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Abstract—LoRa, more generically Low-Power Wide Area Net-
work (LPWAN), is a promising platform to connect Internet of
Things. It enables low-cost low-power communication at a few
kbps over upto tens of kilometers with a 10-year battery lifetime.
However, practical LPWAN deployments suffer from collisions,
given the dense deployment of devices and wide coverage area.
We propose CoLoRa, a protocol to decompose large numbers of
concurrent transmissions from one collision in LoRa networks. At
the heart of CoLoRa, we utilize packet time offset to disentangle
collided packets. CoLoRa incorporates several novel techniques
to address practical challenges. (1) We translate time offset,
which is difficult to measure, to frequency features that can be
reliably measured. (2) We propose a method to cancel inter-
packet interference and extract accurate feature from low SNR
LoRa signal. (3) We address frequency shift incurred by CFO and
time offset for LoRa decoding. We implement CoLoRa on USRP
N210 and evaluate its performance in both indoor and outdoor
networks. CoLoRa is implemented in software at the base station
and it can work for COTS LoRa nodes. The evaluation results
show that CoLoRa improves the network throughput by 3.4×
compared with Choir and by 14× compared with LoRaWAN.

I. INTRODUCTION

The success of the Internet of Things (IoTs) highly de-
pends on connecting large scale IoT devices. As a promising
communication platform, LPWAN can provide low-cost long-
range communication with very low energy consumption for
large scale IoT devices [1]. Long Range (LoRa) is a widely
used and industry applied LPWAN technique, which works
on the unlicensed sub-GHz ISM band, e.g., 475 MHz or 900
MHz bands [2]. Typically, end nodes of a LoRa network can
achieve a communication range of kilometers or even tens of
kilometers at few kbps. The energy consumption of LoRa end
nodes is very low and a node can work for nearly 10 years
powered by a button cell battery.

Deploying LoRa networks in practice, however, is very
challenging. Each base station in LoRa covers a wide area
and is expected to connect to a large number of devices [3].
This introduces severe signal collisions when multiple end
nodes transmit packets to the base station concurrently, which
decreases the network throughput and also ratchets up the
energy consumption and network delay. Moreover, the limited
energy budget and low-cost hardware make it difficult to
apply sophisticated MAC protocol to resolve collisions [4],
[5]. The relative long packet duration further accelerates the
collision problem. This leads to a gap between LoRa’s vision
to provide low-power large-scale connections, and its practical
capability [6].

There exist many concurrent decoding approaches in tradi-
tional wireless [7], [8]. As a representative one, ZigZag [7] de-
codes collided Wi-Fi packets but it requires m retransmissions
to resolve an m-packet collision. mZig [8] decodes multiple
ZigBee packets from a collision by leveraging ZigBee’s cod-
ing characteristics. Recently, NetScatter [9] proposes a new
encoding and decoding technique for multiple backscattered
and synchronized chirp signals, while it cannot work for
unsynchronized transmission in LoRa networks. Choir [10]
shows that the hardware imperfection of low-cost LoRa end
nodes will cause frequency offsets in LoRa symbols. It utilizes
the frequency offsets to distinguish collided LoRa packets.
However, it is difficult to extract accurate the tiny frequency
offset especially for low SNR LoRa signal with inter-packet
interference. Thus, the experiment results in [10] show a
limited concurrency. Meanwhile, we also observe that the
frequency offset is not stable for some low-cost LoRa nodes,
which diminishes its benefit in practice.

Our Approach. To resolve collisions, we proposed CoL-
oRa, a protocol that enables Multi-Packet Reception (MPR) in
LoRa. CoLoRa utilizes the packet time offsets to decompose
multiple concurrent transmissions from one collision directly.

To see how CoLoRa works, consider the scenario in Fig. 1,
where two packets collide. Both packet-A and packet-B consist
of multiple chirp symbols. LoRa modulates signals with chirp
spread spectrum (CSS) technique, where chirps with different
frequency shifts encode different data bits. The LoRa decoding
algorithm multiplies the received chirp with a standard down-
chirp. When there is no collision, the result is a single tone
which translates to a single peak in the frequency domain.
Otherwise, there will be multiple frequency peaks, as shown
in Fig. 1. The data bits of the two collided packets are mixed
up and hence the decoding algorithm fails to decode any of
them.

