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Abstract—Acoustic based tracking has been shown promising
in many applications like Virtual Reality, smart home, video
gaming, etc. Its real life deployments, however, face fundamental
limitations. Existing approaches generally need three sound
sources, while most COTS devices (e.g., TVs) and speakers have
only two sound sources. We present AcouRadar, an acoustic-
based localization system with single sound source. In the heart
of AcouRadar we adopt a general new model which quantifies
signal properties of different frequencies, distances and angles
to the source. We verify the model and show that signal
from a single source can provide features for localization. To
address practical challenges, (1) we design an online model
adaption method to address model deviation from real signal,
(2) we design pulse modulated signals to alleviate the impact of
environment such as multipath effect, and (3) to address signal
dynamics over time, we derive relatively stable amplitude ratio
between different frequencies, and thus provide a spectrum based
localization method. We implement AcouRadar on Android and
evaluate its performance for different COTS speakers in different
environments. The results show that the model for localization
can be generalized to different speakers. AcouRadar can achieve
single source localization with average error less than 5 cm and
average angle error of 1.76◦.

I. INTRODUCTION

Acoustic signal based tracking has been shown as a promis-

ing technique for many applications like smart home, Virtual

Reality (VR), Augmented Reality (AR), video gaming, gesture

control, etc. Recent years have witnessed increasing number of

acoustic based tracking systems [1][2][3][4] on mobile devices

using everyday speakers as signal source. By measuring the

distance or distance change to two/three sound sources (e.g.,

speakers), 2D/3D localization and tracking can be achieved.

Acoustic tracking systems use everyday speakers as signal

sources, and their computation and signal processing overhead

can be relatively low. Thus existing systems are usually

suitable to be implemented on commercial devices like COTS

smartphone, smart appliance, and embedded devices [1][2],

leading to great potential for mobile applications.
Despite of high accuracy and efficiency, existing approaches

face practical and fundamental limitations in real deployments.

First, existing acoustic tracking approaches usually require

periodical localization to bootstrap and alleviate accumulated

tracking error. Second, they require three sound sources to

achieve 3D tracking and localization, while most COTS de-

vices (e.g., TVs) and speakers have only two sound sources.

Such a requirement significantly limits the applicability of

acoustic tracking.

To address this limitation, a natural question is, can we

achieve 2D (3D) localization with a single (two) acoustic

source(s)? Achieving this will improve the performance of

acoustic tracking in calculating initial position and updating

position, and also enable acoustic tracking to most TVs and

commercial speakers with at most two sound sources. This also

enables us to explore the limit of acoustic based localization.

We adopt a new acoustic space model for single acoustic

source, which quantifies signal properties with respect to

different frequencies, distances and angles to the acoustic

source. We verify the model and show that signal from a single

sound source exhibits diversity and provides features for local-

ization in the space [5]. From the model, we formally derive

three basic signal characteristics: (1) distance attenuation: the

received signal strength attenuates as increasing of the distance

to the signal source. (2) directive radiation: the received signal

strength is related to the radiation angle to the source. Signal

with the same distance but different direction to the source

exhibits different strength. (3) frequency diversity: signals of

different frequency exhibit different distance attenuation and

directive radiation models. Even at the same location and

the same angle, signal strength of different frequency can be

different.

Based on the model, we propose AcouRadar, a single

source acoustic-based localization approach. With AcouRadar,

a mobile phone samples the acoustic signal from a single

source. Based on the received signal, AcouRadar leverages

the model to derive the angle and distance to the source

and thus the location. To be practical, AcouRadar needs

to address three non-trivial challenges. (1) Model deviation:

Practical signal may deviate from the theoretical model. Even

worse, the deviation for different speakers may be different.

(2) Environment Impact: Environment factors such as multi-

path effect, which tends to be obvious for acoustic signal,

impacts the received signal and localization accuracy. (3)

Signal dynamics and hardware diversity: Different speakers

may transmit signal at different power levels, and signal may

fluctuate over time.

