤ td for 1 < i ≤ k , otherwise ti will not be

an extending transmission.

• tk+1 − tk > td, otherwise tk+1 should also be an

extending transmission in the same cycle.

Then the probability for k (k > 0) extending packets is

P1(k) = p(N(td) > 0 ∧ t2 − t1 ≤ td ∧ · · ·
∧ tk − tk−1 ≤ td ∧ tk+1 − tk > td)

Case 2 (tw < td): Denote the probability as P2(k). This

case can be further divided into two cases considering whether

there are packet transmissions in the sleeping time of length

ts.

Case 2.1 (N(ts) > 0): There are packet transmissions in

the sleep time of length ts. The receiver can receive packets

after it wakes up and the radio-on time is extended by a length

of td. Then this case transforms to Case 1 with tw = td.

Case 2.2 (N(ts) = 0): There is no packet transmission in

the sleep time of length ts. The radio-on time will only be

extended if there are packets received after the receiver wakes

up, i.e., N(tw) > 0. If k = 0, we have P2(0) = p(N(tw) = 0).
For k > 0, the probability can be calculate as follows,

P2(k) = p(N(tw) > 0 ∧ t2 − t1 ≤ td ∧ · · ·
∧ tk − tk−1 ≤ td ∧ tk+1 − tk > td)

Till now, we have calculated the probability for k extending

packets. To calculate the expected radio-on time for k extend-

ing packets in Case 1 and Case 2, we first calculate expected

inter-packet time between two consecutive extending packets.

Given the maximum inter-packet time t, the expected inter-

packet time T (t) is calculated as

T (t) =

∫ t

0
xp(d = x|N(t) > 0)dx. (1)

where p(d = x) denotes the probability that the inter-packet

interval is x.

For Case 1, as shown in Figure 2(b), the expected radio-on

time L1(k) with k packets is calculated as

L1(k) = tw + kT (td) (2)

For Case 2, as shown in Figure 2(c), the expected radio-on

time L2(k) with k packets is calculated as

L2(k) =

⎧⎪⎨
⎪⎩
td + kT (td) Case2.1

tw Case2.2&k = 0

T (tw) + (k − 1)T (td) + td Case2.2&k > 0

(3)

Eq.(2) and (3) show that for different data rates, the resulted

radio on time are different. Then we can calculate the expected

radio-on time.

E(L) =

{∑∞
k=0 L1(k)P1(k) Case1∑∞
k=0 L2(k)P2(k) Case2

(4)

Note here for case 2 we should calculate the expected radio-on

time across different cases.

2) Energy consumption for sending packets: The expect-

ed energy consumption for sending packets depends on the

number of preambled transmissions and non-preambled trans-

missions. We first calculate the number of non-preambled

transmission Mi and preambled transmission Mp. For Case

1, the expected number of non-preambled packets is the sum

of packets in the time window of length tw − td and packets

after such a time period. For Case 2, the expected number of

non-preambled transmission is E(Mi) = P2(k)k. We have

E(Mi) =

{∑∞
k=0 kp(N(tw − td) = k) +

∑+∞
k=0 P1(k)k Case1∑+∞

k=0 P2(k)k Case2

According to the data rate, the expected number of pream-

bled transmissions is

E(Mp) = λts. (5)
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Fig. 3: Performance of duty-cycling for different data rates, with τ = 10, α = 1, β = 1 and γ = 1. (a) λ = 0.0001, (b)

λ = 0.02, (c) λ = 0.1 (pkt/ms). For different data rates, using the same parameter setting results in totally different performance.

For example, a small tw and td, which is preferred in (a), is prohibited in (b).