At the heart of CoLoRa is a physical layer algorithm that
utilizes the packet time offset to disentangle collisions. Upon
receiving a collision, CoLoRa first cut the received signal
into a series of reception windows, each with length equal
to a chirp. As shown in Fig. 1, when choosing a misaligned
window, each chirp is divided into two segments by two
consecutive windows. Then for signal in each window, we
transform the incomplete chirp segments to frequency peaks
by multiplying a down-chirp and applying a Fourier transform.
We formally prove that the height of the peak is proportional
to the length of the segment in Section III . We also show that
the two peaks of the same chirp have the same frequency, e.g.,
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Fig. 1: An example of decomposing a two-packet collision
with packet time offset. CoLoRa decomposes collided packets
by transforming the packet time offset to frequency domain
features.

f0 for packet-A’s first chirp. For two peaks belonging to the
same chirp, define the peak ratio as the height of the latter one
divided by that of the former one. We can see that peak ratio is
identical for chirps of the same packet, while it is distinct for
chirps of different packets. Thus, by grouping chirps with the
same peak ratios, CoLoRa can finally disentangle the collided
packets.

The benefits of using peak ratio as features to separate
collided packets are three-fold. (1) It concentrates energy for
time-domain features to signal peaks in the frequency domain
and thus it works well for low SNR LoRa signal with inter-
chirp interference. (2) It is resilient to signal dynamics and
environment complications, as the peak ratio is determined
by the packet time offset which is stable during the whole
transmission. (3) There is no error accumulation as the peak
ratio of each chirp is calculated independently.

Challenges. Using peak ratio to disentangle packets in
CoLoRa also faces practical challenges: First, we find that the
selection of reception windows affects the peak estimation.
For example, an improper reception window selection may
result in two peaks of unbalanced height, where the shorter
peak is easily distorted or even be masked in noise. We
propose an interleaved window selection strategy which can
achieve a bounded division ratio in [ 13 , 3]. Second, we find it is
difficult to obtain an accurate peak estimation as the inter-peak
interference leads to peak distortions. We propose an iterative
peak recovery algorithm where the highest peak component
is iteratively estimated, recovered and extracted. Thus, we
can eliminate the inter-peak interference as well as solving
the near-far problem. Third, after peak grouping, we find the
packet decoding is severely impeded by the mixed impact of
Central Frequency Offset (CFO) and reception window time
offset. Based on the structure of LoRa preamble, we design a
technique to estimate and compensate the CFO and window
time offset for LoRa decoding.

Main results and contributions. The main results and
contributions of this paper are as follows:

• We proposed CoLoRa, a protocol to decompose multiple
concurrent transmissions from one collision in LoRa,
to bridge the gap between LoRa’s vision of providing
low-power long-distance connections to large scale IoT
devices, and its practical capability.

• We address practical challenges in CoLoRa design. The
performance of CoLoRa highly relies on accurate in-
formation of peaks. We propose an efficient reception
window selection strategy to generate balanced peaks.
We design an iterative peak recovery algorithm to address
inter-peak interference and recover peak information ac-
curately. Finally, we remove the impact of CFO and time
offset to accurately decode packets.

• We implement CoLoRa on USRP N210 and thoroughly
evaluate its performance in different scenarios. CoLoRa
is completely implemented in software at the base station
without requiring any modifications at the end nodes. The
experiments results show that CoLoRa can improve the
network throughput by 3.4× compared with Choir and
14× compared with LoRaWAN.

II. A PRIMER ON LORA

LoRa physical layer employs the chirp spread spectrum
(CSS) technique to modulate signals. CSS modulates signals
into chirps of linearly increasing/decreasing frequency, i.e.,
up-chirps and down-chirps, making the signal occupying the
entire spectral band. Chirp symbols are inherently robust
against in-band interference and other channel degradations,
and hence they can be detected and decoded even under
extremely low SNR, which makes low-power and long-range
communication be possible for LoRa end nodes.

LoRa modulates data bits by cyclically shifting the baseline
up-chirp. As shown in Fig. 2(a), the frequency of the baseline
up-chirp increases linearly from −BW2 to BW

2 , and the length
of the chirp is T . Thus, the frequency of baseline up-chirp can
be represented as kt− BW

2 , where k = BW
T is the gradient of

frequency sweeping. And the baseline up-chirp C(t) can be
represented as

C(t) = ej2π(−
BW
2 + kt

2 )t

Given the frequency shift f of baseline up-chirp, the resulted
symbol is C(t)ej2πft. Then given the spectrum bandwidth
BW , after the shift, all the frequencies higher than BW

2 will
be aligned down to −BW2 as shown in Fig. 2(b). LoRa defines
N different shifted frequencies, which results in N uniformly
shaped up-chirps to encode SF = log2N bits.

To demodulate, LoRa leverages the baseline down-chirp,
i.e., the conjugate of baseline up-chirp C∗(t). As shown in
Fig. 2(c), by multiplying a baseline down-chirp, each shifted
up-chirp is despreaded, and the result is calculated as

C∗(t)× C(t)ej2πft = ej2πft
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Fig. 2: LoRa Physical Layer: (a) Spectrogram of a baseline
chirp symbol. (b) Spectrogram of a shifted chirp symbol. (c)
The demodulation result of the base chirp symbol and the
shifted chirp symbol.

i.e., a single tone at frequency f . The encoded data bits are
then recovered by searching energy peaks from the result of
the Fourier transformation.

