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ABSTRACT

Visible Light Positioning (VLP) has attracted much research

effort recently. Most existing VLP approaches require spe-

cial designed light or receiver, collecting light information

or strict user operation (e.g., horizontally holding mobile

phone). This incurs a high deployment, maintenance and

usage overhead. We present RainbowLight, a low cost ambi-

ent light 3D localization approach easy to deploy in today’s

buildings. Our key finding is that light through a chip of

polarizer and birefringence material produces specific inter-

ference and light spectrum at different directions to the chip.

We derive a model to characterize the relation for direction,

light interference and spectrum. Exploiting the model, Rain-

bowLight calculates the direction to a chip after taking a

photo containing the chip. With multiple chips, Rainbow-

Light designs a direction intersection based method to derive

the location. We implement RainbowLight and extensively

evaluate its performance in various environments. The eval-

uation results show that RainbowLight achieves an average

localization error of 3.3 cm in 2D and 9.6 cm in 3D for light

on, and an error of 7.4 cm in 2D and 20.5 cm in 3D for light

off scenario in daytime.

CCS CONCEPTS

• Information systems → Location based services; •

Networks→Location based services;Mobile networks;

• Human-centered computing → Ubiquitous and mo-

bile computing systems and tools; •Computer systems

organization→ Special purpose systems;
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1 INTRODUCTION

The rapid development of mobile and Internet of things (IoTs)

facilitates the development of a smarter world. More and

more smart robots and smart devices are used in different

places, such as factories, airports and even at home. Indoor

localization significantly expands the capability of these de-

vices, and thus it attracts much research effort, e.g., a large

collection of RF-based [1–8] positioning approaches are pro-

posed.

Visible Light Positioning (VLP) has recently been shown

as a promising approach for indoor localization, owing to

its potential of high localization precision with ubiquitous

existence of light. The basic idea of VLP is to exploit features

and information from received light to derive the relative po-

sition to light. For example, many approaches use LED light

with a controller [9–16] to modulate required features. Thus

a receiver can use the modulated features for localization.

Further, instead of using a controller to actively modulate

information in light, many approaches [17–24] resort to use

intrinsic features of light (frequency of fluorescent) or re-

ceiver. Meanwhile, [19, 21–24] use geometrical relationship

among lights for localization.

Existing VLP approaches exhibit high accuracy for indoor

localization. However, there still exist the following limi-

tations that hinder their application: (1) Special designed

LED with controller [9, 16] or receiver with sensors [15, 19].

Such kind of LED/receiver is still not widely used in today’s

buildings. (2) Pre-collected features for all lights[18, 20]. This

introduces a high overhead. It is difficult to ensure the fea-

tures are stable over time and the system needs to keep



update with all lights. (3) Strict usage requirement. For exam-

ple, [18] requires to keep the mobile phone horizontally and

[17] requires to capture at least 3 lamps in a photo each time.

Those limitations incur a high deployment, maintenance and

usage overhead.

To address those limitations, we propose RainbowLight,

a low cost 3D localization approach which significantly re-

duces the deployment, maintenance and usage overhead. Our

key finding for RainbowLight is that light through a chip

containing polarizer and birefringence material will produce

different interference pattern and light spectrum at different

directions. We go deep into the birefringence principle to

analyze the relation among direction, light interference and

spectrum, and derive a model to characterize the relation.

The model builds the foundation of obtaining the direction

to a chip based on the received light spectrum. By calculating

directions tomultiple chips, we can derive the 3D localization

of receiver.

In practical design of RainbowLight, we find that light

spectrum is difficult to measure on commercial off-the-shelf

(COTS) mobile phones. We use hue values extracted from

photo to approximate light spectrum and show its effective-

ness. To derive light direction for localization, the theoretical

model requires various parameters, e.g., optic parameters

and thickness of material, which are difficult to measure in

practice. Instead of measuring those parameters, we build a

sparse initial mapping between hue value and direction by

sampling. Further, we conduct model based interpolation on

the sparse initial mapping to derive a fine-grained mapping.

Such a sparse sampling only needs to be performed once for

the same type of polarizer and birefringence material. After

capturing a photo containing multiple chips, we calculate

hue values of those chips and directions to them. Finally, we

leverage a direction based intersection method to calculate

the location.

In our implementation, we use transparent adhesive tape

as birefringence material. We make small transparent chips

by sticking tape with a thin plastic polarizer. In localization,

we only need to place multiple chips to a certain plane (e.g.,

lamp cover, a glass window) to enable it for 3D localization

(see Figure 7). It should be noted that RainbowLight does

not actively modulate information in the light, and thus it

also works for light off scenario in daytime. We can place

chips on wall, table, or other flat surface. This significantly

extends the application scenarios.

We evaluate the performance of RainbowLight in different

scenarios for different types of light as well as different types

of surfaces. The evaluation results show that RainbowLight

achieves a high localization accuracy and low cost. It also

works well even for light off scenario in daytime.