To address those challenges, we online adapt the theoretical

model to compensate the deviation from practical signal. By

analyzing the multi-path effect of different signal patterns

and their corresponding impact, we design a pulse based

signal pattern and processing method, so as to alleviate the

impact of multi-path effect. Moreover, we find that different



Fig. 1: Spherical sound source model. Fig. 2: Virtual beamforming model. Fig. 3: Localization.

speakers may transmit signal at different power levels and

signal amplitude may fluctuate due to various impact factors.

However, the relation of signals for different frequencies

(e.g., amplitude ratio between different frequencies) remains

relatively stable. We analyze and quantify the relatively stable

feature for different frequencies, and exploit the feature for

localization.

We implement AcouRadar on COTS speakers and smart-

phones, and examine its performance in different environ-

ments. To the best of our knowledge, AcouRadar is the first

system of its kind that is able to achieve localization with

single source. The evaluation results show that AcouRadar

can achieve localization with error less than 5 cm. This shows

that this work can be applied to devices such as nowadays

smart TVs and other smart devices with speakers. For example,

gesture control can be realized with its two-channel speakers

on those devices. We believe AcouRadar would significantly

extend application scenarios of acoustic based tracking with

nowadays devices, like in gesture control in smart home, VR,

user tracking with smart speaker, etc.

The contributions of this work are as follows.

• We introduce the single source acoustic space model,

which quantifies signal properties with different signal

frequencies, distances and angles to the source in the

space.

• Based on the model, we propose the design of

AcouRadar, a single source localization method suitable

for nowadays speakers. AcouRadar addresses practical

challenges such as model deviation, multi-path effect,

signal dynamics, hardware diversity, etc.

• We implement AcouRadar and examine its performance

extensively in different settings. The evaluation results

show that AcouRadar can achieve single source localiza-

tion with average error less than 5 cm.

The remainder of this paper is structured as follows.

Section II introduces the single source localization model.

Section III presents the main challenges for single source

2D localization based on the model. Section IV describes

AcouRadar design in detail. Section V presents our implemen-

tation and comprehensive experimental evaluation. Section VI

introduces related work. Finally, Section VII concludes this

paper.

II. SINGLE SOURCE LOCALIZATION

A. Localization Model

We first show the single source localization model of typical

speakers.

Ball Sound Model. Sound is a physical phenomenon and it

spreads in waves in the air. In the process of spreading, a sound

wave will cause air pressure change during propagation. As a

physical phenomenon, it follows basic physical principles.

Ball vibration. Fig.1 shows a spherical sound source of

radius rb. Assume that the vibration velocity of the sound

source is u = u0e
j(ωt−kr0), where c0 is the speed of sound

traveling in the air, k = ω
c0

= 2πf
c0

is the propagation factor,

and kr0 is the initial phase of the vibration.

Air vibration. The ball vibration results in air vibration

and thus sound wave. The sound wave should follow kinetic

function, continuity function and state function [5][6]. The

sound air pressure p with distance h to the sound source can

be calculated as

p =
|A|
h

ej(ωt−kh+γ) (1)

where |A| = ρ0c0kr
2
bu0√

1+(krb)2
, and γ = arctan( 1

krb
). For simplicity,

we omit the details of calculation and interested readers can

refer to [5][6]. From this equation, we can see that the air

pressure varies with the vibration of the source. Meanwhile,

the air pressure is inversely proportional to the distance to the

source.

Point Sound Model. When the radius of the ball approaches

0, we have kr0 → 0 and γ ≈ π
2 . Based on Eq. (1), we have

p ≈ j
kρ0c0
2πh

Q0e
j(ωt−kh) (2)

where Q0 = 2πr20u0. This gives the sound properties of a point

source, which builds the foundation for sound properties of a

speaker.

Speaker Sound Model. Further, we consider a general

model for speakers, i.e., a circular planar piston of radius a
with infinite plane baffle wall as shown in Figure 2. Assume

the piston vibrates at speed u = u0e
jωt. Let the center of the

piston be the origin of coordinates, and the surface of piston be

the yz plane. The sound field is rotationally symmetric along

the x-axis of the piston center. Without loss of generality,
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Fig. 4: The virtual acoustic beamforming model. (a) Amplitude to angles for 10 KHz; (b) Amplitude to distance for 10 KHz;

(c) 2D amplitude distribution for 10 KHz.

assume the observation point E in the sound field lies in the

xy plane. The distance from E to the origin is r, and the angle

to the x-axis is θ.