III. COLLISION SEPARATION BASICS

In this section, we show the basics of how to separate
packets from collisions in LoRa. Before explaining our col-
lision separation strategy, first recall how the conventional
LoRa receiver works. When a packet arrives without collision,
the LoRa receiver first synchronizes itself with the received
packet. As is shown in Fig. 3(a), after synchronization, each
chirp symbol is aligned with the reception window. Then the
receiver multiplies a down-chirp in each window and applies
FFT to transform each chirp to a single peak, whose frequency
represents the encoded data of the corresponding chirp.

When there is a collision, we also use the reception windows
to cut the received signal. Note here we select the reception
window not aligned to the packets. Thus, each chirp is divided
into two segments in two consecutive reception windows,
as shown in Fig. 1. Now, we analyze the result of the
multiplication and show how to use this for packet separation.

In LoRa, an encode chirp symbol is an up-chirp with a
frequency shift, i.e., x(t) = Hej2πftC(t), where H is the
signal amplitude and f is the shifted frequency to encode bits.
Denote τ is the chirp-level offset between the packet start and
the reception window in Fig. 3(b). For a chirp, the first chirp
segment x1(t) can be written as

x1(t) = x(t−τ) = Hej2πf(t−τ)C(t−τ) τ ≤ t < T (1)

As time shift can be translated to frequency shift, we have
C(t− τ) = e−j2πkτC(t). Thus, Eq. (1) can be rewritten as

x1(t) = Hej2π(−fτ+(f−kτ)t)C(t) τ ≤ t < T (2)

Similarly, the second chirp segment x2(t) can be written as

x2(t) = x(t− (T − τ))
= Hej2π(−f(T−τ)+(f−k(T−τ))t)C(t) 0 < t < τ

(3)

We multiply the signal in each reception window with a
baseline down-chirp, despreading each chirp segment to a
single tone. Mathematically, for x1(t) in the first reception
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Fig. 3: (a) Conventional receiver uses aligned windows and de-
modulates chirp by chirp. (b) CoLoRa receiver uses unaligned
windows and demodulates window by window.

window, after multiplying with the down-chirp, we have

x̂1(t) = Hej2π(−fτ+(f−kτ)t)C(t) · C∗(t)

= Hej2π(−fτ+(f−kτ)t) (4)

which is a single tone at the frequency of f1 = f − kτ . x2(t)
in the second window is also despreaded to a single tone, with
the frequency of f2 = f−k(T−τ). When using a sample rate
equal to the bandwidth (i.e., BW ), the two despreaded signal
x̂1(t) and x̂2(t) share the same frequency in the spectrum,
i.e., f1 = f2 = f − kτ . Therefore, as shown in Fig. 3(b),
two segments of the same chirp are transformed to two peaks
located at the same FFT bin of f − kτ .

Thus, for the first segment x1(t), the height of its peak is

h1 =

N−1∑
n=0

x̂1[n]e
−j2π(f−kτ)nT

N (5)

where x̂1[n] is nth sampling point of x̂1(t) and N is the total
sample points of a chirp. Substituting x̂1[n] with the Eq. (4),
we have

h1 = Hfs(T − τ). (6)

Similarly, for the second segment x2(t), the peak height is

h2 = Hfsτ. (7)

For each chirp, we define peak ratio P as

P =
h2
h1

=
τ

T − τ
. (8)

It can be seen that the peak ratio is determined by the window
offset τ . Thus, the peak ratio is identical for all chirps of the
same packet. Meanwhile, we can also see from Eq. (6) and
Eq. (7) that based on the peak height h1 (or h2), we can
calculate the amplitude H of the chirp segment.

Summary. Through the analysis, we have the following
results.

• The peaks of two segments of the same chirp are located
at the same frequency, with height proportional to seg-
ment length.
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Fig. 4: The main workflow of CoLoRa.

• The peak ratio is determined by the window offset, i.e.,
P = τ

T−τ , and thus is identical for all chirps of the same
packet.

• The peak ratio is different for packets with different
arrival time.

• Based on the peak height, we can calculate the amplitude
of the chirp segment.

Briefly, CoLoRa leverages the peak ratio to distinguish packets
and then use peak information to facilitate decoding. In the
next section, we will detail CoLoRa’s design to address prac-
tical challenges for separating packets and achieving multi-
packet reception.

IV. COLORA DESIGN

A. Overview

Fig. 4 shows the workflow of CoLoRa design. CoLoRa at
the base station mainly consists of four components. (1) For
a received signal, CoLoRa first selects reception windows to
divide the received signal into segments with length equal to a
chirp. (2) For each reception window, CoLoRa transforms the
low SNR signals into robust FFT peaks and then accurately
recover the features of peaks in the presence of noise and
inter-peak interference. (3) Based on the estimation of FFT
peaks, CoLoRa clusters the peaks into multiple groups where
each group contains the peaks of the same packet. (4) Finally,
CoLoRa decodes each group of peaks while addressing the
challenge of Central Frequency Offset (CFO) and packet time
offset. We show the details of each component and how to
address practical challenges.