The contributions of our work are as follows:

• We show that light through polarizer and birefringence

material will produce different interference pattern

and light spectrum at different directions. We analyze

and derive a model to characterize direction, inter-

ference and light spectrum as the foundation for 3D

localization.

• Based on the model, we propose RainbowLight, a low

cost ambient light 3D localization approach with a low

deployment, maintenance and usage cost.

• We implement RainbowLight and evaluate its perfor-

mance through extensive experiments. RainbowLight

achieves an average localization error of 3.3 cm in 2D

and 9.6 cm in 3D, and an error of 7.4 cm in 2D and 20.5

cm in 3D for light off scenario in daytime.

The organization of the remainder is as follows. Section 2

introduces background of our work. Section 3 presents 3D lo-

calization model of RainbowLight. Section 4 and 5 introduce

the design and implementation of RainbowLight, respec-

tively. Section 6 presents evaluation results of RainbowLight.

Section 7 introduces related work and Section 8 concludes

this work.

2 BACKGROUND

2.1 Polarization

Polarization is a feature of transverse wave to specify its

oscillation in different directions. Natural light, such as light

from lamp, has different oscillations. Polarizer for light is a

kind of device that allows light with oscillation direction par-

allel to its transmission axis, and blocks light with oscillation

direction perpendicular to its transmission axis. Polarizer is

widely used in various applications, e.g., each 3D glasses has

two polarizers for two lens with different transmission axes

allowing light with different oscillation to pass.

A polarizer with a single transmission axis is called linear

polarizer. Light is polarized after passing through a polar-

izer. The polarized light has a oscillation direction parallel

with the transmission axis of the polarizer. Denote the angle

between the oscillation direction of light and the transmis-

sion axis of a polarizer as ϕ, according to Malus’s law[25],

the intensity of the light that passes through the polarizer,

denoted by Iϕ , is given by

Iϕ = Icos2ϕ, (1)

where I is the original intensity of light.

In our daily life, natural light such as light from lamp is

usually unpolarized, which means that it has oscillation in

any direction. When natural light passes through a linear

polarizer, it becomes linearly polarized light, i.e., light with

a single oscillation direction.
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Figure 1: Illustration of birefringence.

2.2 Birefringence

Birefringence is a feature for an optically anisotropicmaterial

such as plastics, calcite and quartz. When a ray of light passes

through a birefringence material, double refraction can be

observed as the light is incident upon the birefringence ma-

terial. As shown in Figure 1, the ray of light is split into two

rays taking different paths in the material. Meanwhile, those

two rays have orthogonal polarization directions, and differ-

ent refractive indices in the birefringence material. There is

a special direction, namely optic axis, for each certain type of

birefringence material. One of the two rays, called ordinary

ray, has a polarization direction vertical with the optic axis,

and the other ray, called extraordinary ray, has a polarization

direction along the optic axis.

For the ordinary ray, the refractive index is called ordinary

refractive index and is denoted by no . For the extraordinary
ray, the refractive index is called extraordinary refractive

index and is denoted by ne . Intuitively, a ray of light incident
to birefringence material, is split into two rays, i.e., ordinary

ray and extraordinary ray. As shown in Figure 1, according

to Snell’s Law, we have

nair sinθ = nesinθe = nosinθo (2)

where nair ≈ 1 is the refractive index in air, θo and θe are
the refractive angle of ordinary ray and extraordinary ray,

respectively. Usually, ne � no , and the refractive angles and

refractive indexes of ordinary ray and extraordinary ray are

different. Thus there is an optical path difference between

the two rays after the birefringence material. For a certain

type of material,no is fixed determined by the material, while

ne varies depending on the direction of the incident ray. As

shown in Figure 1, denote the incident angle as θ and the

angle between the incident light projection on the incident

plane and optic axis as γ . We will show how to obtain ne
and θe using θ and γ in practice. Then we can calculate the

optical path for ordinary ray and extraordinary ray.

If the incident light L is linearly polarized and the angle

between polarization direction and optic axis is ϕ1, the in-

tensity of ordinary ray Io and extraordinary ray Ie can be

A
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Figure 2: Illustration of light interference.

calculated as

Io = I sin2 ϕ1

Ie = I cos2 ϕ1.
(3)

where I is the intensity of L.

2.3 Interference

When two light beams La and Lb have same frequency, sta-

ble phase difference δ and same polarization direction, they

can interfere with each other. For different value of δ , the
two light beams can have different interference result. The

interference intensity can be calculated as:

Ii = Ia + Ib + 2
√
IaIbcosδ (4)

where Ii is the light intensity after interference, Ia and Ib are

intensity of La and Lb , and δ is phase difference between La
and Lb .

3 LOCALIZATION BASICS

In this section, we show the basic principles of 3D localization

for our approach.

