
ViTrack: Efficient Tracking on the Edge for
Commodity Video Surveillance Systems

Linsong Cheng, Jiliang Wang
School of Software and TNList

Tsinghua University, China
{chengls14,jiliangwang}@mails.tsinghua.edu.cn

Abstract—Nowadays, video surveillance systems are widely
deployed in various places, e.g., schools, parks, airport, roads,
etc. However, existing video surveillance systems are far from
full utilization and have very limited capability due to high
computation overhead, unknown camera information and variant
video quality. In this work, we present ViTrack, a framework for
efficient multi-video tracking using computation resource on the
edge for commodity video surveillance system. In the heart of
ViTrack lies a two layer spatial/temporal compressive target de-
tection method to significantly reduce the computation overhead
by combining videos from multiple cameras. Further, ViTrack
derives the video relationship and camera information even in
absence of camera location, direction, etc. To address variant
video quality and missing targets, ViTrack leverages a Markov
Model based approach to efficiently recover missing information
and finally derive the complete trajectory. We implement ViTrack
on a real deployed video surveillance system with 110 cameras.
The experiment results demonstrate that ViTrack can provide
efficient trajectory tracking with processing time 45x less than
the existing approach. For 110 video cameras, ViTrack can run
on a Dell OptiPlex 390 computer to track given targets in real
time. We believe ViTrack can enable practical video analysis for
widely deployed commodity video surveillance systems.

I. INTRODUCTION

The global video surveillance market has grown at a high
speed in recent years. According to the latest market research
report [1], video surveillance market is expected to worth
USD 71.28 Billion by 2022, at an estimated CAGR (compound
annual growth rate) of 16.56%. Video surveillance markets
have developed very fast due to the rapid development of ur-
banization construction. Nowadays, video surveillance systems
are widely deployed in large buildings, public places, parks,
roads, airports, etc.

Despite of the wide deployments, most video surveillance
systems are still very under-utilized and support very limited
functionalities. For example, most systems mainly support
video collection, video storage or basic video analysis for
event detection, etc. Moreover, existing systems often have
very limited computation resource on the edge. Due to the
large amount of video and high processing overhead, function-
alities like trajectory tracking which require video analysis for
multiple cameras are not supported. Meanwhile, uploading the
video to online data center or offloading the computation to
cloud is not practical considering the bandwidth and privacy
issues.

Therefore, efficient video analysis using computation re-
source on the edge is very important considering the large

number of deployments. For example, event tracking on the
edge is a demanding function in practice. It can reveal the
trajectory of a particular interested object by combining videos
from multiple cameras. However, such a function is still not
supported on most commodity video surveillance systems.

This work is also motivated by a practical demand in a
real video surveillance system deployed in Tangkou Town,
Huangshan City, China. Huangshan is one of the most famous
mountains and a 5A (i.e. the highest grade) nature park in
China. Tangkou Town is located at the south gate of the
Huangshan nature park, which receives a large number of
tourists (3.18 million/year) every year with a peak rate 50
thousand people per day [2]. Due to a high management
pressure, a large video surveillance system with 110 cameras
is deployed to facilitate the management. However, they still
spend a lot of manpower watching videos to track events
of their interest, e.g., track unlicensed cars that pick up
passengers illegally.

To address those practical requirements, the key is to
extract useful information, e.g., trajectory tracking, on video
surveillance system using the computation resource on the
edge. Given a rule (the plate number of car, the characteristics
of a person) for a target, the target trajectory from a number of
cameras can be revealed locally. Such a function is required
in many applications, e.g., searching for the trajectory of a
particular car, person, hit-and-run thieves and missing children.

We find that practical tracking on the edge faces several fun-
damental challenges: (1) large data size and limited resource
on the edge, (2) inevitable video information missing, and (3)
limited or unknown camera and physical information. First, it
is time-consuming and resource-consuming to process the da-
ta. For basic target detection, practice experience shows that it
takes more than 100 hours for a computer with i7-3687U CPU
to process a 1-hour video. Video compression can reduce the
size when the content is relative static. However, this may not
work for scenarios like a road with continuous traffic. Second,
there is inevitable video information missing. Solely relying
visual analysis on a single camera is not sufficient. Videos
may not be clear considering the high number of existing low
quality cameras and physical constraints (e.g., fog weather).
Even for high definition videos, object may be masked in
practice. Third, the physical relationship among cameras is
not clear. The precise location may not be available for
existing cameras. Even the location can be obtained, different

cameras may have different directions, height, etc., leading to a
mismatch between camera locations and their monitoring area
on the trajectory. For example, two closely located cameras
may point to two completely different locations.

To address those challenges, we propose ViTrack, an effi-
cient trajectory tracking system on the edge for commodity
surveillance system. ViTrack mainly has the following com-
ponents: (1) A Two-Layer spatial and temporal Compressive
target Detection (TLCD) method to significantly reduce the
computation overhead. Therefore, ViTrack only needs to pro-
cess a very small part of video frames (< 1/10) to recover the
trajectory. (2) A probabilistic based method to reconstruct the
relationship among videos from different cameras while not
requiring the precise location of each camera. (3) A Markov
based trajectory inference method to derive event trajectory
while recovering the missing information, e.g., undetected and
unclear objects, etc.

We implement ViTrack on a video surveillance system with
110 cameras and evaluate it with extensive experiments. The
results show that ViTrack can effectively and efficiently pro-
vide trajectory tracking. The processing time can be reduced
by more than 45x compared with the existing event detection
method. For a system with 110 cameras, the data can be
processed on the edge with a Dell OptiPlex 390 computer.

The contributions of this work are as follows.
• We propose the design of ViTrack, a practical system

for efficient tracking on the edge for commodity video
surveillance systems.

• We propose a two layer spatial and temporal compressive
target Detection to significantly reduce the overhead.
We address practical challenges in compressive detection
such as detection matrix and representation basis design.

• We propose a camera relationship construction method
and derive the complete trajectory while recovering miss-
ing information.