For a small area dS located at the polar radius ρ, polar angle

φ, we have dS = ρdρdφ. According to Eq. (2), the sound

pressure at E induced by vibration of dS can be calculated as

dp = j
kρ0c0

2πh
u0dSe

j(ωt−kh) (3)

Thus the sound pressure induced by the entire piston can be

calculated as beamforming of small areas in the entire surface,

i.e. P =
∫∫

dp. Considering the receiver is located at the

far field with a distance to the speaker much larger than the

speaker radius, i.e. r � a, we have h ≈ r − ρcos(ρ̂,r). As

cos(ρ̂,r) = sinθcosφ, based on Eq. (3), we have

P = j
ωρ0u0

2πr
ej(ωt−kr)

∫ a

0
ρdρ

∫ 2π

0
ejkρsinθcosφ (4)

Based on Bessel function J0(x) =
1
2π

∫ 2π

0
ejxcosφ

dφ and
∫
xJ0(x)dx = xJ1(x), Eq. (4) can be written as

P = jω
ρ0u0a2

2r
[
2J1(kasinθ)

kasinθ
]ej(ωt−kr) (5)

According to Eq. (1), we have v = Hp where H =
1

ρ0c0
(1 + 1

jkr ). Thus the vibration velocity at point E is

vE =
∫∫

S
Hdp = HP . Thus vibration s of sound signal can

be calculated as

s =

∫
vEdt = H

∫
Pdt =

H

jω
P

=
u0a2

2c0r
(1 +

1

jkr
)[
2J1(kasinθ)

kasinθ
]ej(ωt−kr)

(6)

Therefore, the amplitude T , i.e. the measured signal strength,

can be calculated as

T (r, θ, f) =
u0a2

2c0r

√
1 +

1

k2r2

∣∣∣∣2J1(kasinθ)kasinθ

∣∣∣∣ (7)

The equation shows that the amplitude of the sound signal

is related to the distance between the sound source and

the observation point (r), the angle between the observation

point and the sound source (θ), and the signal frequency (f ).

We consider this as a Virtual Acoustic Beamforming Model
(VABM).

B. Signal Characteristics

According to VABM, we can derive the following charac-

teristics for acoustic signal from a single source speaker.

Directive radiation characteristic: Given a certain value

for the signal frequency (f0) and distance (r0), the received

signal strength T is related with the received direction θ, i.e.

T (r0, θ, f0) = βr

∣∣∣∣2J1(ζrsinθ)ζrsinθ

∣∣∣∣ (8)

where βr is a coefficient, and ζr = ka = 2πf0
c

d
2 . Figure 4

(a) shows the received signal strength T (r0, θ, f0) to different

angle θ with r0 = 1 for f0 = 10 KHz. We can see that with

the same distance, the received signal strength is different with

respect to different angle θ.

Distance attenuation characteristic: For the same angle

θ0 and frequency f0, the signal attenuates as increasing of r.

This phenomenon is also widely explored for wireless signal.

The signal strength can be calculated as

T (r, θ0, f0) = βd
1

r

√
1 +

1

k2r2
(9)

where βd is a coefficient related to θ0 and f0. Figure 4 (b)

shows the amplitude of the received signal with different

distance to the source for frequency f0 = 10 KHz and θ0 = 0.

Frequency diversity characteristic: Even for a fixed re-

ceived angle and distance, received signal strength T is related

to the signal frequency:

T (r0, θ0, f) = βq

∣∣∣∣2J1(ζqf)ζqf

∣∣∣∣ (10)

where βq is a coefficient, and ζq = πdsinθ
c .

Figure 4 (c) shows the received signal strength of 10 KHz

in a square area. For the same frequency, the received signal

strength is different with different angels and distance to the

source.