As shown in Figure 2, a birefringence material S is placed

between two polarizers P1 and P2. Light from a source (e.g.,

a lamp) first passes through polarizer P1 and becomes a lin-

early polarized light. Consider two rays of the polarized light

L1 and L2 incident into S at point A and B, respectively. As
introduced in Section 2, L1 is separated into two parts: L1o
(the ordinary ray) and L1e (the extraordinary ray). The re-

fractive indices of the ordinary ray and the extraordinary

ray are no and ne , respectively. Similarly, L2 is separated into
two parts: L2o (the ordinary ray) and L2e (the extraordinary
ray). After passing through another polarizer P2, the light
L1e and L2o become L′1e and L′2o . L

′
2o of L2 interferes with



Figure 3: Polarization and intensity change through P1,
S and P2.

L′1e of L1. Then the interference result of light L′2o and L
′
1e is

measured by a camera at Q .
Next in this section, we analyze the light spectrum of

interference result and show its relation with the angle θ .

3.1 Interference Analysis

From Eq. (4), we can know that the interference light inten-

sity relies on the two coherent light intensity and their phase

difference. We analyze the intensity and phase difference of

L′1e and L
′
2o in the following part.

3.1.1 Intensity. Assume the angle between the optic axis

of S and the transmission axis of two polarizers P1 and P2 are
ϕ1 and ϕ2, respectively. As shown in Figure 3, L1 is the result
of light after passing through P1 and thus its polarization

direction is parallel with the transmission axis of P1. Denote
the intensity of L1 as I1, and assume light ray L1 and L2
have equal intensity. According to Eq. (3), the intensity of

I1o = I1 sin
2 ϕ1 and I1e = I1 cos

2 ϕ1.

Denote light intensity of light L′1e and L′2o as I
′
1e and I ′2o .

According to Eq. (1), I ′1e and I
′
2o can be calculated as

I ′2o = I1osin
2ϕ2 = I1sin

2ϕ1sin
2ϕ2

I ′1e = I1ecos
2ϕ2 = I1cos

2ϕ1cos
2ϕ2.

(5)

3.1.2 Phase Difference. As shown in Figure 2, the incident

angle of L1 and L2 to S are both θ , the thickness of S is d ,
and the refraction angles of L1e and L2o are θe and θo . The
optical path difference Δ of L1e and L2o at point Q can be

calculated as

Δ = FAnair +ADne − BDno

= d(tanθo − tanθe )sinθnair +
d

cosθe
ne −

d

cosθo
no

(6)

where FA, AD and BD are the path length from F to A, from
A to D and from B to D, respectively.

Combining Eq. (2) and Eq. (6), we have

Δ = d(necosθe − nocosθo) (7)
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Figure 4: Intensity of interference light for different

wavelength with different incident angles.

As aforementioned, for a particular material, no is usually
fixed, ne and θe is related to the incident angle. We put the

details of calculating ne , θe and Δ in Appendix A. Therefore,

we have

Δ = d(

√
N 2
e − sin2θ (sin2γ +

N 2
e

N 2
o

cos2γ ) −

√
N 2
o − sin2θ ) (8)

where No and Ne are principal refractive indices of S ,
which are fixed given a certain type of material, θ is the

incident angle, and γ is the angle between the projection of

incident light on the incident plane and optic axis, which is

shown in figure 1.

The optical path difference is for two light beams, the

phase difference is different for different wavelength. For

light with a specific wavelength λ, we can calculate the phase
difference δ of L1e and L2o at point D as

δD = Δ
2π

λ
. (9)

Due to the phase difference of projection on P2, the phase
difference between two coherent lights L′1e and L

′
2o at point

Q is
δ = δD + δ

′

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δ
2π

λ
(case 1)

Δ
2π

λ
+ π (case 2)

(10)

where case 1 means the vectors L′1o and L
′
1e are in the same

direction on P2, and case 2 means they have reverse direc-

tions.

3.1.3 Summary. According to Eq. (4), the intensity spec-

trum of the interference light at Q can be calculated as

IQ = I1cos
2ϕ1cos

2ϕ2 + I1sin
2ϕ1sin

2ϕ2

+2I1cosϕ1cosϕ2sinϕ1sinϕ2cosδ .
(11)

where δ can be calculated according to Eq. (10).

According to Eq. (11), given the intensity spectrum on

frequency domain of light source I1, the angle ϕ1 between



(a) (b)

Figure 5: (a) Hue values on x-y plane by simulation. (b)

Hue values measured by mobile phone on x-y plane.

optic axis of the birefringence material and the polarizer P1,
the angle ϕ2 between optic axis of the birefringence material

and the polarizer P2, the incident direction parameters θ and

γ , and birefringence material parameters principal refractive

indices and thickness d , we can calculate the value of the

light intensity IQ at Q .
Figure 4 shows the light spectrum of interference for differ-

ent parameters. Given the value of I1, ϕ1, ϕ2 and d , different
combinations of θ and γ result in different spectrum of IQ .
This makes the foundation of obtaining light incident angles

information based on different interference result. As long

as we can measure the incident angles from multiple points,

we can use AoA based method for localization.