B. Reception Window Selection

Upon receiving a signal, CoLoRa needs to cut the signal
into continuous reception windows each with length equal to
a chirp. A practical challenge is that the selection of reception
windows impacts the decoding performance. For example, for
the collision cases, an improper selection of reception windows
will result in an unbalanced division, where chirps are divided
into very short segments corresponding to very low peaks,
which are easily distorted or even masked in noise as shown
at the top of Fig. 5. While for the collision-free cases, the
misaligned windows will hinder the chirps to concentrate the
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Fig. 5: Examples of interleaved windows for solving unbal-
anced window division

whole symbol’s energy and further diminish its ability to
combat the noise. Thus, the selection of reception windows
should satisfy the requirements for both the collision cases
and the collision-free cases.

We propose an interleaved reception window selection strat-
egy to achieve balanced division in collision cases and aligned
windows in collision-free cases. To achieve this goal, we first
detect the onset time of the received signal. We use an Akaike
Information Criterion (AIC) [11] based algorithm to detect
the onset time of the received LoRa packet, which is proved
to work well even under the noise floor [12]. Based on the
detection result, we select reception windows W1 with window
beginning aligned with the detected onset time. Then we use
W1 to decode the received signals and estimate the peaks for
every reception window. If only one peak is detected in each
window, it indicates that there is no collision and then the
signal is decoded like in conventional LoRa. Otherwise, we
select a new interleaved reception window W2 by moving the
start of W1 by T

2 , where T is the chirp length.
Here, we show that given any packet involved in the colli-

sion, at least one of those two interleaved reception windows
(i.e., W1 and W2) can give a balanced division with a bounded
division ratio in [ 13 , 3]. As shown in Fig. 5, the time offset
between the starts of the two reception windows W1 and W2

is T
2 . Assume the chirp-level time offset between pkt and W1

is t1, and the offset between pkt and W2 is t2. Without loss
of generality, assume t1 > T

2 . Thus, we have t2 = t1 − T
2 .

We show that either W1 or W2 should divide pkt into chirp
segments with division ratio in [ 13 , 3].

We can calculate the shorter chirp segment by W1 as D1 =
min(t1, T − t1)) ≤ T

2 . The shorter segment by W2 is D2 =
min(t2, T − t2)). As t2 = t1 − T

2 , we have D2 = T
2 − D1.

We choose the more balanced one, i.e.,

D = max(D1, D2) = max(D1,
T

2
−D1)

where D1 is smaller than T
2 . Thus, we can prove D ≥ T

4 .
Similarly, we can prove D ≤ 3T

4 . Thus, the division ratio,
resulted from either W1 or W2, should be in the range of
[ 13 , 3].



C. Iterative Peak Recovery

In each reception window, we transform the signal to peaks
by multiplying baseline down-chirps and applying FFT. Then
we need to estimate the accurate frequency and height for
each peak in order to separate packets. While in practice,
height estimation for peaks is prone to inter-chirp interference.
Revisiting the progress of LoRa decoding, we multiply a
down-chirp and apply FFT for signals in each reception
window. We can observe that there are periodical sidelobes
located around each main peak after FFT, a property that stems
from the time limited input sequence. The sidelobes affect the
peak estimation from two aspects. On one hand, sidelobes
distort peaks and affect accurate measurements of the peak
height and frequency. On the other hand, low height peaks
tend to be masked by sidelobes of other strong peaks.

We propose an iterative peak recovery algorithm. The
pseudocode for iterative peak recovery algorithm is shown in
Algo. 1. We first find the highest peak from the reception
window. The benefit of using the highest peak is two-fold.
First, the relative distortion of the highest peak is smaller
than the other peaks. Second, using the highest peak avoids
incorrectly using sidelobes as peaks since the highest peak
normally cannot be any sidelobe. By measuring the frequency
and height of the highest peak, we can obtain a coarse
estimation of the real peak. Assume the highest peak has a
height of h0, a center frequency f0 and a phase of φ0. To
obtain a coarse estimation of chirp segment, we need further to
obtain the position, amplitude and length of the chirp segment.

Position estimation. First we need to determine the position
of the chirp segment, i.e., whether the segment is adjacent
to the former window or the latter window. We use the signal
from both the former and the latter windows to help determine
the chirp position. Denote the signal of the current window is
x0, and the signal of the former and the latter windows are
x1 and x2. If we combine the signal of each two adjacent
windows together, we can get y1 = [x1, x0] and y2 = [x0, x2],
each with the length of two chirps. Then, we multiply two
continuous baseline down-chirp with y1 and y2, respectively.
After FFT on the multiplication, we obtain two peaks h1 and
h2 corresponding to y1 and y2, both located at f0. If the chirp
segment is adjacent to the latter window, the height of h2
should be higher than that of h1, and vice verse.