• We implement ViTrack and evaluate its performance on a
practically deployed video surveillance system with 110
cameras. The evaluation results demonstrate the effective-
ness of ViTrack.

It should be emphasized that video analysis and image
processing such as event/object detection is not the focus
of our work. We can use any existing event/object detection
algorithm. We focus more on tracking based on a video
surveillance system.

II. PROBLEM DEFINITION

Considering a video surveillance system with M cameras,
the video data of each contains N frames. We denote the
appearance matrix (M×N) of a given target as X = {xi j, i =
1,2, . . . ,M, j = 1,2, . . . ,N} as in Figure 1, where xi j = 1 means
the target appears in the jth video frame of the ith camera and
otherwise xi j = 0.

Through analyzing the practical video data, we find there
are four characteristics for appearance matrix X :
C1: The size of N (e.g., tens of thousands) is usually much

larger than the size of M, i.e., N�M.

N frames

M
 c

a
m

e
ra

s

A 1 frame

A 0 frame

Fig. 1: Appearance information matrix X .

C2: If there is “1” element in a column, the adjacent columns
contain "1" element with a high probability. This is
because if a target is detected in a frame, the probability
that it is detected in adjacent frames is high.

C3: Each column contains only a very limited number of “1”
elements, since a target usually only appears under one
or a very limited number of cameras at the same time.

C4: There are many all “0” columns and X is sparse.
A sampling policy α is given by sequence of frame in-

dex and camera index: (I,J)α = {(i1, j1),(i2, j2), . . . ,(in, jn)}
where I ∈ {1,2, . . . ,M} and J ∈ {1,2, . . . ,N}. Applying
α to X , we can obtain a sampling sequence Xα =
{xi1 j1 ,xi2 j2 , . . . ,xin jn}. A recovery policy β is used to produce
estimates of the original appearance matrix X̂β = {x̂i j, i =
1,2, . . . ,M, j = 1,2, . . . ,N} based on the sampling sequence
Xα , where x̂i j = xi j if (i, j) ∈ (I,J)α and otherwise x̂i j =

x̂β

i j(X
α) for a certain estimation function x̂β

i j(·).
Our object is to find the best sampling and recovery policies

to minimize the estimation error:

min Err(X , X̂β)

s.t.
n

N×M
≤ λ ,

where Err(·) is an error measurement function and λ is
the requirement for sampling rate. Based on the recovered
appearance matrix X̂β , we can then derive the trajectory of a
given target as shown in Figure 1.

III. SYSTEM OVERVIEW

The overall system architecture is shown in Figure 2. To
reduce the computation overhead, we first design a two-
layer spatial and temporal compressive target detection method
as shown in Figure 3 based on the characteristics of the
video surveillance system. Then we construct fine-grained
camera relationship using a Markov Model. Last, we propose
a trajectory inference algorithm using TLCD’s results and the
Markov Model. Therefore, the design of ViTrack consists of
four major components.

Spatial compressive detection: First, ViTrack divides the
original appearance matrix into a collection of sub-matrices as
shown in Figure 3. A sub-matrix usually only contains data
for all cameras in a short time period (i.e., a small number of
columns, e.g., 25 in our implementation, which is referred to
as a time cell). Here, we call a sub-matrix as a spatial matrix.
Then according to a measurement matrix, we obtain a small
samples of video frames. In each spatial matrix, we recognize
given targets in sampled video frames using a pre-defined

Temporal compressive detection

Video data Sampling
Appearance

calculation

Appearance

recovery

Spatial compressive detection

Abstracting

appearance probability

Probability

recovery

Appearance

range estimation

Camera relationship

construction

Moving frequency

Appearance time

Camera orientation

Transition probability

Transition time

Transition direction

Markov model

building
 Trajectory inference

Result outputCamera distribution

information

Fig. 2: System architecture

N frames

M
 c

am
e

ra
s

Appearance ranges

Sampling and reshaping

Abstracting spatial matrices

Trajectory inference

M
 c

am
e

ra
s

N/25 time cells

Result

Spatial matrix Spatial matrix

Temporal appearance vector

Spatial compressive detection

...

Temporal compressive detection

Fig. 3: Two-layer compressive target detection.

object recognition function. Last, by carefully designing the
representation matrix, we recover each spatial matrix based
on the recognition results of sampled frames (Section IV-A).
This process is called spatial compressive detection (SCD).

Temporal compressive detection: To further reduce the
overhead, not all spatial matrices are calculated and recovered.
In this step, we design a measurement matrix to determine
which spatial matrices should be sampled and processed in
SCD. We calculate an abstracted appearance value for each
sampled spatial matrix (Section IV-B1). Then we can obtain a
vector, namely temporal appearance vector. Last, the temporal
appearance vector can be efficiently recovered by carefully
designing the measurement matrix and representation matrix
(Section IV-B). This process is called temporal compressive
detection (TCD).

Camera relationship construction: To recover those un-
sampled spatial matrices based on temporal appearance vector,
we leverage the camera relationship in this step. However,
the original camera distribution information may not be avail-
able. Even when the location distribution can be obtained,
the direction, monitoring area, height of different cameras
are different, leading to a mismatch between the cameras’
locations. We build a Markov Model using the video data to
construct fine-grained camera relationship (Section IV-C2). It
should be emphasized that for a video surveillance system,
camera relationship only needs to be constructed once.

Trajectory inference: The last component is the trajectory
inference component. Trajectory inference uses TLCD’s result-
s to infer the appearance information of the unsampled spatial

matrices based on camera relationship (Section IV-D). Finally,
ViTrack obtains the complete trajectory of given targets and
outputs the result.