3.2 Validation

3.2.1 Choose Light Spectrum Feature. Mobile cameras

usually do not have the capability of measuring light spec-

trum directly. However, the direction information is rep-

resented by interference light spectrum, and we have to

distinguish different light spectrum to distinguish different

directions. There is a challenge for us to find an proper light

feature, which satisfies two conditions in the mean time: it

can be measured by COTS camera and can indicate the in-

formation in light spectrum. It is well-known that different

light spectrum can result in different color of the mixed light.

A straightforward approach is to measure the RGB color

and map RGB vectors to different directions. However, we

find this is not feasible in practice as spectrum information

cannot be effectively represented in RGB color. Instead, we

use the HSL (Hue, Saturation, Lightness) color space and find

that the H (i.e., Hue) component from HSL is much more

suitable for representing the color of mixtures of lights [26].

3.2.2 Measurement Result. We conduct an experiment to

validate the model. We measure the hue value on different

positions after P2. Figure 5b shows the measurement hue val-

ues for different positions on a plane with a certain distance

to the light. Then we compare the measurement result with

z

x

y

Figure 6: Overview of RainbowLight.

the simulation result based on Eq. (11). In our simulation, we

use the parameters of quartz crystal (a birefringence mate-

rial) chip with thickness of 0.6 mm.We measure the intensity

spectrum of interference result on different direction. We

leverage the color wheel [26] to approximate intensity spec-

trum with hue value. Figure 5a shows the hue value with

respect to positions on a surface parallel with birefringence

chip. We can see that the color regularity in Figure 5a and

Figure 5b are very similar. This coincides with our analysis

and Eq. (11). This also means that hue value is effective for

representing the intensity spectrum.

4 RAINBOWLIGHT DESIGN

4.1 Design Overview

Figure 6 illustrates system overview of RainbowLight. The

chips used in RainbowLight are a combination of two polar-

izers and one birefringence chip as shown in figure 2. With

one chip, we can calculate direction information. Combining

the direction information from multiple chips, we can can

derive the 3D location. The main design of RainbowLight

consists of two parts. The first part is mapping initialization.

This part is to build an initial mapping between the direction

and hue value for a certain type of chip. The mapping initial-

ization only needs to be performed once for a certain type

of chip. The second part is the 3D localization component.

In this part, a mobile camera will take a photo containing

multiple chips. Based on the hue value of the initial mapping,

the direction to those chips can be calculated. Then we also

propose a direction intersection based method to calculate

the final 3D location.

4.2 Mapping Initialization

The mapping between light direction and hue value can be

built by sampling on different positions. We put a chip at the

origin O of coordinate system, and the chip is parallel with



the x-y plane. A mobile phone moves in a grid at a certain

plane (z = 1m) and captures a photo containing the chip at

each position. For a sampling position r , it derives the hue
value h of the color for the chip from the captured photo.

It means that the hue values for all points on line
−→
Or are h,

respectively.

Therefore, we build a mapping RS → HS from sampling

positions RS = (r1, r2, . . . , rn) to hue values

HS =
(
h1, h2, · · · , hn

)
(12)

where hi denotes the hue value observed by mobile phone

from points on line
−−→
Ori .

For a higher sampling density, themapping should bemore

accurate. On the other hand, a higher density also indicates

a higher sampling overhead. To reduce the initial sampling

overhead, we propose an interpolation based method to im-

prove the granularity of initial mapping. We leverage the

color regularity to interpolate a coarse-grained sampling

matrix HS and build a fine-grained mapping R → H . We

examine the performance of interpolation under different

sampling density in Section 6.2.

As shown in Figure 5, the color gradually changes with

the position. As the hue value ranges from 0 to 360, in inter-

polation we should carefully deal with the hue value cross

the hue range boundary. More specifically, for two hue val-

ues h1 and h2 (h1 > h2) for two adjacent sampling positions,

we first calculate the hue value gap hΔ = h1 − h2. If hΔ is

smaller than a pre-defined threshold thr (e.g., thr = 350), the

interpolation can be performed between h1 and h2. If hΔ is

larger than the pre-defined threshold thr , we consider the
hue value between those two sampling positions cross the

hue value boundary. The interpolated hue value should be

performed for h1 and h2 + 360. All the hue value should be

calculated from the interpolation result modulus of 360 to

guarantee the hue values are in [0, 360).
In practice for the same type of chip, we only need to

build initial mapping R → H once. This could significantly

reduces the initialization overhead for RainbowLight. Later,

we will show how to leverage the mapping for localization

in 3D space.

4.3 3D Localization

4.3.1 Localization Design. To enable 3D localization, we

simply stick several chips on a transparent surface. Without

loss of generality, we assume three chips S1, S2 and S3 are
used. Later, in Section 6, we will show the impact of number

of chips. Denote the position of the center of S1, S2, and S3 as
p1, p2 and p3, respectively. The position p1, p2 and p3, namely

reference points, can be measured in advance.