Amplitude and length estimation. We estimate the amplitude
of the chirp segment based on y1 and y2. Assume h2 is the
height of the higher peak, as a chirp symbol can only span
two windows, y2 should contain the complete chirp symbol.
As the peak height is proportional to the length of segment,
we have h2

h0
= T

L . Thus, we can estimate the length of chirp
segment in x0 as L = h0

h2
T . According to Eq. (7), we can

calculate the amplitude of the chirp segment as H = h0

fsL
,

where fs is the sampling frequency.
Accurate peak recovery. Based on the frequency f0, phase

φ0, length L and amplitude H , we can reconstruct the initial
chirp segment as

s̃(t) = Hej2πft+φ0C(t) (9)

Algorithm 1: Iterative Peak Recovery
Input: Signal in a reception window: Sig
Output: Height and frequency of peaks: [H,F ]
DemodSig = Sig ⊗DownChirp;
while SUM(FFT( DemodSig)) > threshold do

[f0 , φ0 , h0] = HIGHESTPEAK(FFT(DemodSig));
[Loc, h] = SEGMENTLOCATION();
L = Th0

h
;

H = h0
fsL

;
s̃ = INITIALCHIRPSEG(f0 , φ0 , H , L, Loc);
S = ITERATIVEREFINE(s̃);
[Hi, Fi] = PEAKMEASURE(FFT(S ⊗DownChirp));
CANCEL S FROM Sig;
DemodSig = Sig ⊗DownChirp;

end
return [H,F ];

where t ∈ [0, L] if the segment is adjacent to the previous
window, or t ∈ [T − L, T ] if the segment is adjacent to
the following window. The chirp segment s̃(t) is a coarse
estimation of the real chirp segment as it may be distorted by
sidelobes of other chirps. For a more accurate estimation of the
chirp segment, after canceling it from the signal, we will obtain
less residual energy in the remaining signal. Thus, we search
for different chirp segments in the near space of the initial
chirp segment in terms of phase, amplitude, start frequency
and length. For each chirp segment, we cancel it from the
original signal and calculate residual signal in the frequency
domain by summing up the energy of the FFT outputs. The
goal of the search is to find the optimal chirp segment S that
minimizes the residual energy.

Then we obtain an accurate peak by multiplying the op-
timal chirp segment with a baseline down-chirp. Moreover,
by canceling the optimal chirp segment, we also cancel its
interference with other peaks. We iteratively recover accurate
peaks in the remaining signal until the residual energy is
lower than a threshold. By using our iterative peak recovery
algorithm, we can also address the near-far problem where
a strong signal from a near source interferes with a weaker
signal from a further source.

D. Packet Separation and Decoding

Till now, accurate peaks are recovered. We show how to use
this information for separating and decoding packets. Recall
that peaks of two segments from the same chirp are located at
the same frequency. We can pair these two peaks by matching
peaks of the same frequency in two consecutive windows. For
each pair of peaks, we calculate the peak ratio, i.e., the height
of the latter peak divided by the height of the former peak.
Note that the peak ratio is identical for chirp symbols of the
same packet but different from packet to packet.We use a k-
means approach to group the peaks into k different clusters,
each of which corresponds to a collided packet.

To decode for each group of peaks, we need to address
the peak frequency bias introduced by CFO and window
time offset. Both CFO and window time offset will result
in chirp decoding errors as they introduce peak frequency
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biases. Normally, we can measure the frequency shift of
preambles to obtain the CFO. The challenge is that window
time offset between the chirp and reception window also
results in the frequency shift. We utilize the structure of the
LoRa packet to resolve this challenge. In a LoRa packet,
the preambles are baseline up-chirps and the SFD contains
baseline down-chirps. As shown in Fig. 6, CFO will cause
the same frequency shift to both the up-chirp and the down-
chirp. When there is no window time offset, both baseline
up-chirps and baseline down-chirps are transformed to peaks
with zero frequency shift. Otherwise, each chirp is transformed
to a peak with non-zero frequency shift proportional to the
window time offset. Though both CFO and window time offset
incur frequency shift, their impacts are different. CFO causes
identical frequency shift for both the up-chirp and down-chirp
while window time offset causes opposite frequency shifts for
the up-chirp and down-chirp. Denote TO = τ is the window
time offset, for the baseline up-chirp, the total frequency shift
can be calculated as

δfup = −τk + CFO (10)

where −τk is the frequency shift caused by the window time
offset. Similarly, for the baseline down-chirp, the frequency
shift is

δfdown = τk + CFO.