IV. VITRACK DESIGN

We first briefly introduce the principle of compressive
sensing. For a sparse signal given by the vector x of size
N, based on the n×N (n� N) measurement matrix Φ, we
can obtain the samples yn×1 = Φx. Thus the signal x can be
recovered from y if x is sufficiently sparse, subject to some
pre-conditions on Φ that we will discuss below. If x is not
sparse, it can often be sparsely represented in an alternative
domain by a N×N representation basis Ψ. Specially, x can be
written as x = Ψs, where s is a sparse N×1 coefficient vector.
The measurement vector can be written as:

y = ΦΨs. (1)

The problem is to recover s given measurement y and matrices
Φ and Ψ. Then, we reconstruct the original signal using x =
Ψs. Equation 1 is an under-determined linear system as n�N.
Finding the solution to this ill-conditioned problem has been
extensively studied in recent years. A mainstream approach
is to solve the l1 norm minimization problem (also known as
Basis Pursuit(BP) [3]):

min
s∈RN
‖ s ‖1 s.t. y = ΦΨs (2)

which can be solved using algorithms such as IRWLS [4],
OMP [5] and LP (linear programming) [6].

A. Spatial compressive detection

1) Sampling: For a spatial matrix, we reshape it into
an appearance vector S of size Vp (Vp = F ×M, F is the
number of columns), by joining all the rows successively.
The measurement matrix Φp (Up×Vp where Up < Vp) spec-
ifies a sampling policy: a “1” element in the (u,v) position
(1 ≤ u ≤Up,1 ≤ v ≤ Vp) if the u-th sampling is taken at the
v-th value of S.

In order to reduce the sampled video frames, we design
two kinds of measurement schedules which only contain one
“1” element in any row and at most one “1” element in
any column, and “0” everywhere else. The first is a periodic
sampling schedule where samplings are taken every bVp

Up
c

frames, which is referred to as the periodic schedule (PS). The
second is a random sampling schedule generated using certain

probability distribution with an average sampling rate of Up
Vp

,
which is referred to as the random schedule (RS). Because
of the characteristics C2 and C3, the “1” elements of S are
usually clustered together. Therefore, PS is preferable than RS
in most cases.

2) Appearance calculation: For all sampled video frames,
ViTrack uses the existing object recognition methods to recog-
nize the given target and calculate the appearance information
y = ΦpS.

3) Recovering: In this stage, we select a good representa-
tion basis Ψp to recover S from sampling results y.

There are two major requirements for the design of Ψp:
(1) its corresponding inverse has to sufficiently sparsify S,
and (2) it must be sufficiently incoherent with Φp. As each
column contains one “1” element at most, our measurement
matrix Φp is sparse, which is different from the common
measurement matrixes in CS literature (e.g the Gaussian
measurement matrix which is very dense with virtually no
0-entries). Thus the incoherence between the measurement
matrix and the representation basis poses a challenge for the
design of Ψp. We find that the appearance information vector
S is relatively smooth and slow changing in most frames. Thus
S can be sparsely represented through the difference between
two adjacent values. We use the following differentiation
matrix to get the projection Dp of S:

Mp =

−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
0 0 −1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . −1 1
0 0 0 . . . 0 −γ

where the last element γ (0 < γ < 1) ensures that Mp is
invertible. Dp = MpS, so S is sparsely represented in the
Mp domain as S = M−1

p Dp with the representation basis
Ψp = M−1

p . The incoherence of our measurement matrix Φp
and representation basis Ψp satisfies the requirements of CS
literature [7]. Therefore, as in Eq. (2), we can recover Dp
according to y = ΦpΨpDp and obtain the recovery result Ŝ of
S according to S = ΨpDp.

Figure 4 shows the recognition results and recovery results
of a 1000× 1 vector S, which contains the appearance in-
formation of 25 video frames for 40 cameras in a time cell.
Figure 4 (a) shows the recognized appearance information of
all 1000 video frames. Figure 4 (b) shows the recovery results
of SCD according to the recognition results of sampled frames
at a sample rate of 20%. Comparing the recognition results
with the recovery results, SCD recovers most of appearance
information with a small number of video frames (20%).
Further, we compare the details in Figure 4 (c) and (d). We
can find that SCD achieves better results when the curve is
smoother. In Section V-A1, we conduct more experiments to
evaluate the effectiveness of SCD.

0 5 10 15 20 25 30 35 40
Camera number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

og
ni

tio
n

re
su

lt

(a) Results of all cameras

Ground truth

5 10 15 20 25 30 35 40
Camera number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec
og
ni
tio
n

re
su

lt

0

Recovery results

(b) Results of all cameras

5 6 7 8 10 11 12
Camera number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

og
ni

tio
n

re
su

lt

(c) Results of camera 5-12

9

Ground truth
Recovery results

17 18 19 20 22 23 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

og
ni

tio
n

re
su

lt

(d) Results of camera 17-24

Camera number
21

Ground truth
Recovery results

Fig. 4: Recognition results and SCD’s recovery results

B. Temporal compressive detection
SCD significantly reduces the computation overhead for re-

covering the appearance information in a time cell. We further
design temporal compressive detection (TCD) to reduce the
overall computation overhead.

We take advantage of an important fact that our target track-
ing problem only needs to know the coarse-grained appearance
information (if our target appears under any camera in a time
cell) instead of the appearance information of all video frames.
Therefore, we abstract each spatial appearance vector to a
value, which describes the appearance probability in a time
cell. Then we can obtain a temporal appearance vector T of
size Vt (Vt = N/F) of all time cells. By designing a measure-
ment matrix, we only calculate the temporal appearance value
in sampled time cells and then recover the overall temporal
appearance vector.

1) Abstracting appearance probability: The first step is to
calculate the abstracted temporal appearance value using the
recovery results Ŝ of SCD. Ŝ contains Vp = M×F elements,
and we denote it as Ŝ = {ŝ1, ŝ2, . . . , ŝ(j−1)×F+i . . . , ŝVp}(1≤ i≤
F,1≤ j ≤M). For F video frames of camera j in a time cell,
we calculate the appearance probability a j with the following
rules:
• With more “1” values in F video frames’ recognition

results, a j is higher. Specially, when the number of “1”
values is more than a threshold β , we set a j = 1.