A mobile phone with a camera at position rx simply cap-

tures a photo containing S1, S2 and S3. We calculate the hue

values h̃1, h̃2 and h̃3 from the photo for those three chips.

Based on the initial mapping between color and directions,

RainbowLight can obtain the possible directions from p1,
p2 and p3, respectively. Thus we have three groups of ray
directions from three reference points, respectively. Then

we can obtain the position rx based on the intersection of

those ray directions.

4.3.2 Intersection Based Localization. The goal of local-

ization is to calculate the position rx based on h̃1, h̃2 and h̃3
and R → H .

Find line group candidates: The initial mapping is built

using a chip at coordinate origin O . In practical, chips are

usually attached at other positions. In order to make the

mapping R → H suitable for the deployment of specific

chip, we need to do coordinate translation for the initial

mapping. The mapping becomes R j → H for j = 1, 2, 3,
where R j = R + pj is the transformed sampling position for

S j .
Due to color error for camera on mobile phone, there may

be multiple lines with hue close to h̃1, h̃2 and h̃3. Meanwhile,

according to Eq. (11), we also find that there are multiple

combinations of θ and γ leading to the same hue value. It

indicates that there may be multiple directions of the same

hue value. Therefore, for each chip, we can calculate a group

of lines. Overall, we obtain three groups of lines denoted

by G1, G2 and G3. We have G j = {
−−→
r ji pj | |hi − h̃j | < ϵh} for

j = 1, 2, 3 where r ji ∈ R j and ϵh is the maximum allowed hue

error.

Line intersection: The main idea is to calculate the local-

ization based on the intersection point of those three sets of

linesG1,G2 andG3 as the localization result rx . There should
exist three lines from G1, G2 and G3, respectively, that inter-

sect at point rx . Due to hue value measurement error, those

three lines may be very close to each other but not directly

intersect in practice. Therefore, we introduce virtual inter-

section point for two lines. A virtual intersection point exists

for two lines when their distance is less than a threshold,

and the virtual intersection point can be calculated as the

middle point of the shortest line segment between those two

lines. Intuitively, only when two lines are close to each other,

there exist a virtual point for those two lines.

To find the location of rx , we need to find the intersecting

line triples, i.e., (
−−→
r 1
l
p1,

−−−→
r 2mp2,

−−−→
r 3np3)where

−−→
r 1
l
p1 ∈ G1,

−−−→
r 2mp2 ∈ G2,

−−−→
r 3np3 ∈ G3 and

−−→
r 1
l
p1,

−−−→
r 2mp2,

−−−→
r 3np3 have pair-wise virtual intersec-

tion points. For each line triple, we check the inter-distance

between corresponding pair-wise virtual intersection points.

If the inter-distance between any pair-wise virtual intersec-

tion points is below a threshold ϵd , we calculate a candidate
location using the center of the triangle defined by those
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Figure 7: (a) Chips in RainbowLight (b) anchor with

chips made by two polarizers and one transparent ad-

hesive tape (i): near to fluorescent (iii) on LED lamp

cover, anchor with chips made by one polarizer and

one transparent adhesive tape(ii): near to fluorescent

(iv): on LED lamp cover, (v): anchor on a glass window.

three virtual intersection points. For each line triple, we cal-

culate a corresponding candidate location. Then we calculate

rx as the average of all candidate locations.

As a summary, the main steps for line based localization

algorithm for a mobile phone is as follows:

(1) Captures a photo containing multiple chips.

(2) The mobile phone derives hue values hx for all the

chips from the photo.

(3) Based on hx and the mapping R → H , find the line

groups from each chip.

(4) Find all line triples that have pair-wise virtual inter-

section points.

(5) Calculate the candidate points based on the intersec-

tion points.

(6) Calculate the final position rx based on candidate points.

5 IMPLEMENTATION

RainbowLight consists of two components: anchor and re-

ceiver. In this section, we present details of those two com-

ponents. We also discuss a variant of RainbowLight, which

put polarizer P2 in front of the camera in order to eliminate

color observed by human eyes. Since RainbowLight performs

relative localization for a given anchor, it needs to identify

which anchor is captured by camera hence can be used in

a large region. We also discuss how to provide identifier to

anchors in this section.

5.1 Anchor

The anchor of RainbowLight composed by a group of chips.

Each chip consists of two linear polarizers and a thin bire-

fringence material chip. We stick the birefringence material

chip between two linear polarizers. As shown in Figure 7a,

we use everyday transparent adhesive tape as birefringence

material. RainbowLight does not require to stick the anchors

0 50 100 150 200
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Figure 8: Complementary hue observed as rotating

mobile phone for different tape thickness (1 ∼ 5).

on a lamp. We can put anchors different surfaces as long as

light can pass through the chips. For example, as shown in

figure 7b (i), (iii) and (v), we put anchor near lamps or on

lamp cover or on window. As shown in figure 7b(i) and (iii),

despite chips display colors, each chip made by polarizers

and transparent adhesive tape is very small. It would not

disturb human eyes. To enable RainbowLight, we also need

to record the relative position for those chips.