3) Average energy consumption: The energy consumption

for each cycle depends the radio-on time for sending and

receiving packets, the channel sensing and the energy to

send/receive packets. The energy consumption for radio-on

time for receiving packets, which is proportional to E(L),
is calculated as αE(L), where α is a coefficient for energy

consumption. The energy consumption for channel sensing is

denoted by τ . For each preambled transmission, the expected

radio-on time at the sender is ts/2. For each non-preambled

transmission, the extra radio-on time is negligible. Therefore,

the expected energy consumption for sending packets can be

calculate as βE(Mp)ts/2 with β as a coefficient.

Theorem 1: The average energy consumption per packet is

calculated as

G =
αE(L) + βE(Mp)ts/2 + γ(E(Mp) + E(Mi)) + τ

E(Mp) + E(Mi)
(6)

Our goal is to optimize G for different parameters. We use the

equation as the guideline for our protocol design. In the design

section, we show how to leverage this equation to improve the

energy efficiency.

C. Example

Assume the traffic follows a poisson distribution. Consid-

ering the memorylessness and independence of inter-arrival

time, we have

P1(k) = p(N(td) > 0)

k∏
i=2

p(ti − ti−1 ≤ td)p(tk+1−tk > td)

Denote t′i = ti − ti−1, since the probability density function

of inter-arrival time is f(t) = λe−λt, we have

P1(k) = p(N(td) > 0)

k∏
i=2

td∫
0

f(t′i)dt
′
i

+∞∫
td

f(t′k+1)dt
′
k+1

= (1− e−λtd )ke−λtd

(7)

Similarly, we can calculate the P2(k), E(L) and finally obtain

G.

D. Revisiting Existing Protocols

We revisit the de facto duty-cycling protocol implementa-

tion, i.e TinyOS LPL MAC , and demonstrate how to leverage

the analysis to improve energy efficiency. In TinyOS LPL

MAC, the typical channel sensing time is 5∼15ms and the

typical sleep interval is 500ms. We set α = 1, β = 1, ts = 500
and τ = 10. According to Eq. (6), we calculate average energy

consumption G for different tw, td and data rate λ. We show

the average energy per packet in Figure 3. We find that current

parameter settings in TinyOS LPL MAC may lead to very poor

performance.

For a low data rate (e.g., λ = 0.0001 pkt/ms), as shown in

Figure 3(a), the energy consumption increases when tw or td
increases. This is because though increasing the awake time

reduces the energy consumption at the sender, this increases

energy consumption at the receiver. For a low data rate, the

reduced energy consumption at the sender is relative small

and is defeated by the increased energy consumption at the

receiver. In the default TinyOS LPL MAC, the typical value

of td is set to 100ms. According to Figure 3(a), such a setting

will introduce a significant additional overhead. Thus td should

be set smaller.

When the data rate becomes higher (e.g., λ = 0.02 pkt/ms),

as shown in Figure 3(b), the energy consumption decreases

when both tw and td increase. This is because when the traffic

is relative high, prolonging the awake time, though increases

the energy consumption at the receiver, increases the probabil-

ity of non-preambled transmissions and thus reduce the energy

consumption for the senders. Thus increasing tw, previously

prohibited, is beneficial. Similarly, prolonging td can also

increase the probability for non-preambled transmissions and

hence reduce the energy consumption.

When the data rate is even higher (e.g., λ = 0.1 pkt/ms),

as shown in Figure 3(c), the energy consumption quickly

decreases as the increasing of td. This is because when the data

rate is high, the probability of receiving packets, during the

extended time of td, becomes very high. When the number of

received packets during td increases, the benefit can overcome

the overhead. Thus td is a crucial factor to the performance.

We should set tw and td to larger values.
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As a result, we can see that 1) the fixed settings of tw
and td in TinyOS LPL MAC are not appropriate and the

default settings may lead to a high energy consumption, and

2) traditional methods to optimize the sleep interval may not

result in an optimal result with the extended time td.

III. PROTOCOL DESIGN

Based on the analysis result, we present the design of

a light-weight distributed adaptive duty-cycling protocol to

improve energy efficiency.