C. Basic Localization Method

Based on the model, we first show basic localization

method. Later we show how to address practical challenges

such as signal instability. Considering the 2D localization

scenario as in Figure 3, the speaker is located in O. Denote the
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Fig. 5: The real received signal. (a) Amplitude to angles for 10 KHz; (b) Amplitude to distance for 10 KHz; (c) 2D amplitude

distribution for 10 KHz.

length of OA as |OA|. Suppose a receiver measures the signal

strength along the arc from E to F with distance r0 = |OE|
to the source. The signal strength T̃ at position r̃ and θ̃, given

the signal frequency f1, can be calculated as

T (r̃, θ̃, f1) = T̃1 (11)

The goal is to calculate r̃ and θ̃ according to Eq. (7). Basically,

if we can calculate all the parameters such as u0, a and k in

Eq. (7), we can calculate r̃ and θ̃ directly. This is, however,

difficult in practice especially for unstable signal.

To obtain r̃ and θ̃, the receiver first measures the signal

strength TA at A. According to Eq. (9), we can calculate βd =
|OA|TA√
1+ 1

k2|OA|2
. Meanwhile, according to Eq. (8), the amplitude

TA at A can be calculated as TA = βr

∣∣∣ 2J1(kasin0)
kasin0

∣∣∣, where

the Bessel function
J1(x)

x = 1
2 when x = 0. Thus, we can

obtain βr = TA.

With βd, we can calculate the signal strength T (r, 0, f0) for

any distance r according to Eq. (9). Then with T (r, 0, f0) and

βr, we can calculate the signal strength for any position (r, θ)
according to Eq. (8). This indicates we can derive the signal

strength in any position (r, θ). This also means that we can

find the position (r̃, θ̃) with signal strength equal to T̃1.

There may be, however, multiple positions with the same

signal strength. To address this issue, we can use multiple

frequencies and thus we have{
T (r̃, θ̃, f1) = T̃1

T (r̃, θ̃, f2) = T̃2
(12)

we solve the equation array to obtain the position.

III. PRACTICAL CHALLENGES

The basic localization method in practice, however, faces

several challenges.

Model deviation. The real received signal may deviate from

the model. Figure 5 (a) shows the measured signal amplitude

for different angles. Figure 5 (b) shows the measured signal

amplitude for different distance. We can see that the real

received signal amplitude in Figure 5 is different from that of

the model in Figure 4. There are multiple spikes in the signal,

and even worse, the center of the signal is also shifted. This

indicates that practice received signal may not strictly follow

the theoretical model due to different factors. Different impact-

ing factors (e.g., hardware diversity) may cause the practical

signal deviate from the theoretical model. For example, a

speaker’s vibration surface may not be an ideal plane. Further,

we examine the real received signal strength in a square area

as shown in Figure 5 (c). To address model deviation, we

propose a model adaption method by combining real received

signal with the theoretical model. Though practical model may

vary across different devices and scenarios, we find that the

trend of signal still follows the theoretical model. We extract

information from received signal to efficiently adapt to the

model.

Multi-path effect. Mutipath effect incurs a significant chal-

lenge for our localization method. First, there exist multiple

static paths from the speaker to the mobile device. Second,

environmental change (e.g., human moving) may generate

dynamic paths, which also changes the received sound signals.

The influence of multi-path effect for signal of different

frequency and signal in different position is different. As

shown in Figure 5 (a) and (b), we can see the signal amplitude

is elevated or reduced for some angles and distances due to

multi-path effect.

In summary, due to model bias and multi-path effect, as

shown in Figure 5 (c), the received signal amplitude distribu-

tion is much different from that of the theoretical model in the

space.

Signal fluctuation and location ambiguity. Ideally, in the

basic localization method, we can achieve localization with

the intersection of two curves for two different frequencies. In

practice, there may exist measurement error which cause the

curves deviate from that in the model.

IV. ACOURADAR DESIGN

Figure 6 shows the system overview of AcouRadar.

AcouRadar mainly consists of three components, i.e., signal

modulation and processing, model adaption, and spectrum

spreading based intersection for localization.
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Fig. 7: Modulated sound signal.