5.2 Receiver

We use smartphone as the receiver side. The camera can

capture a photo containing the anchor. We implement a

software on mobile phone based on Android. After obtaining

the photo, we use OpenCV to localize the position of each

chip in the image based on features such as shapes, and

derive HSL information from the photo. To address hue value

estimation error in practice, we use the averaged hue value

for each chip as the hue value for localization. To simplify our

implementation on localization in mobile phone, we extend

our hue values of 2D plane in the initial mapping to hue

values in 3D space, as points on the same direction having

the same hue value.

In such a case, human eyes cannot observe the color dis-

played by chips directly as shown in figure 7b (ii) and (iv) ,

but camera can capture chips with different colors. However,

if we put P2 in front of camera, rotate camera will cause chips

color changes, thus color-direction mapping cannot be used.

Fortunately, since hue value instead of RGB to represent

color in RainbowLight, chips only shows two complemen-

tary hue values with camera’s rotation as shown in figure 8.

Therefore, we measure camera’s rotation angle firstly, if it

shows complementary hue values of initialization, we can

transform to original hue values hence perform localization.

Attaching polarizer in front of camera will bring in extra

costs, and brings error in accuracy with camera’s rotation.
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Figure 9: (a) Experiment environment. (b) Localization precision on different distance. (c) Localization precision

on different sampling density. (d) Localization accuracy for different # of chips.

We will present the accuracy in section 6. Users who deploy

the RainbowLight can choose where to put the polarizer P2
according their own conditions and requirements.

As RainbowLight performs localizationwith camera, power

consumption will become a non-trivial issue. We will opti-

mize in the future work by adding scheduling strategy of

camera such that camera only open when user needs local-

ization.

We measure the latency of RainbowLigth. In the measure-

ment, we let RainbowLight process 10 photos to measure

the average latency. The mobile phone we used is Huawei

Nexus 6P. It takes 236 ms in average to find chips and extract

hue values. It takes 503 ms in average for 3D localization

from hue values. We optimize RainbowLight 3D localization

to parallel the processing in our implementation of localiza-

tion. With such an optimization, the time for 3D localization

reduces to 123 ms in average. This should be applicable to

most VLP based applications such as navigation.

5.3 Providing Identifier

RainbowLight performs relative localization for a given an-

chor. To extend RainbowLight to a large area, we need to put

more than one anchors in this area. In such a case, Rainbow-

Light needs to identify different anchors.

We can use existing method such as iLAMP [20] to distin-

guish different lights in a building if we put anchor on the

lamp. We also can attach QR code on each anchor to iden-

tify them. Considering iLAMP cannot be used with light-off,

we also design a QR-code-like method with our chips for

providing ID. According to Eq. 10, if we rotate the polarizer

P1 by 90◦ and fix S and polarizer P2, the interference result
will accordingly change. The frequencies with constructive

interference become destructive interference, and vice versa.

As a result, the hue value changes to its complementary hue

value. We can use this phenomenon to encode identifiers

of anchors by using polarizers with different transmission

axes. For example, we use a pair of orthogonal polarizers

to represent 0 and 1 respectively, leading to two different

colors. Then we can use existing encoding method such as

matrix code to encode information with those two colors. By

using such a method, the chips used in the matrix code can

also be used for localization.

6 EVALUATION

We evaluate the performance of RainbowLight from the fol-

lowing aspects:

• Localization accuracy for different distance.

• The impact of system parameters to localization accu-

racy.

• System performance under different light sources (dif-

ferent manufacturers, color temperature, lamp type

and power).

• System performance with light on/off.

• System performance with different mobile phone ori-

entation.

Through the evaluation, we aim to show the effectiveness of

RainbowLight in practice. It should be noted that for all ex-

periments we use the same initial mapping unless otherwise

specified. This means that we only need to perform initial-

ization once, which significantly reduces the initialization

overhead compared with existing approaches.

6.1 Localization Accuracy

Figure 9a shows the experiment environment. In the exper-

iment, we move a transparent board to different distances

to the light source. For each distance, we move the mobile

phone on the board at different positions. We can measure

the position of mobile phone on the board as the ground

truth. Meanwhile, we also use RainbowLight to calculate the

position of mobile phone. We switch off other lamps during

our experiment at night. Figure 9b shows the localization

error for mobile phone at different distance. We can see that

the localization error increases as distance increases. This is
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Figure 10: Localization accuracy for different lamps. (a) power, (b) color temperature, (c) types of lamp, (d) manu-

facturers.

Figure 11: Different light sources.

mainly because hue value is less sensitive with the position

for a larger distance.