• a j is larger when the average recognition result is higher.
• We focus on recognition results’ non-zero values to

estimate the appearance probability. Our target may only
appear in part of a time cell (e.g., it comes into the
camera’s monitoring area somewhere inside a time cell).

For camera j, we define its appearance probability based on
the above three rules as:

ak =

{
(γ + (1−γ)×nh

β
)× Sum(j)

nl
, nh < β

1, nh ≥ β .
(3)

where Sum(j) =
j×F
∑

i=(j−1)×F+1
ŝi is the sum of camera j’s

recovery results, nh is the number of “1” values and nl is

the number of non-zero values. γ is a parameter between 0
and 1, which is used to judge if the target appears according
to the calculated appearance probability.

Then we can choose the maximum of all cameras’ ap-
pearance probability A = {a1,a2, . . . ,aM} as the temporal
appearance value of our target in this time cell.

2) Sampling and recovering: As in SCD, we need to choose
an appropriate measurement matrix Φt for sampling and a
good incoherent representation basis Ψt for recovering.

We also consider two kinds of measurement schedules (PS
and RS) for Φt . Unlike the vector S in SCD, the appearance
probability vector T is sporadic. A periodic schedule may
miss appearance measurements. Therefore, we prefer a ran-
dom schedule to obtain enough appearance information for
recovering.

Compared with SCD, it is more challenging for TCD to
design a good representation basis. The main reason is the
appearance probability vector T is sporadic, which makes the
former differentiation matrix Mp and recovery policy useless.
Intuitively, if a target is detected in a time cell, it may disappear
for a certain time period due to the monitoring area gap among
cameras. A target may appear in consecutive frames for a
certain time cell with a high probability, while in adjacent
time cells with a low probability.

We first design an accumulation matrix Mt :

Mt =

1 1 . . . 0 0 . . . 0 0 . . . 0
1 1 . . . 0 0 . . . 0 0 . . . 0
...

... . . .
...

... . . .
...

... . . .
...

0 0 . . . 1 1 . . . 1 1 . . . 0
...

... . . .
...

... . . .
...

... . . .
...

0 0 . . . 0 0 . . . 0 0 . . . 1

For the kth row of Mt , if k−dW

2 e ≤ j < k+dW
2 e∩1≤ j ≤ N,

Mtk j = 1. Otherwise, Mtk j = 0. W is the accumulation window
size. The goal of Mt is to project the discrete T into a smoother
vector Dt , where Dt = MtT . Accordingly, the original T can
be represented in the Mt domain as T = M−1

t Dt and we get
the representation basis Ψt = M−1

t . We recover Dt according
to y = ΦtΨtDt and obtain the recovery result T̂ of T .

Dt is sparse (the amount of non-zero elements is below
10%) which satisfies the first requirement of representation
basis design. According to [7], [8], we examine the incoher-
ence between a representation basis Ψ and a measurement
matrix Φ. Projecting each row of Φ onto the space spanned
by the columns of Ψ we get:

ζ j = (ΨT
Ψ)−1

Ψ
T

φ
T
j (4)

where φ j is the jth row of Φ and ζ j is the vector of coefficients
corresponding to its projection on the space spanned by the
columns of Ψ. A measure of the incoherence is defined as:

I(Φ,Ψ) = min
j=1,...,N

[
N

∑
i=1

1{ρ j
i , 0}] ∈ [1,N] (5)

where ρ
j

i is the ith entry of vector ζ j and 1{A} is the indicator
function: it is 1 when A is true and 0 otherwise.

TABLE I: Incoherences of (Φp,Ψp) and (Φt ,Ψt)

N I(Φp,Ψp) I(Φt ,Ψt)
64 63 63

128 125 126
256 255 252
512 512 510
1024 1024 1024
2048 2048 2048

In Table I, I(Φp,Ψp) is calculated in [7] and I(Φt ,Ψt) is
calculated according to Equation 5. It shows the measurement
matrix and representation basis of both of SCD and TCD own
a high incoherence.

When W is bigger than the average transition time between
adjacent cameras, most time cells in actual appearance ranges
will obtain a high appearance probability through Mt ’s pro-
jection. So the non-zero ranges of the recovered temporal
appearance vector T̂ are similar with those of the actual
temporal appearance vector T and we can use T̂ to obtain
the appearance ranges of given targets in time domain.

C. Camera relationship construction

1) Constructing camera relationship: Till now, we have
obtained the target’s appearance information in sampled time
cells and its appearance ranges. Next, we construct the camera
relationship for recovering appearance information in unsam-
pled time cells. Figure 5 shows camera distribution diagram
of Tangkou Town’s video surveillance system.

Tangchuan Road (52)

Fuxi Road (9)

Gangcun Road (4)

Tiandu Road (9)

Tangquan Road (8)

Yanxi West Street (3)

Water Street (6)

Feicui Road (4)

Fangcun Road (7)

Freeway (0)

Camera

005004

006

Target

003

Fig. 5: Camera distribution diagram of Tangkou Town. The
number behind each road represents its camera number

We propose a camera relationship construction method
based on Markov Model. For each road, we select some
targets from existing video data and obtain their trajectories.
Using these trajectories, we focus on three kinds of camera
relationship: (1) We use an M ×M matrix F to store the
transition frequency F(A,B) between camera A and camera
B. A bigger transition frequency implies a higher transition
probability. (2) We use an M×M matrix E to store the average
transition time between any two cameras. (3) For a transition
from camera A to camera B, we use a M×M matrix G to
store that whether the target is far away from camera A or
not. Because an actual target keeps going straight with higher
probability, this information can help ViTrack make a more
precise inference. Lastly, we combine the above three kinds
of information for camera relationship construction.