A. Design Overview

The design consists of three major components, (1) a

network estimation component, (2) an online parameter opti-

mization component and (3)an adaptive duty-cycling protocol

component. The network estimation component measures the

required network status for calculating optimal parameters.

Then the parameter optimization component provides the

optimal parameters for the duty-cycling protocol. Based on

the optimal parameter settings, the adaptive duty-cycling pro-

tocol accordingly adjusts the sleep interval, awake time and

extending time.

B. Network Estimation & Parameter Optimization

To optimize the energy efficiency according to Eq. (6), we

need to estimate the parameters λ and τ . We estimate the

parameter λ using maximum likelihood estimation (MLE). By

dividing the time into time slots of length wi, we count the

number of packets ki in the latest n time slots. Then we obtain

the estimation of λ by λ̂MLE = 1
nwi

∑n
i=1 ki. The value of τ

depends on the channel sensing technique and can be measured

offline.

Based on Eq. (6) and the estimated parameters, we calculate

the optimal tw, td and ts. The challenge is that calculating

those parameters according to Eq. (6) introduces a significant

computation overhead, which is not applicable for resource

limited sensor nodes. To conquer this challenge, we pre-

calculate the optimal values of tw, td and ts for different λ and

store those values on sensor nodes. According to the measured

parameters from the parameter estimation component, each

node locally searches for corresponding optimal settings of

tw, td and ts to reduce the computation overhead.

When λmin ≤ λ ≤ λmax, we calculate the corresponding

values of tw, td and ts for the optimal energy consumption.

Then we store the optimal values corresponding to discrete

values of λ in a table on each sensor node. When λ < λmin

or λ > λmax, we use the parameter settings of λ = λmin and

λ = λmax to approximate those of λ < λmin and λ > λmax.

C. Adaptive Duty-cycling Protocol

To be adaptive to network conditions, the component takes

the optimal parameters from the parameter optimization com-

ponent as input and accordingly adjust the protocol behavior.

First, each node adjusts the sleep interval and awake time

according to ts, tw and td. Meanwhile, the sender should know

the parameter settings of the receiver in order to send packets.

Fig. 4: Implementation of adaptive duty-cycling protocol based

on TinyOS LPL MAC.

In our protocol, each node records the sleep interval ts for all

neighbors. The information is piggybacked in the broadcast

or data packets in order to notify other nodes. To increase the

probability that the information is received by other nodes, the

preamble length of broadcast is set to the maximum length of

ts in all neighbors. Considering packet losses in real networks,

when a sender does not have the sleep interval information for

a particular node or the information is stale, the sender will

use the maximum ts to ensure that the receiver wakes up at

least once in a cycle.

IV. IMPLEMENTATION AND EVALUATION

We implement our protocol in TinyOS 2.1 and evaluate its

performance in a network consisting of 40 TelosB nodes. To

further validate its scalability and effectiveness, we conduct

trace driven simulations based on data from a 1200-node

network.

A. Implementation

The architecture of the implementation is shown in Figure 4.

We build our protocol LAD based on the default duty-cycling

protocol in TinyOS. We implement a traffic monitor on top

of the TinyOS LPL MAC to record the number of received

packets for each time window (currently we set the window

size to 1 second). As introduced in Section III, we use the

latest 10 windows to estimate λ.

To obtain the optimal parameter settings, as introduced

in Section III, we store the optimal parameter settings for

different λ on sensor nodes. For λ < 0.0001, we set the

tmin
w = 0 and tmin

d = 0. For λ > 0.1, we check the

space according to optimal value of G in Eq. (6) for tw, td
and ts. We find that increasing td indicates improvement on

energy efficiency. However, when td is larger than 100ms, the

improvement becomes limited. Thus we set tmax
d = 100ms

and tmax
w = 200ms. We 0.0001 < λ < 0.1, we discretize

λ and calculate the optimal values for ts, tw and td with

respect to different values of λ. The duty-cycling protocol

takes the output from parameter optimization component and

accordingly adjust the schedule.