We calculate δfup and δfdown by multiplying the preamble
with down-chirps and the SFD with up-chirps. Then we can
estimate the CFO as

CFO =
δfup + δfdown

2
.

Meanwhile, by substituting CFO into Eq. (10), we can also
obtain the estimation of the window time offset τ .

We compensate for each peak with the calculated CFO and
window time offset. Finally, we can decode a packet with a
group of peaks using a standard LoRa decoder.

V. IMPLEMENTATION

a) Hardware: We implement CoLoRa base station on
USRP N210 software radios with a UBX daughterboard. The
base station uses a single antenna with 2 dBi gain and can
receive signals at 470 MHz and 900 MHz bands for LoRa.
The implementation supports 125 kHz, 250 kHz and 500 kHz
bandwidth for each channel. CoLoRa decoding algorithm is
independent of the hardware platform, and it can also be

LoRa End Node: 
SX1278MB1LAS Client 
TKX-470MHz Antenna 
Raspberry Pi Platform

CoLoRa Base Station: 
USRP N210
KX-470LC Antenna

Fig. 7: CoLoRa base station on USRP N210 and LoRaNet
testbed.

implemented on other commercial LoRa base stations as long
as the physical samplings can be obtained. CoLoRa does
not have special requirement on end nodes and can work
with any of existing LoRa nodes. In our implementation and
experiment, we use the LoRa node with an SX1278 radio chip
and a single antenna.

b) Software: We use the UHD+GNU-Radio library [13]
for developing our own LoRa demodulator, and implement
CoLoRa in MATLAB to process PHY samples. The function-
ality of CoLoRa is to decompose an m-packet collision into
m sequences of collision-free symbols and then translate them
into m packets.

VI. EVALUATION

A. Methodology

a) Scenario: We evaluate the performance of CoLoRa
in two different scenarios.

• LoRa testbed (LoRaNet) which consists of 40 LoRa end
nodes as shown in Fig. 7. Each end node consists of an
SX1278 radio chip, working at the frequency of 470 MHz
and placed at a fixed position of a shelf. All the LoRa
nodes are connected to a backbone network through the
Raspberry Pis and thus information from them can be
efficiently collected.

• Outdoor real LoRa network, where 20 LoRa temperature
and humidity sensors are placed at different locations of
the campus such as buildings, roads and parking lots
as shown in Fig. 8. Each sensor node can collect and
transmit the data of temperature and humidity to the base
station by LoRa packets. The nodes are distributed over
a region of 0.3km by 0.5km.
b) Baseline: We compare the performance of CoLoRa

with two different approaches.
• LoRaWAN [14]: The widely used standard LoRaWAN

baseline using ALOHA.
• Choir [10]: A recent LoRa collision resolution approach

that decouples collisions using hardware imperfection of
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Fig. 8: The outdoor deployed LoRa network, each sensor node
transmits temperature and humidity data by LoRa packets
periodically.

end nodes. In practice, the hardware offsets of low-cost
LoRa end nodes fluctuate according to the node type,
packet length and SNR, as shown in Fig. 9. Thus, in our
implementation, we use both the fractional FFT bin and
the peak magnitude to match correct transmitters.

B. Experiment Result

1) Decoding Multi-Packet Collision: In this experiment,
we examine CoLoRa’s performance for separating multiple
packets in collisions. As LoRaWAN cannot separate packets
in collisions, their performance under collision is extremely
low. Thus, we only show the performance of CoLoRa and
Choir, which can separate multi-packet reception in LoRa.

We use the LoRaNet testbed to efficiently generate multi-
packet collision in which we can control each collided nodes
accurately. To produce a collision with M overlapped packets,
we use a beacon to synchronize the transmission for M
different end nodes.

Upon receiving a beacon, all M end nodes wake up and
transmit a LoRa packet. We allow a random processing delay
for each end node. All packets are generated with a specific
known sequence of bytes. At the base station, packets from the
M end nodes are overlapped, leading to an M-packet collision.
We produce collisions with a different number of overlapped
packets by changing the number of involved end nodes M .
At the base station, we use CoLoRa and Choir to decompose
the collided packets. Then for each decomposed packet, we
use a standard LoRa decoder to translate the chirp symbols
into data bits. The packets sent by each end node is known
in prior. Thus, we can verify the correctness of the decoded
packets and calculate the Packet Loss Rate (PLR) and network
throughput of all nodes in this experiment.

Fig. 10(a) shows the PLR for CoLoRa and Choir. As
concurrent nodes increasing from 1 to 20, the PLRs of both
the two approaches grow up. The PLR of CoLoRa increases
much more slowly than that of Choir. This is because CoLoRa
extracts more efficient features to separate packets while Choir
uses hardware imperfection which is less stable and difficult
to detect especially under inter-chirp interference and channel
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Fig. 9: Characterizing Hardware Offsets: the root mean-
squared error of the frequency offset within a packet for (a)
different type of end nodes with the same configuration (SF12,
packet length of 10 Byte); (b) different packet length and SNRs
(sensor node with SX1278).