A. Signal Modulation and Processing

Acoustic signal tends to be impacted by environment fac-

tors. In a typical indoor environment, there are multiple paths

for acoustic signal propagation, each of which contributes to

a different delayed and attenuated signal. Hence, a received

sound signal is the combination of the direct path signal and

multiple reflected signals.

Therefore, we should modulate the acoustic signal to min-

imize the impact of multi-path effect. As shown in Figure 7,

AcouRadar employs a repeated pulse signal design with pulse

of length t1 and frequency fp and inter-pulse interval of t2. We

mainly consider two requirements for the signal modulation

to mitigate the impact of multi-path effect. (1) Avoid self-

interference. Given a pulse in the signal, the pulse from the

direct path should not interfere with that of reflected path. This

means t1 should be smaller than the difference of propagation

time between the direct path and reflected paths. Otherwise,

the direct path signal may overlap with the reflected signals.

(2) Avoid consecutive interference. The pulse of a reflected

path should not interfere with the followed pulse. This means

t2 should be large enough so that the impact of current pulse

to followed pulses will be minimized.

Pulse length and inter-pulse interval. For the first require-

ment, considering the minimum difference between the direct

path distance and a reflected path distance as 0.2m, the pulse

length t1 should be smaller than 0.2m
343m/s = 0.58ms. For the

second requirement, we conduct experiments and find that a

reflected object more than 6 meters away creates very weak

reflected signals that can be ignored [7]. Thus the minimum

interval t2 between two pulses can be set to 6m×2
343m/s = 35ms.

Besides, considering that we need an emitting frequency larger

than 10 Hz, we have t2 < 1
10 − t1 ≈ 100ms.
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curve.

Frequency selection. We select the pulse’s frequency fp
based on the following three factors. First, the selected fre-

quency should be different from the background noise, such

as human voice which is usually under 1 KHz and music

instruments which are usually under 2.5 KHz. Second, the

selected frequency should not exceed the physical sampling

capability of COTS mobile phones, which is usually 22 KHz.

Third, to facilitate signal processing and removing noise,

each pulse should contain at least 2 cycles of signals. Thus

the selected frequency should be larger than fp > 2
t1

=
2

0.58×10−3 ≈ 3.4 KHz.

Signal processing. First, we partition the received signals

into segments, each of length t1 + t2. Second, we filter

unnecessary signals and noise. Later we will show more details

of this step and its impact on the localization accuracy. Third,

we extract the power delay profile of the received signal. We

calculate the highest peak in the profile, which corresponds

to the amplitude of the direct path from the speaker to the

microphone. To further mitigate noise, we calculate the median

amplitude of peaks for multiple segments.

B. Model Adaption

As discussed in Section II-C, we need to recover the

signal distribution in the whole space based on the model.

Intuitively, we can sample the signal properties of a certain

selected frequency on two points and then fit the model with

the measured parameters. In practice, however, the energy of

single frequency is very low. Thus it is unstable to use a single

frequency to build the practical signal model.

Instead of using a single frequency, we leverage the fre-

quency diversity and use a spectrum of frequencies for acoustic

space amplitude model. We find that the received signal

contains a spectrum of frequency and we can use the spectrum

to build the model. By applying a band-pass filter, the resulted

signal consists of a spectrum of n frequencies f1, f2, . . . , fn.

We show how to use the spectrum of frequencies to build

the model for localization. As an example, we first consider

two signals of frequencies f1 and f2, denoted as X1 =
A1cos(2πf1t + φ1) and X2 = A2cos(2πf2t + φ2), where

A1 and A2 are the amplitude for f1 and f2, respectively. The
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angle half-line.

combined amplitude can be calculated as

|T f | =
√

A2
1 +A2

2 + 2A1A2cos[(2πf2 − 2πf1)t+ (φ2 − φ1)] (13)

Meanwhile, according to Eq. (7), when the frequencies of A1

and A2 are close, we have

|T f | ≈ 1

r

√
1 +

1

k2r2
crdc(f1, f2, θ) (14)

where k = 2πf1
c and cdrc(·) can be derived based on Eq. (7)

and Eq. (13). We call cdrc(·) the combined directive radiation

function of f1 and f2. In practice, 1
k2r2 is approximately zero.