B. Evaluation

1) Methodology: We evaluate our protocol on a testbed

consisting of 40 TelosB nodes. To evaluate the multi-hop
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Fig. 5: Duty cycle ratio under different data rates: (a) under a high data rate; (b) under a low data rate.

performance, we incorporate our protocol with CTP [22]

protocol for data collection. We compare our design with the

following protocols on the testbed:

• TinyOS LPL MAC [20] (LPL) with default settings ts =
500ms, tw = 10ms and td = 100.

• TinyOS LPL MAC with minimal td value, td = 0 (LPL-

noextending).

• Parameter optimization with X-MAC [9].

• A-MAC [12], i.e., the most recent receiver-initiated duty

cycling protocol.

We evaluate the performance of those protocols under a rela-

tive high data rate (0.25 pkt/s for each node) and a relative low

data rate (0.025 pkt/s). For different data rates, we compare the

performance of different protocols from the following aspects:

• Duty cycle ratio, the percentage of radio-on time.

• Average energy consumption per packet.

• Packet loss ratio.

• Adaption to different data rates.

• Detailed radio operations.

We further conduct trace-driven simulations with trace from a

network consisting of 1200 nodes.

2) Overall performance: We first compare the duty cycle

ratio for different protocols under different data rates. Fig-

ure 5(a) shows the result under a high data rate. We can see

that our design outperforms other approaches in terms of duty

cycle ratio. More specifically, in our protocol, more than 90%

of nodes have a duty cycle ratio lower than 16%. While among

other protocols, X-MAC achieves the best performance, be-

cause X-MAC can adaptively adjust the parameters. However,

the performance of X-MAC is lower than our protocol since

X-MAC does not consider the traffic and protocol dynamics.

In X-MAC, there are more than 50% of nodes with a duty

cycle ratio higher than 15%. Figure 5(b) shows the result for

a low data rate. Under a low data rate, the radio duty cycle for

all protocols are reduced. In our protocol, more than 80% of

nodes have a duty cycle ratio lower than 7%. The average duty

cycle improvement to X-MAC with parameter optimization is

about 28.8% under a high data rate and 28.2% under a low

data rate. The average duty cycle improvement to the default

LPL MAC is about 40.1% under a high data rate and 28.6%

under a low data rate.

We also evaluate the average energy consumption per pack-

et. Figure 6(a) shows the average energy consumption per

packet under a high data rate. First, we find that under a high

data rate, the LPL with delay after receiving (td > 0) is sig-

nificantly better than the protocol LPL-noextending (td = 0).

This verifies our observation in Section III that a longer awake

time even leads to a lower energy consumption since the time

for preambles can be reduced. This coincides with our analysis

result in Figure 3(a). In our protocol most nodes have average

radio-on time less than 40ms while the best among others

has only 50% of nodes with average radio-on time less than

40ms. Figure 6 shows the energy consumption per packet

under a low data rate. First, the energy consumption per packet

under a low data rate is smaller than that under a high data

rate. Under a low data rate, our protocol is still better than

other protocols. We can also find that under a low traffic rate,

the LPL-noextending becomes slightly better than LPL. This

coincides with our result in Figure 3(c).

3) Packet losses: Reliability is an important metric for

data collection. If the sleep interval and awake time are not

appropriate, packets may not be able to be processed in time

and thus get lost. We evaluate the packet losses for different

nodes. Figure 7 shows the result for different protocols. We

can see that under different data rates, our protocol achieves a

high reliability. The reliability of A-MAC is relative lower. We

investigate the data and find that there are mainly two reasons.

First, according to the A-MAC implementation, the sink in A-

MAC is not set to be always-on. This causes more packets

accumulated near the sink node and results in collisions and

overflow. Second, there is no approach provided to adjust the

probe time. As introduced in A-MAC [12], probes are easy to

collide in A-MAC with a relative high data rate on the testbed.