Algorithm 1 ForwardInference
Require: Known appearance time cells I = (t1, t2, . . . , tk), corresponding

cameras C = (c1,c2, . . . , tk), and appearance range (tb, te)
Ensure: Appearance time cells and corresponding cameras in (tb, te)
1: for each ti ∈ I & ti ∈ (tb, te) do
2: repeat
3: if ti and ti+1 are atomic then
4: break;
5: Q← getCandidateQueue();
6: for each q ∈ Q do
7: Ws← setSearchingWindow();
8: if The target appears under camera q in Ws then
9: addAppearanceInfo(q, tq);

10: Update ti break;
11: end for
12: if The target does not appear under any candidate camera then
13: break;
14: until ti > te or ti < tb
15: end for

2) Building Markov Model: State definition. We denote
the k appearance time cells as t1, t2, . . . , tk. The state lti = ci
denotes a target appears under camera ci (1≤ ci ≤M) in time
cell ti. The state ltk+1 of the target depends only on current
state ltk not on states before:

P(ltk+1 = ck+1|lt1 = c1, lt2 = c2, . . . , ltk = ck) = P(ltk+1 = ck+1|ltk = ck).
(6)

Transition probability. From current time tk to next time
tk+1, the transition probability from state ltk+1 to state ltk is
denoted as:

Pr(ltk+1 |ltk ; tk, tk+1) =
F(ck,ck+1)

α×
M
∑

i=1
F(ck, i)

(7)

where F(·) is the transition frequency matrix, α = |ck+1−ck| is
designed to ensure that a closer camera owns higher transition
probability for the same transition frequency.

D. Trajectory inference

Lastly, ViTrack derives the complete trajectory using the
above results.

1) Basic trajectory inference between two cameras: As-
sume a target appears under camera A in time cell ti and
under camera B in time cell ti+1. The goal is to infer the
real trajectory between ti and ti+1. We first define the atomic
appearance of a target between ti and ti+1, if the target
does not pass any other cameras. If Pr(lti+1 |lti ; ti, ti+1) is
the highest transition probability for camera A and ti+1− ti
is approximately equal to E(A,B), we consider those two
appearances are atomic, denoted as A→B. However, using the
highest transition probability is not enough. In practice, two
appearance may not be atomic as the target may be missed in
some cameras. To infer the missing appearances, we not only
need to obtain the cameras where the target appears, but also
estimate the appearance time to verify our inference.

2) Trajectory inference algorithm: We propose a bi-
directional trajectory inference algorithm to obtain the whole
trajectory. For each appearance range, ViTrack performs a bi-
directional inference (ForwardInference and BackInference).
ForwardInference means the trajectory inference from camera

A to camera B. As Algorithm 1 shows, from line 3 to 4, if the
current detected appearance and the next detected appearance
are atomic, the loop beaks. Otherwise, from line 5 to 11, we
get the candidate queue and verify if the target appears under
each candidate camera in the corresponding search window.
If we find the target appears under a candidate camera, we
continue the trajectory inference from this candidate camera.
Otherwise, the loop breaks. Similarity, BackInference means
the reverse inference from camera B to camera A. We evaluate
the effectiveness of our trajectory inference algorithm in
Section V-C2.

V. EVALUATION

We implement ViTrack on a practical video surveillance
system with 110 cameras deployed in Tangkou Town. Among
those cameras, we remove some camera videos due to privacy
issue. We make use of 84 cameras of video data to evaluate
the accuracy and efficiency of ViTrack. ViTrack system runs
on a Dell OptiPlex 390 with Intel i5 CPU and 8 GB memory.
We believe such a computer resource can be easily achieved
by most video surveillance systems on the edge.

We first process all the video frames to obtain the ground
truth. Object recognition is not the focus of our work. We use
the same object detection method and parameter settings when
comparing ViTrack and the ground truth.

A. Spatial compressive detection accuracy

1) Accuracy for PS: First, we choose 40 time cells at
regular intervals to conduct SCD. We use periodic schedule
(PS) as Φs at a sampling rate of 20% which is equal to a
sampling interval of 5. For each target in every time cell, we
run 5 tests and evaluate SCD’s accuracy in terms of detection
ratio, which is defined as the total number of correctly detected
targets divided by 5.

5 10 15 20 25 30 35 40

Sampled time cell number

1

2

3

4

5

6

7

8

9

10

T
ar

ge
ts

0

0.2

0.4

0.6

0.8

1

0

Fig. 8: Color map of SCD’s detection ratio using PS.

Figure 8 shows the color map of SCD’s detection ratio. The
lighter areas represent higher detection rate. We can observe
that SCD achieve a very high detection rate of all targets,
i.e. 98.40% in average. Further, we evaluate SCD’s accuracy
only in time cells where the target does appear in the video
surveillance system. For all 3055 tests, SCD’s detection ratio
is 85.63%, which proves SCD can provide efficient detection
for the target’s appearance.

3 4 5 6 7 8 9 10
Sampling interval

0

10

20

30

40

50
Er

ro
r r

at
e

(%
)

T1
T2
T3

(a) Error rate at different sampling intervals

2 4 6 8 10
Targets

40

50

60

70

80

90

90

D
et

ec
tio

n
ra

te
 (

%
)

PS
RS
PRS

(b) Detection rate for different sampling schedules

Fig. 6: Detection error ratio of SCD for different sampling
intervals and sampling schedules

33.3 25 20 16.7 14.3 12.5 11.1 10
Sampling rate (%)

0

10

20

30

40

50

A
vg

E
rr

or
 (

%
)

FNrate
FPrate

(c) FNrate and FPrate at different sampling rates

10 20 30 40 50 60
Window Size (frame)

0

10

20

30

40

50

A
vg

E
rr

or
 (%

)

FNrate
FPrate

(30,9.65)

(30,21.60)

(d) FNrate and FPrate for different window size

Fig. 7: FNrate and FPrate of TCD for different sampling rates
and accumulation window sizes

2) Accuracy v.s. sampling rates: To determine the impact of
different sampling rates on the accuracy of SCD, we perform
three sets of experiments by changing the sampling interval
from 3 to 10. Correspondingly, the sampling rate decreases
from 33.33% to 10%. As shown in Figure 6 (a), SCD’s
error ratio roughly increases with the increasing of sampling
intervals. The average error ratios are respectively less than
10% for interval 3 and 4, 20% for interval 5-7, and 30% for
interval 8-10. Even if the sampling rate is decreased to 10%,
SCD’s detection ratio is still higher than 70%.