We can also observe that the error on z-axis is obviously
larger than that on x-y plane. The major reason is that the

angle from chip to the mobile phone varies by a smaller value

when we move the mobile phone along the z-axis than that

along the x-y plane. This phenomenon is more evident when

chips are close to each other. However, even when those

chips are all in a circle with diameter less than 16 cm, the

localization accuracy for different distance is still high. This

indicates RainbowLight can work for different distance with

lamp of small size.

Overall, in the 2 m-3 m distance interval, the mean error of

localization is 3.19 cm on x-axis, 2.74 cm on y-axis, and 23.65
cm on z-axis. This performance is better that SmartLight

with a localization error of about 60 cm on z-axis for distance
from 1 m - 3 m. The localization accuracy of RainbowLight

is enough for most today’s application scenarios such as

navigation.

6.2 Impact of Sampling Density

We examine the impact of sampling density in building initial

mapping. Figure 9c shows the localization accuracy with

respect to different sampling density. We build the initial

mapping on a plane parallel to x − y plane with z = 100 cm.

We examine the performance with different inter-distance of

sampling position, i.e., 5 cm, 10 cm, and 15 cm, respectively.

It can be seen that low sampling density still works well

for RainbowLight. Even when the inter-distance is 15 cm,

the localization error is only around 10 cm. This is mainly

because hue value distribution is smooth in the 3D space and

thus interpolation is effective in building initial mapping.

6.3 Impact of # of Transparent Chips

As shown in section 4, the hue value from a single chip de-

termines a candidate group of rays from the chip. With more

chips, the localization accuracy will be improved as inter-

section point can be refined with more groups of rays. We

explore the relationship between localization accuracy and

number of chips. Figure 9d shows the CDF of 3D localization

error while increasing the number of chips from 2 to 6. It

can be seen that the localization accuracy increases when

the number of chips increase from 2 to 4. Further, the perfor-

mance becomes relatively stable when the number increases

from 4 to 6. This means 4 chips is enough in practice to

achieve a good localization accuracy.

6.4 Impact of Different Light Source

We examine the performance of RainbowLight with differ-

ent light sources. As shown in Figure 11, we use lamps of

different types, i.e fluorescent (FL), LED and incandescent

bulb (IL), from different manufacturers (A - E), with different

color temperature (3000 K, 6000 K) and different power (5

W, 6.5 W, 12 W). In all the following experiments, we use a

Philips (manufacturer A) 6.5 W LED with color temperature

6000 K for initialization.

In our daily life, the power of LED mainly ranges from

5 W to 20 W. Figure 10a shows localization error of LED

(manufacturer A) of power 5 W, 6.5 W and 12W. There is no

significant difference in terms of error for different power.

This is mainly because as long as γ and θ are fixed, our
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Figure 13: Localization precision of different (a)pitch and (b)yaw angles of

mobile phone.

approach captures the major property of light spectrum and

also removes other noise such as brightness, as explained in

section 3.

There are mainly two different color temperatures (6000 K

and 3000 K) for typical lamps in our daily life. Intuitively, 6000

K generates white color while 3000 K generates yellow. The

light spectrums from those two temperatures are slightly

different. We initialize with a 6000 K lamp and measure

the localization error for 3000 K and 6000 K. As shown in

Figure 10b, we can see that the localization error of 3000 K

is slightly larger than that of 6000 K because of spectrum

difference. However, the accuracy for both color temperature

is still acceptable. In practical applications, we only need to

build the initial mapping with one color temperature, and

RainbowLight performs well under other color temperatures.

We examine the performance of RainbowLight for three

most commonly used lamps, i.e. LED, fluorescent and in-

candescent bulb. As shown in Figure 10c, the accuracy for

fluorescent is high. The accuracy of incandescent bulb is

relatively low. This is because those two types of lamps have

different light spectrum. However, as long as we use incan-

descent bulb for initialization, the accuracy of RainbowLight

remains high.

We also examine the performance of lamps. Light spec-

trum emitted slightly varies for lamps from different manu-

factures. We choose 5 LEDs from 5 different popular man-

ufacturers, marked as A-E. The power of all lamps is 5 W.

The color temperature is 6000 K. Figure 10d shows that the

error is small for all brands and the performance is similar

for all brands. It also indicates we only need to initialize

with a certain brand, and the accuracy of RainbowLight is

acceptable under other brands.

Summary. RainbowLight achieves a high accuracy un-

der different circumstances with commonly used lamps. For

most scenarios, RainbowLight only needs to be initialized

once, and almost can be used for all other lamps. This signifi-

cantly reduces the deployment cost andmakes RainbowLight

practical.