We also test for different network scales and data rates. We find

that when the network density is low, the A-MAC performs

better and presents similar results with other protocols.

4) Adaption to different data rates: We further investigate

that how our approach adapts to different data rates. More

specifically, we calculate the sleep interval for different nodes
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(a) (b)

Fig. 6: Energy consumption under different data rates: (a) under a high data rate; (b) under a low data rate.

(a) (b)

Fig. 7: Reliability of packet transmission for different data rates: (a) under a high data rate; (b) under a low data rate.

with different data rates on the testbed. Figure 8(a) shows the

node layout on the testbed. The sink node resides on the left-

bottom corner. Figure 8(b) shows the sleep interval distribution

for different nodes in our protocol. The darker color indicates a

smaller sleep interval. We can see by using our protocol nodes

near the sink node with a high data rate have a smaller sleep

interval than other nodes. This coincides with our analysis

and also further shows that our protocol can adjust the sleep

interval according to the data rate.

5) Radio profiling: To examine the effectiveness of our

protocol, we measure the detailed radio behaviors of each

node. To precisely record the radio behavior, we log all radio

operations (i.e. radio on/off and packet receiving events) as

a tuple < event, time > on the local flash of each node.

Then we derive the radio status according to the recorded

events. For example, for two consecutive events radio-on and

radio-off at time t1 and t2, we derive the period [t1, t2] as a

radio-on period. Then we plot the radio status according to

the logged events. The data rate in our experiment is set to

4 pkt/s. Figure 9(a) shows the radio operations in the default

TinyOS LPL MAC. Figure 9(b) shows the radio operations in

our protocol. The upper figures are for the senders and the

lower figures are for the receivers. From Figure 9(a), we can

see for the default TinyOS LPL MAC there exist many long

radio-on time periods for the sender due to the long sleep

Sleep Interval Distribution
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Fig. 8: Node positions and the corresponding sleep interval

distribution. The sink node resides at position (0, 0).

interval on the receiver. This is because ts and td are not

adjusted according to the traffic. Further, Figure 9(b) shows the

result for our protocol. By leveraging parameter optimization,

the sleep interval and radio-on time can be adjusted according

to the traffic. Thus the radio-on time for sending a packet is

significantly reduced. While at the receiver side, the radio-

on operations are more frequent than that in the default LPL

MAC. This is because our protocol considers the energy

consumption both at the sender and receiver to optimize the

parameters. Therefore, the average energy consumption per

packet is significantly reduced.
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Fig. 9: Radio operations at the sender and receiver. (a)Radio operations for the default LPL MAC. (b) Radio operations for

LAD design.
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Fig. 10: Trace driven simulation based on data in CitySee network. (a) Real data distribution and the curve fitting result. (b)

Duty cycle improvement in a subnet, the red circle denotes the duty cycle calculated from CitySee and the dark disk indicates

the duty cycle ratio of our protocol. (c) CDF of the duty cycle improvement.

C. Trace driven simulations

We further conduct trace driven simulations based on data

from CitySee network, which consists of 1200 sensor nodes

deployed in the urban area. We use CTP protocol to collect

data from the network. Each node in the network transmits 4

data packets back to the sink node every 10 minutes. In the

network, we use the TinyOS LPL with ts = 512, td = 10 and

tw = 10.
1) Performance improvement for different nodes: We first

evaluate the real traffic distribution on each node in the

network. In our application, each node records the packet

receiving time. Based on the receiving time, we calculate

the inter-packet interval to see if the incoming traffic follows

poisson distribution. If the traffic follows a poisson distribu-

tion, the inter-packet interval should follows the exponential

distribution. The result is shown in Figure 10. We also show

the curve fitting result for the data. We can see that the real

data well fit the exponential distribution. This shows that in

the network, the traffic can be approximated with the poisson

distribution.