3) Accuracy v.s. different sampling schedules: Theoreti-
cally, PS is preferable than RS in most cases as mentioned
in Section IV-A1. We conduct 3055 tests using three kinds
of sampling schedules: PS, RS and PRS (a hybrid periodic-
random schedule randomly changes the sampling position in
each interval of PS). As Figure 6 (b) shows, we can see that
RS has the lowest performance and the error rations of PS
and PRS are close for all targets. Therefor, PS is a simple and
effective schedule, which suits our SCD processing best.

B. Temporal compressive detection accuracy

1) Accuracy for RS: The goal of TCD is to obtain a target’s
appearance ranges. Thus we quantify TCD’s accuracy in terms
of true positive rates (TPrate), false positive rates (FPrate),
true negative rates (TNrate) and false negative rates (FNrate).
We set a threshold to determine if two appearance time
cells belong to the same appearance range according to their
difference. We can use the ground truth to obtain the actual
appearance ranges. TPrate is defined as the total number of
targets’ appearance time cells in estimated appearance ranges
divided by that in actual appearance ranges. Correspondingly,
FNrate is equal to 1-TPrate. TNrate is defined as the total num-
ber of time cells not in estimated appearance ranges divided by
that not in actual appearance ranges. Correspondingly, FPrate
is equal to 1-TNrate. For each target, we perform TCD 10
times and evaluate TCD’s accuracy in one hour. Because RS
owns a higher incoherence with Ψt than PS, we use RS as Φt
at a sampling rate 16.67%.

Figure 9 shows the average TPrate and TNrate of TCD
for each target. TCD achieves a high TPrate of all targets,
90.35% in average. A small part of targets’ TNrate (e.g., target
3) is low because the target frequently appears in the video
surveillance system. It is harder for the target to estimate the
time cells not in actual appearance ranges. However, a 78.40%

 1 2 3 4 5 6 7 8 9 10
Targets

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

TPrate
TNrate

Fig. 9: TCD’s TPrate and TNrate of 10 targets using RS.

TNrate in average still reduces almost 80% of unnecessary
search ranges for trajectory inference.

2) Accuracy v.s. sampling rates: Through changing the
sampling rates gradually from 33.33% to 10%, we perform the
above tests to quantify the impact of different sampling rates
on TCD’s accuracy as Figure 7 (a) shows. The experimental
results show that FNrate and FPrate gradually increase with
the decreasing of sampling rates and FNrate owns a higher
growth rate. When the sampling rate is more than 16.67%,
FNrate is less than 10% and FPrate is less than 20%.

3) Accuracy v.s. accumulation window sizes: In theory, a
higher accumulation window size W of SCD means that more
time cells in actual appearance ranges own high appearance
probability. We conduct TCD experiments through changing
W gradually from 10 to 60 as Figure 7 (b) shows. With
the increase of W , FNrate increases and FTrate decreases
gradually, which coincides with our analysis. Therefore, we
can adjust W to tradeoff FNrate and FTrate. The green dashed
line shows an appropriate choice of W (30) for TCD, where
FNrate is 9.65% and FPrate is 21.60%.

C. Effectiveness of trajectory inference

1) Constructed camera relationship: For each road, we
choose 15 targets to construct camera relationship from the
videos. According to Equation 7, we obtain Markov Model’s
transition probability matrix as Figure 10 (a) shows. The
darker points represent higher transition probability. Because
we number the cameras of all roads in sequence successively,
we can find that most of points with high transition probability
are close to the diagonal line. For each road, these points of
middle cameras are closer to the diagonal line than cameras at
the end. Figure 10 (b) shows the transition time matrix of any
two cameras which own a non-zero transition probability. As

10 20 30 40 50 60 70 80
Camera Number

10

20

30

40

50

60

70

80

C
am

er
a

N
um

be
r

(a) Transition probability

10 20 30 40 50 60 70 80
Camera Number

10

20

30

40

50

60

70

80

C
am

er
a

N
um

be
r

(b) Transition time

Fig. 10: Transition probability and time of Markov Model

(a) Tracking ratio with a search window scale 1.4

1 2 3 4 5 6 7 8 9 10
Targets

0

 20

 40

 60

 80

100

P
er

ce
nt

ag
e

(%
)

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Search window scale

50

60

70

80

90

100

T
ra

ck
in

g
ra

tio
 (

%
)

(b) ViTrack's tracking rate and search times

Tracking ratio
Searching times

500

600

700

800

900

1000

Se
ar

ch
in

g
tim

es

Fig. 11: Tracking ratio for different search window scales

the cameras with higher transition probability usually own less
transition time, the color of these non-zero points in Figure 10
(a) and (b) compensate each other. The average transition time
of any two cameras is 29.03s, which is close to the chosen
accumulation window size W (30) in Section V-B3. When W is
larger than the average transition time, most time cells in actual
appearance ranges will obtain high appearance probability
through projection of accumulation matrix. Therefore, TCD
can achieve a high TPrate.

2) Effectiveness of trajectory inference: Using the results
of SCD and TCD, we conduct 10 tests for each target to
evaluate the effectiveness of trajectory inference in terms of
tracking ratio and search times. The tracking ratio is defined
as the total number of detected appearance time cells divided
by that of actual appearance time cells. We define a search as
detecting all video frames of a camera in a time cell. Then we
calculate the number of searches of each trajectory inference.
Figure 11 (a) shows the tracking ratios of all target. The black
part of every target is the ratio of SCD’ detected appearance
time cells, 13.63% in average. This result is corresponding to
TCD’s sampling rate. The white part of every target is the
ratio of trajectory inference’s detected appearance time cells,
67.58% in average, which proves the effectiveness of trajectory
inference. Averagely, ViTrack only samples one thirtieth of
video frames, but achieves a tracking ratio of 81.20%.