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0 %

1 0 %
2 0 %
3 0 %
4 0 %
5 0 %
6 0 %
7 0 %
8 0 %
9 0 %

1 0 0 %

Pa
cke

t L
os

s R
ate

#  C o n c u r r e n t  N o d e s

 C o L o R a
 C h o i r

(a)

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0
6 0 0

Ne
two

rk 
Th

rou
gh

pu
t (b

its/
se

c)

#  C o n c u r r e n t  N o d e s

 C o L o R a
 C h o i r

(b)

Fig. 10: Decoding for different concurrent transmissions at a
single-antenna USRP base station. (a) Packet Loss Rate (b)
Network throughput.

noise. This also coincides with the result in Choir [10] that
it supports less than 6 concurrent transmissions and with
more concurrent transmissions its performance degrades sig-
nificantly. We further investigate the performance of CoLoRa
and find that the packet loss usually happens when two packets
have similar peak ratios causing peaks being clustered into
a wrong group. We can also see that when the number of
current nodes is less than 4, CoLoRa and Choir have similar
performance. However, when the number of nodes increases,
CoLoRa quickly outperforms Choir.

We further send decomposed chirp symbols to a standard
LoRa decoder for extracting the content of the packet. LoRa
modulates the data bits into chirp symbols with an FEC code,
hence some of the symbol errors can be corrected during the
decoding. In our experiment, we initialize the testbed nodes
with a coding rate of 4/8, where each four useful data bits are
encoded eight bits along with FEC code. After decoding, we
can get the overall network throughput as shown in Fig. 10(b).
The network throughput of CoLoRa increases as the number
of concurrent nodes increases from 2 to 20. This is due to the
benefit of multi-packet reception in CoLoRa. Meanwhile, we
can see that the network throughput of Choir is much lower
than that of CoLoRa. The network throughput even starts to
decrease when the number of concurrent nodes is larger than
12. This is because when the number of concurrent nodes
is large, most packets are undecodable for Choir. When the
number of nodes is 20, the network throughput of CoLoRa
(552 bps) is about 3.4× of Choir (162 bps).
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Fig. 12: CoLoRa’s network
throughput under different
levels of SNR.

2) Impact of SNR: In this experiment, we show the impact
of SNR on the performance of CoLoRa. High channel noise
will cause peaks of chirp segments suffering from distortion,
which further disturbs the calculation of peak ratios. To
characterize the impact of channel noise, we use the testbed
to produce packet collisions where each end node transmit a
randomly chosen sequence of bits concurrently

We define the SNR of a collision signal as the SNR of its
strongest signal component. Fig. 11 plots the SNR survey for
signals from each testbed node. The SNRs of different nodes
are diverse, but all above the noise floor. Thus, for precise SNR
control and emulating low SNR scenario, we artificially add
noise traces to the received collision signals. By controlling
the magnitude of the added noise traces, we can achieve a
certain SNR in dB defined as 10log10

A2

E[Z2
Q(t)+Z2

I (t)]
, where

zQ(t) and zI(t) are the Q and I traces of the added Gaussian
noise and A is the signal’s amplitude.

Fig. 12 shows the Network Throughput for CoLoRa under
different levels of SNR. CoLoRa can also work for the low
SNR signal as it concentrates the energy of a chirp to a signal
peak in the frequency domain. As shown in Fig. 12, the total
throughput is stable when SNR is higher than −10dB and the
performance slightly degrades for lower SNR scenario.

3) Addressing Collision in Real LoRa Networks: In this
experiment, we verify the performance of CoLoRa in a real
deployed LoRa network consisting of 20 LoRa end nodes in
the campus. Fig. 8 shows the deployment environment, which
has several multi-story buildings, trees and hills. Each end
node is equipped with a temperature sensor and a humidity
sensor, and the sensed data is transmitted to the base station
periodically in a regular interval (duty cycle of 0.1 in our
experiment). The transmitted data is encoded with a spreading
factor of 12 and a coding rate of 4/8 and the length of the
packet is no more than 20 Byte. On the MAC layer, we adopt
LoRaWAN MAC based on pure ALOHA for all the end nodes.