From the collected data, we can calculate the real duty

cycle ratio for each node. Accordingly, we can also use the

data rate as the input to our protocol and then calculate

the corresponding energy consumption. We compare the duty

cycle ratio of LAD to the actual duty cycle ratio in CitySee.

Figure 10(b) shows the improvement for nodes at different

locations in one subnet. We can see that the duty cycle ratio

for most nodes with our protocol is smaller than the duty

cycle ratio achieved in CitySee. For nodes near the sink, the

improvement is larger because of a higher data rate. We further

show the CDF of nodes with duty cycle ratio improvement in

Figure 10(c). The duty cycle ratio for more than 80% of nodes

can be significantly reduced with our protocol.

V. RELATED WORK

There are mainly two types of duty-cycling protocols in

WSNs. The first type is synchronized duty-cycling protocol,

e.g., [3] [4] [5], in which the sender and receiver are syn-

chronized. Protocols of this type may introduce additional

computation and communication overhead. Meanwhile, those

protocols also have a fixed sleep schedule and are inefficient

to handle traffic dynamics [4].
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The second type is asynchronized duty-cycling protocol. A

representative asynchronized duty-cycling protocol is studied

in B-MAC [7]. The sender uses preambles to wake up the

receiver. Based on the basic mechanism of B-MAC, many

protocols are proposed to improve the performance of B-

MAC, such as X-MAC [9], C-MAC [8], Wise-MAC [10], PW-

MAC [23] and etc. The basic principles of those protocols are

similar. Besides those sender initiated duty-cycling protocols,

recently receiver initiated duty-cycling protocols are proposed

to reduce the overhead due to collisions in preamble packets.

In those protocols, e.g., RI-MAC [11] and A-MAC [12],

the receiver will notify the sender to send packets, which

is different from the sender initiated protocols in which the

sender continuously sending preambles. In this paper, we

analyze the mechanism of widely use sender-initiated duty-

cycling protocols.

There are also many works proposed to support adaptive

duty-cycling and improve the performance. DSF [24] selects a

forwarding set to optimize the end-to-end reliability/cost/delay.

MiX-MAC [13] improves the energy efficiency by switching

between different duty-cycling MAC protocols. IDEA [14]

proposes a centralized method to tune the parameters for LPL

protocols. In GDSIC [15], a distributed method is proposed to

achieve energy fairness. Recently, Sha et al. [18] present an

efficient design to improve energy efficiency of LPL in prac-

tical networks by addressing the false wake up problem due

to interference. pTunes [25] proposes a centralized parameter

optimization method which can work for different protocols.

In X-MAC [9], sleep interval is calculated to improve energy

efficiency. In [16] [17], heuristic approaches are presented

to improve energy efficiency. However, as we shown in our

analysis, there are various important impacting parameters

which are not thoroughly considered in existing works. In

this paper, we show that by solely considering the sleep

interval and duty cycle ratio, the energy consumption cannot

be optimized, especially in practical duty-cycling design with

dynamiclly extended awake time. We need to analyze the

impact of different parameters and present a mechanism to

optimize energy consumption. So far as we know, such a

mechanism is still lacking.

VI. CONCLUSION

During operation of a 1200-node network, we find that

current duty-cycling protocols may lead to a high energy con-

sumption. State-of-the-art protocols cannot efficiently adapt

to traffic and protocol dynamics. Thus they are not accurate

and adequate to optimize the energy consumption, resulting

in many empirical parameters in practical protocols. In this

paper, we present a practical adaptive duty-cycling protocol

to reduce energy consumption. The protocol minimizes the

energy consumption per packet with only local information

under various traffic rates and protocol dynamics. We evaluate

our approach on 40 TelosB nodes and the results show that

our approach can improve the performance by 28.2%-40.1%.

Data from a large-scale network deployed in the urban area

also validate the effectiveness of our approach.
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