For example, when f1 = 17 KHz and r = 1, 1
k2r2 = 0.00001.

Therefore, we have T f ≈ 1
r crdc(f1, f2, θ). The cdrc(·) func-

tion shows that the combined amplitude of two frequencies at

a certain position (r, θ) is related to r and θ.

Similarly, we can see that the combined amplitude for a

spectrum of frequencies also is related to r and θ. We have

T f =
1

r
crdc(f1, f2, ..., fn, θ) (15)

This means we can use the spectrum to build the signal model

in the space.

As shown in Figure 3, instead of sampling one single point,

we sample along a circle of radius |OA| centered at the

source O. Based on the sampling, we can build the directive

radiation curve along the line AB. We can also build the

distance attenuation curve by sampling along the line AB.

More specifically, AcouRadar first filters the signal with a

broad band-pass filter. The amplitude sum of multiple fre-

quencies exhibits the same characteristics with that for a single

frequency. AcouRadar uses a fitting based method to derive the

broadband directive radiation curve (BDRC) and broadband

distance attenuation curve (BDAC). Using BDRC and BDAC,

we can obtain the broadband space amplitude model T f
B(r, θ)

similar to Section II-C. The reason for choosing a band-pass

filter is to ensure that the amplitude model is stable.

Further, AcouRadar filters the signal using a narrow band-

pass filter with a higher center frequency. It then derives

narrowband directive radiation curve (NDRC) and narrowband

distance attenuation curve (NDAC). Correspondingly, we can

obtain the narrowband space amplitude model T f
N (r, θ) using

NDRC and NDAC. Figure 8 (a) shows the BDRC and NDRC.

Using the frequency diversity, we find that though the signal

amplitude of a single frequency may fluctuate, the relation

between the amplitude for two spectrums (broadband and

narrowband) is more stable. We use the curves for BDRC and

NDRC for angle estimation. According to Eq. 15, we calculate

the curve ratio CR of two curves of different spectrum in

f1, f2, . . . , fn and f ′
1, f

′
2, . . . , f

′
n as

CR =
T f
B(r, θ)

T f
N (r, θ)

=
1
r
crdc(f1, f2, ..., fn, θ)

1
r
crdc(f ′

1, f
′
2, ..., f

′
n, θ)

=
crdc(f1, f2, ..., fn, θ)

crdc(f ′
1, f

′
2, ..., f

′
n, θ)

(16)

The curve ratio is related to θ and irrelevant to r. As the

curve ratio is monotonous, we can estimate the received angle

according to the ratio of T f
B(r, θ) and T f

N (r, θ). Figure 8

(b) shows the curve ratio according to BDRC and NDRC of

Figure 8 (a). This indicates if we can measure the curve ratio,

we can calculate the corresponding angle θ.

C. Intersection based Localization

Intuitively, we have two monotonous curves. The curve ratio

CR is monotonous decreasing with the increasing of angle

θ. The distance attenuation curve is monotonously decreasing

with increasing of distance r. After measuring the curve ratio

and amplitude at a certain position, the localization method

can work as follows.

We can see that the amplitude of received signal decreases

with the increasing of both angle θ and distance r. Given

x, both θ and r increase with the increasing of y. Thus

the amplitude monotonously decreases with the increasing

of y. For each fixed xi, we use the space amplitude model

to search for candidate point Ei(xi, yi) whose model am-

plitude TEi
is closest to the measured amplitude T ′. Here

TEi
can be calculated based on T f

B(
√
x2
i + y2i , arctan

yi

xi
)

and T f
N (

√
x2
i + y2i , arctan

yi

xi
). For different xi, we obtain a

difference curve by fitting the candidate points as shown in

Figure 9 (a). Lb is the start point of the difference curve and

Le is the end point.