Fig. 13 shows the performance of three different LoRa
receivers under a low duty-cycled network of size less than
20. Considering the LoRaWAN receiver without any collision
resolution scheme, the PLR of LoRaWAN increase rapidly
when the network scales. The Network Throughput of the
LoRaWAN receiver first grows up and then rapidly drops down
as the size of the network increases. When the network size is
small, the increase of concurrent nodes improves channel uti-
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Fig. 13: Performance in real deployed low duty cycled net-
works: (a) Packet Loss Rate; (b) Network Throughput under
different network size.

lization. However, when the network scales, collisions happen
frequently, which significantly degrades the performance of the
LoRaWAN receiver. Overall, we consider the case for 10 nodes
with 10% duty cycle ratio. In such a case, there are enough
data in the channel for transmission and LoRaWAN+Oracle
should achieve its highest throughput, i.e., 100%. We can
see that LoRaWAN only achieves 7.2% of the Oracle. The
throughput of CoLoRa is about 14× that of LoRaWAN. Choir
can separate overlapped packets from a collision based on
the hardware offset. For the low duty cycle network with
a small number of nodes, Choir also performs well as the
number of concurrent transmissions is expected to be low (e.g.,
≤ 4). This coincides the results in Fig. 10(a) where CoLoRa
and Choir have similar performance for low concurrency. The
performance of Choir also degrades when the size of network
increases.

As shown in Fig. 13(a), PLR of Choir is around 30% when
there are 20 concurrent nodes in the network. CoLoRa outper-
forms the other two approaches when the network scales and
it keeps a relative low PLR. The resulted network throughput
grows nearly linearly as the size of network increases, indi-
cating CoLoRa can decompose most of the collided packets.

VII. RELATED WORK

a) Collision resolution in Wireless: Extensive works
focus on collision resolution and parallel decoding in various
wireless systems [15]–[18] (e.g., Wi-Fi, RFIDs and cellu-
lar networks). Some advocate Multiple-Input Multiple-Output
(MIMO) to exploit spatial diversity across multiple paths [19],
[20]. MIMO based approaches, which significantly improves
the throughput, cannot be used in LoRa with a single antenna.
Successive interference cancellation (SIC) based approaches
resolve collisions by iteratively canceling interference from
collided signals [21], [22]. These schemes work only when
the colliding senders transmit under strict power control, and
thus they are usually used in cellular networks. ZigZag [7]
combats inter-packet collisions in 802.11. It utilizes different
collision-free parts of different collisions to iteratively decode
the overlapped packets. In this way, ZigZag decodes an m-
packet collision based on m repeated collisions. mZig [8]
decompose m concurrent ZigBee packets from one collision
directly. It starts with a collision-free chunk and then itera-
tively reconstructs and extracts each decoded symbol.



b) Concurrent transmissions in LoRa: Recently,
NetScatter [9] proposes a multi-packet reception strategy
which enables hundreds of concurrent transmissions in LoRa
backscatter systems [23]. The key innovation of NetScatter is
a distributed coding mechanism where each node is assigned a
shifted chirp symbol and uses on-off keying to modulate data.
NetScatter requires that all the transmitters are synchronized,
and hence it cannot work for unsynchronized transmission in
existing LoRa communications. DeepSense [24] enables ran-
dom access and coexistence for different LoRa configurations
by exploring machine learning algorithms on-board. It identi-
fies the presence of LoRa collisions using the neural networks.
However, in the emergence of collisions with the same LoRa
configuration, DeepSense cannot recover any of the collided
data bits. Choir [10] proposes a collision resolution method for
LoRa. It depends on the fact that the hardware imperfection
of a low-cost LoRa end node causes a frequency offset of
the corresponding generated chirp signal. Choir utilizes this
frequency offset to decompose collided packets of different
end nodes. However, accurately extracting the tiny frequency
offset is very difficult especially for low SNR LoRa signals.
Meanwhile, the frequency offsets of low-cost end nodes are
changeable over time, which impacts its performance in prac-
tice. mLoRa [25] applies SIC to LoRa collisions. It starts
with a collision-free chunk and then iteratively reconstructs
and extracts each decoded chirp symbol. FTrack [26] decodes
multiple LoRa packets from a collision by calculating the
instantaneous frequency continuity. Both mLoRa and FTrack
have fundamental limitations in decoding low SNR LoRa
signals, as they focus on the time domain signal analysis and
do not consider the modulation features of LoRa.

VIII. CONCLUSION

We present CoLoRa, a multi-packet reception protocol in
LoRa to address the practical collision problem of LPWAN
deployments. CoLoRa utilizes, perhaps counter-intuitively,
packet time offset to decompose multiple packets from a single
collision. We propose several novel techniques to address prac-
tical challenges in CoLoRa design. We translate time offset,
which is difficult to measure for symbols in collisions, to
robust frequency features, i.e., peak ratios, for low SNR LoRa
signal. We design a method to extract accurate peak ratios
by canceling inter-packet interference. Finally, we address the
frequency shift incurred by CFO and time offset to decode
LoRa packets. CoLoRa is completely implemented in software
at the base station, without requiring any modifications to end
nodes. The evaluation results show that CoLoRa improves the
network throughput by 3.4× compared with Choir and 14×
compared with LoRaWAN. We believe CoLoRa can be easily
applied to today’s LoRa networks with a very small overhead.
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