To quantify the influence of different search window scales
Ws, we repeat the above tests through changing Ws gradually
from 0.4 times to 2.0 times of the corresponding transition
time. Figure 11 (b) shows that when Ws is bigger than 1.4, the
growth of tracking ratio becomes slow but the search times
increase continually. Therefore, we choose 1.4 as an optimal
search window scale, where ViTrack can achieve a tracking
ratio of 81.20% with an average search times of 842.88.

D. Accuracy and efficiency of three tracking schemes

We choose three kinds of trajectory tracking schemes (4×4,
5×6, and 12×6) to evaluate ViTrack’s accuracy and efficien-
cy. A A×B scheme means that ViTrack performs SCD at a
sampling rate of 1/A and TCD at a sampling rate of 1/B.
Accordingly, the overall sampling rate is 1/(A×B).

1) Accuracy: We also use tracking ratio to evaluate ViT-
rack’s accuracy as Figure 12 shows. 4×4 scheme achieves a
high tracking ratio for all targets, 88.74% in average. Using
5× 6 scheme, the tracking ratio of most of targets is more
than 80% and the average is 81.20%. Using an extremely low

 1 2 3 4 5 6 7 8 9 10
Targets

0

20

40

60

80

100

T
ra

ck
in

g
ra

tio
 (

%
)

4x4 Scheme
5x6 Scheme
12x6 Scheme

Fig. 12: Tracking ratio of different schemes for 10 targets.

TABLE II: Running time of different schemes
COCH COLOR

OR SCD TI Over time OR SCD TI Over time
1×1 312.04 0 0 312.04 136.15 0 0 136.15
4×4 19.63 4.19 0.97 24.79 8.51 4.19 0.42 13.12
5×6 10.40 2.36 0.87 13.63 4.54 2.36 0.38 7.28
12×6 4.33 0.77 0.78 5.88 1.89 0.77 0.33 2.99

sampling rate of 1.39%, 12× 6 scheme can still achieve an
acceptable tracking ratio, 74.10% in average. Meanwhile, there
are a small part of appearance time cells which are difficult
to be detected. However, ViTrack can provide a part of the
trajectory. Users can easily complete the rest trajectory based
on ViTrack’s results.

2) Overall running time: ViTrack’s running time consists
of three part: object recognition (OR) time, SCD time and
trajectory inference (TI) time. The trajectory inference time is
determined by search times. Because TCD is only performed
once (about 10s) for a target tracking, we ignore its time cost.
In addition, we use two kinds of object recognition methods
to evaluate ViTrack: (1) CMCH which detects a target using
both the color and character information, (2) COLOR which
detects a target only using the color information.

Table II shows the overall running time of three schemes
for 1 hour videos. 1× 1 scheme is the ground truth which
needs 312.04 hours using CMCH and 136.15 hours using
COLOR. We have three observations. First, all three schemes
significantly reduce the overall running time. For the CMCH
method, ViTrack’s three schemes reduce the processing time
by 12.59×, 22.89× and 53.09× respectively compared with
the ground true. For the COLOR method, three schemes
reduce the processing time by 10.38×, 18.70× and 45.54×
respectively. Second, most running time is spent in the object
recognition of sampled video frames. This can be further
improved by more efficient object recognition method. The

time cost of trajectory inference is very small. Thus we can
further increase the search window size to improve ViTrack’s
accuracy. Besides, SCD and object recognition are indepen-
dent in every time cell, we can reduce the running time
using multiple threads and computers. Using a Dell OptiPlex
390 desktop with four threads, ViTrack can adopt the 12×6
scheme for real-time trajectory tracking.

VI. RELATED WORK

A. Compressive sensing

Compressed sensing is a signal processing technique for
efficiently acquiring and reconstructing a sparse signal. Re-
cent advances in CS theory [9], [10] allow one to represent
compressible/sparse signals with significantly fewer samples
than required by the Nyquist sampling theorem. This technique
has been used in channel coding [11], routing [8], data
collection [12], [13], soil moisture sensing [7] and targets
tracking in wireless sensing networks (WSNs) [14], [15]. Our
work is inspired by those successful works of CS. ViTrack
designs a two-layer spatial and temporal compressive target
detection method to solve the challenge of insufficient com-
puting resources on the edge.

B. Object recognition/tracking

Object recognition/tracking has been widely studied in
image/video processing. A large of object (e.g., face, plate
number, and landmark) recognition methods are proposed to
improve the recognition accuracy and efficiency. Take the plate
number for example, [16] using a Support Vector Machine
(SVM) achieves an accuracy of 90% at an average recogni-
tion time of 52.11ms per frame. To enhance the robustness
of multiscaled and skewed images under different lighting
conditions, [17] using Deformable Part Models (DPM) and
Structural Support Vector Machine (SSVM) achieves 96.03%
detection accuracy at an average recognition time of 2800ms.
ViTrack uses these existing object recognition methods.

Meanwhile, there emerge a large collection of target track-
ing approaches for video sequences (e.g., based on Particle
Swarm Optimization [18], [19] and compressive sensing [20],
[21]). However, different from these works, ViTrack solves the
trajectory tracking problem of given targets on a video surveil-
lance system. Those approaches are orthogonal to ViTrack and
can be combined with ViTrack. The goal of ViTrack is to
provide efficiently trajectory tracking for existing surveillance
systems with multiple cameras using computation resource on
the edge.

VII. CONCLUSION

In this paper, we propose ViTrack, an efficient trajecto-
ry tracking framework on the edge for commodity video
surveillance systems. ViTrack designs a two-layer spatial and
temporal compressive target detection to reduce the computa-
tion overhead and then leverages a Markov Model to derive
the complete trajectory. We implement ViTrack on a real
deployed video surveillance system with 110 cameras. The
results demonstrate ViTrack can provide efficient trajectory

tracking with processing time 45× less than the existing
approach. In future, we will apply and evaluate ViTrack to
more video surveillance systems.