As an example shown in Figure 9 (a), denote the coordinate

of X-axis for E1, E2, and E3 as x1, x2, and x3 where x1 <
x2 < x3. For any two points on the difference curve (e.g.,

E2 and E3), we first calculate E′
3 as the intersection of ray

OE2 and line x = x3. As |OE′
3| > |OE2|, we have TE2

>
TE′

3
. TE3

is equal to TE2
and the amplitude monotonously

decreases with the increase of y along line x = x3. Thus

the y coordinate of E3 is smaller than that of E′
3 and the

angle � E3OA is smaller than the angle � E2OA. Therefore,

for all points on difference curve, the corresponding angle θ
monotonously decreases with the increase of x.

For the estimated angle θe, we can find a unique point in

the difference curve with angle closest to θe. Specially, when

θe is larger than the angle at point Lb, Lb is considered as the

intersection; when θe is smaller than the angle at point Le,

Le is considered as the intersection. Thus, we can obtain a

unique intersection E′ as shown in Figure 9 (b). The distance

of point E and E′ is the localization error as denoted by the

red line.
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Fig. 10: (a) Experiment scenario; (b) CNC Control system; (c) Speakers in experiments
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Fig. 11: (a) Average localization errors for different localization area sizes. (b) Average localization errors for different

dimensions.

V. EVALUATION

A. Methodology

We implement AcouRadar on Android and evaluate its

performance for COTS speakers. In our implementation, we

use the speaker Dostyle SD316 as the sound source and the

Samsung phone (SM-G9300) as the receiver. To obtain the

ground truth of the mobile phone location, we use a computer

numerical control (CNC) sliding trail system to control the

position of mobile phone. Figure 10 (a) shows the sliding

trail system. The CNC sliding trail system consists of three

sliding trails, a control system and a slider modular on the

moving trail, supporting moving in 3D space. It can also

record real time position of the slider modular. We attach a

mobile phone with AcouRadar on the sliding modular. In our

experiment, there are multiple paths from the speaker to the

device (e.g., the signal can be reflected by the sliding trails

or desk). The sliding system also create non-negligible noise

to our localization system. Figure 10 (b) illustrates the CNC

control system. Figure 10 (c) shows different COTS speakers

in our experiment. We mainly evaluate the performance of

AcouRadar from the following aspects.

B. Overall Accuracy

We conduct four sets of experiments to evaluate

AcouRadar’s overall accuracy for different localization area

with side length from 0.5 m to 0.8 m. For each size, we

gradually move the mobile phone in a grid with interval

of 5 cm on the X axis or Y axis. We record the location

from the CNC system and compare it with the output of

AcouRadar. On each position, we conduct three runs of tests.

For example, the test number of a 0.8m× 0.8m localization

area is 3× 16× 16 = 768.

For all tests, Figure 11 (a) plots the average localization

error for different localization area size. Overall, we have three

observations. First, the average localization error for different

localization area size is 4.91 cm, 5.89 cm, 6.15 cm, 6.77 cm.

Second, we can also see that the average error increases with

the area size. Third, for the same localization area size, the

average localization errors of three tests are similar. This

indicates the localization results of AcouRadar is relatively

stable. Besides, we evaluate the influence of different distances

and angles between the speaker and mobile device. Even if

the distance increases to 3 m, average localization error is

less than 10 cm. Therefore, for many common scenarios (e.g.,

using speakers of TV), AcouRadar can provide acceptable

performance for most of acoustic based tracking applications,

such as gesture control.

We further evaluate AcouRadar’s average localization er-

rors for different dimensions as Figure 11 (b) shows. From

the result, we can see that the average localization errors

on X-axis increase with the increasing of localization area

size. However, the average localization errors on Y-axis are

relatively stable, i.e., 2.89 cm in average. Figure 12 (a) plots

the cumulative distribution function (CDF) of AcouRadar’s

average localization errors AcouRadar achieves performance

with 50 percentile error of 5.38 cm, 3.85 cm, and 2.45 cm for

2D localization in X-axis and Y-axis, respectively.
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Fig. 12: (a) CDF of average localization errors; (b) CDF of

angle errors.
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Fig. 13: Comparison of theoretical angles and estimated an-

gles.

C. Angle Accuracy

To evaluate the angle accuracy, we first calculate the angle

of mobile phone based on its position. Then we estimate the

angle using the directive radiation characteristic ratio curve of

BDRC and NDRC. We calculate the angle errors of all test

points in the localization area. Figure 13 (a) and (b) show the

result of real angle and estimated angle distribution. We can

see that the estimated angle is very close to the real angle.

To quantitatively examine the angle error, Figure 12 (b)

shows the cumulative distribution function of angle error.

AcouRadar achieves good performance in angle estimation

with an average error around 1.76 degrees, 50 percentile error

of 1.32 degrees, and 90 percentile error of 3.89 degrees.

D. Impact of Frequency

We conduct three sets of experiments with sound signals

at 5 KHz, 12 KHz, and 17 KHz, respectively. Sound signal

at 5 KHz can be heard easily by people, sound signal at

17 KHz almost cannot be heard by most people, and sound

signal at 12 KHz is between them. As shown in Figure 14

(a), the average localization errors of sound signals at 5 KHz,

12 KHz, and 17 KHz are 6.37 cm, 7.47 cm, and 7.13 cm,

respectively. The localization error for signal of different

frequencies is similar, which demonstrates that AcouRadar

can work well with sound signal of different frequencies.

The error for 17 KHz is slightly higher than that of lower

frequency. Figure 14 (b) shows that most positions exhibit

similar accuracy. We find that the CNC sliding trail system

emits some high frequency noise. Thus higher frequency is

more sensitive to error.
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Fig. 14: (a) Average localization errors at different frequencies;

(b) CDF of errors.

VI. RELATED WORK

Acoustic localization. Recent years, acoustic tracking and

localization attract many research efforts. AAMouse [8] accu-

rately calculates the moving speed of mobile phone based on

Doppler effect and achieves 3D tracking with three speakers.

CAT [3] further improves the signal design and proposes to use

Frequency Modulated Continuous Waveform (FMCW). LLAP

[1] proposes an accurate localization method by measuring

phase change with received acoustic signal. Vernier [2] further

uses a method to efficiently measure the phase change with a

shorter delay. There are also many applications [9] [10] [11]

[12] [13] [14][15] built on tracking and localization using

acoustic signal. For example, AIM [16] proposes an acous-

tic based imaging method on mobile phone. BatTracker [4]

leverages echoes from nearby objects and uses distance mea-

surements from them to correct error accumulation in inertial

sensor based device position prediction. BeepBeep [17] shows

an efficient method to measure the distance between two mo-

bile devices. SwordFight [18] estimates the distance between

two phones.

RF localization. Many RF based localization approaches

are also proposed [19][20][21][22][23][24][25]. Widraw [26]

leverages WiFi signals from commodity mobile devices to

enable hands-free drawing in the air. INTRI [27] employs the

concept of trilateration in fingerprint-based WIFI environment.

For example, Tagoram [28] leverages RFID for accurate track-

ing and achieves a mm-level accuracy. MobiTagbot [29] marks

the book with an RFID tag and uses a robot equipped with an

antenna to locate the tag on each book.

Light localization. Light localization systems [30] [31] [32]

mainly use visible light sources (e.g., LED) for localization.

CELLI [33] maps the position of the space with the LED

pixels. The positioning is based on analyzing the time of the

received signal from the LED. SmartLight [34] associates the

spatial position to a circle on the LED panel. iLAMP [35]

uses frequency and color spectrum as features to identify each

light and derive the location by triangulation.

VII. CONCLUSION

We present AcouRadar, an acoustic-based localization

method with a single sound source. We introduce a single



source based virtual acoustic beamforming model to quantify

signal amplitude with different frequencies, distances and

angles to a single source. The model builds the theoretical

foundation for single source localization. We address practical

challenges while applying the model for localization. To

address model deviation from real signal, we propose an

online adaption model with received signal to compensate

the deviation. To alleviate the impact of environment such

as multi-path effect, we present a pulse based signal design

and signal processing method. To address signal dynamics in

practice, we leverage relatively stable amplitude ratio between

different frequencies. We implement AcouRadar on Android,

and evaluate its performance with mobile devices and COTS

speakers in different environments. The experiment results

show that AcouRadar achieves accurate single source local-

ization, which shows its great potential in real applications.
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