REFERENCES

[1] “Video Surveillance Market Report,” http://www.marketsandmarkets.
com/PressReleases/global-video-surveillance-market.asp, 2016.

[2] “The tourist data of Mount Huang,” http://www.tourmart.cn/news/china/
2016-04-19/1149.html, 2016.

[3] D. L. Donoho, “For most large underdetermined systems of linear
equations the minimal l1-norm solution is also the sparsest solution.”
Technology Report, 2004.

[4] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from
limited data using FOCUSS: a re-weighted minimum norm algorithm,”
IEEE Trans. Signal Processing, vol. 45, no. 3, pp. 600–616, 1997.

[5] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Trans. Information
Theory, vol. 53, no. 12, pp. 4655–4666, 2007.

[6] M. Pilanci, L. E. Ghaoui, and V. Chandrasekaran, “Recovery of sparse
probability measures via convex programming,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bot-
tou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp.
2420–2428.

[7] X. Wu and M. Liu, “In-situ soil moisture sensing: measurement schedul-
ing and estimation using compressive sensing,” in IPSN 2012, Beijing,
China, April 16-19, 2012, 2012, pp. 1–12.

[8] G. Quer, R. Masiero, D. Munaretto, M. Rossi, J. Widmer, and M. Zorzi,
“On the interplay between routing and signal representation for com-
pressive sensing in wireless sensor networks,” in Information Theory
and Applications Workshop, 2009. IEEE, 2009, pp. 206–215.

[9] D. L. Donoho, “Compressed sensing,” IEEE Trans. Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[10] E. J. Candès and T. Tao, “Near-optimal signal recovery from random
projections: Universal encoding strategies?” IEEE Trans. Information
Theory, vol. 52, no. 12, pp. 5406–5425, 2006.

[11] ——, “Decoding by linear programming,” IEEE Trans. Information
Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[12] C. Luo, F. Wu, J. Sun, and C. W. Chen, “Compressive data gathering
for large-scale wireless sensor networks,” in MOBICOM 2009, Beijing,
China, September 20-25, 2009, 2009, pp. 145–156.

[13] Z. T. Li, J. X. Xie, D. B. Tu, and Y. J. Choi, “Sparse signal recovery by
stepwise subspace pursuit in compressed sensing,” International Journal
of Distributed Sensor Networks,2013,(2013-8-4), vol. 2013, no. 1, pp.
945–948, 2013.

[14] Y. Zheng, N. Cao, T. Wimalajeewa, and P. K. Varshney, “Compressive
sensing based probabilistic sensor management for target tracking in
wireless sensor networks,” IEEE Trans. Signal Processing, vol. 63,
no. 22, pp. 6049–6060, 2015.

[15] J. Luo, Z. He, Y. Liu, J. Zha, and K. Li, “Energy confirmable over-
lapping target tracking based on compressive sensing in wireless sensor
networks,” Ad Hoc & Sensor Wireless Networks, vol. 32, no. 1-2, pp.
131–148, 2016.

[16] C. Arth, F. Limberger, and H. Bischof, “Real-time license plate recog-
nition on an embedded dsp-platform,” in CVPR 2007, 18-23 June 2007,
Minneapolis, Minnesota, USA, 2007.

[17] Z. A. Shaikh, U. A. Khan, M. A. Rajput, and A. W. Memon, “Machine
learning based number plate detection and recognition,” in ICPRAM
2016, Rome, Italy, February 24-26, 2016., 2016, pp. 327–333.

[18] C. Mollaret, F. Lerasle, I. Ferrané, and J. Pinquier, “A particle swarm
optimization inspired tracker applied to visual tracking,” in ICIP 2014,
Paris, France, October 27-30, 2014, 2014, pp. 426–430.

[19] F. Sha, C. Bae, G. Liu, X. Zhao, Y. Y. Chung, and W. Yeh, “A categorized
particle swarm optimization for object tracking,” in CEC 2015, Sendai,
Japan, May 25-28, 2015, 2015, pp. 2737–2744.

[20] H. Li, C. Shen, and Q. Shi, “Real-time visual tracking using compressive
sensing,” in CVPR 2011, Colorado Springs, CO, USA, 20-25 June 2011,
2011, pp. 1305–1312.

[21] Y. Wu, N. Jia, and J. Sun, “Real-time multi-scale tracking based on
compressive sensing,” The Visual Computer, vol. 31, no. 4, pp. 471–
484, 2015.

http://www.marketsandmarkets.com/PressReleases/global-video-surveillance-market.asp
http://www.marketsandmarkets.com/PressReleases/global-video-surveillance-market.asp
http://www.tourmart.cn/news/china/2016-04-19/1149.html
http://www.tourmart.cn/news/china/2016-04-19/1149.html

	Introduction
	Problem Definition
	System Overview
	ViTrack Design
	Spatial compressive detection
	Sampling
	Appearance calculation
	Recovering

	Temporal compressive detection
	Abstracting appearance probability
	Sampling and recovering

	Camera relationship construction
	Constructing camera relationship
	Building Markov Model

	Trajectory inference
	Basic trajectory inference between two cameras
	Trajectory inference algorithm

	Evaluation
	Spatial compressive detection accuracy
	Accuracy for PS
	Accuracy v.s. sampling rates
	Accuracy v.s. different sampling schedules

	Temporal compressive detection accuracy
	Accuracy for RS
	Accuracy v.s. sampling rates
	Accuracy v.s. accumulation window sizes

	Effectiveness of trajectory inference
	Constructed camera relationship
	Effectiveness of trajectory inference

	Accuracy and efficiency of three tracking schemes
	Accuracy
	Overall running time

	Related Work
	Compressive sensing
	Object recognition/tracking

	Conclusion
	References