6.5 Localization with Light Off

Most existing visible light positioning systems, e.g., LiTell[18],

SmartLight[16] and CELLI[9], only work when light is on,

as those systems require modulating information in light

or measuring special features from light. This significantly

hinders their application in daytime when light is usually

switched off. RainbowLight can work even when light is

switched off during daytime as it does not need to modu-

late information in light or measure light features. Figure 12

shows the performance of RainbowLight with light off. Simi-

lar to section 6.1, we examine the accuracy in the environ-

ment as shown in Fig. 9a. In the experiment, sunlight pass

through the window and we switch all lamps off. We can see

that the error for light off is still less than 20 cm. The error

for light off is very small and is similar to the scenario of

light on. This is mainly because RainbowLight can generate

obvious features from different light sources, and can also

effectively extract those features. This significantly extends

the application for visible light based localization and make

it more practical in everyday life.

6.6 Impact of Mobile Phone Orientation

To verify influence of pitch and yaw, we measure error at

distance 60 cm with different pitch and yaw angle. Figure 13a

and Figure 13b shows the result. We select range from −30◦

to 30◦ because the mobile cannot capture the lamp with pitch

and yaw angle out of this range. We can see that when we

change pitch and yaw angle, error changes slightly. This is

mainly because when we change the pitch and yaw angle,

ϕ1, ϕ2, γ , and θ does not change.

If P2 is attached on the chip, mobile phone roll will have

no impact on the hue value. If we put the polarizer P2 in
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Figure 14: Localization precision of different roll an-

gles of camera

front of camera, RainbowLight needs to confirm if chips on

anchor shows complementary hue value and its impact to

localization accuracy. We also examine accuracy of localiza-

tion in this scenario. Error of different roll angles of camera

as shown in figure 14.

Therefore, no matter which position we are, as long as we

can capture the lamp with any 3D orientation, RainbowLight

shows a high localization accuracy. This extends application

scenarios of today’s VLP systems.

7 RELATEDWORK

7.1 Visible Light Based Localization

The first category of work is to use a specially design LED

light to generate identifiable features [10–13]. Those works

usually need to a use an MCU to control the lamp to modu-

late information by change the frequency, voltage, etc. Spot-

light [14] generates a sequence of on/off pattern and uses

such a pattern as landmarks for localization. Spinlight [15]

uses a hemispherical shade to encode position information

with holes. CELLI [9] designs a structure with LCD to mod-

ulate polarization direction of emitting light. It generates

two sweeping lines with special light properties and uses

sweeping lines for localization.

Recently, SmartLight [16] proposes an interesting idea

to use digital modulated LED array with a len to achieve

single light 3D localization. It modulates different LED lights

with different frequency on the LED array. Then it emits

the light through a len to the 3D space. Then it derives the

location based on the frequency of received light. Pulsar [19]

uses inherent features of photodiode diversity. It builds a

map from angle to RSS. It designs a special receiver with

two photodiodes. Most of those approaches in this category

require a specially designed lamp or receiver. Thus it may

not be applicable to most scenarios in our daily life.

Further, many attempts are proposed to remove the re-

quirements with specially controlled light. Existing meth-

ods such as [21–24] use geometrical relationship among

lights with known position for triangulation based localiza-

tion. Those methods needs to extract position relationship

to those lights from captures photos. PIXEL [17] proposes to

leverage inherent feature of optical rotatory dispersion for

localization. When a linearly polarized light passes through

a disperser, the color observed through a polarizer with dif-

ferent transmission direction should be different at different

locations. By fixing a mobile phone orientation, [17] derives

the identifier by the observed color, then calculates location

with geometrical relationship. It requires to capture more

than one light in one photo.

LiTell [18] and iLAMP [20] use inherent features of flu-

orescent such as frequency and color spectrum to identify

each light. Given the position of light, the location can be

derived by triangulation. Those two approaches are very

nice as they do not need any extra modification to the lamp.

However, they require to sample the features for each light. It

is also highly related to environment and cannot work when

a lamp is changed. Recently, [27] proposes an interesting

method of using light to correct inertial measurement unit

errors. As introduced in [27], it leverages the property that a

polarized light ray going through transparent tape is rotated

by an amount related to wavelength. Then it try to derive the

location change by sensing the color after a polarizer with

different direction. It detects color change by edge crossing

between four types of blocks hence serve as landmarks to

correct IMU drift errors.

Luxapose [23] localizes the relative position from lamps.

The main idea is to build a geometrical model and calculate

the position based on relationship between lamps’ positions

both in the real world and in the photo. It needs to use other

extra-information, e.g., focal length or data from other sen-

sors. The model in RainbowLight currently is not based on

the relationship between lamp positions. Travi-Navi [28]

using computer vision based approach to launch the navi-

gation. It stores guider’s video and uses sensors to calibrate

the position, and those data can be further used for follower

in navigation.

7.2 Other Localization Approaches

Localization has attracted many research efforts. Besides

visible light based localization, there exist a large collection

of localization approaches using wireless signal, such as [1–

8, 29–33], using acoustic signal [34–38], using environment

information and cell tower signal [39]. FM signal [40], stride

information [41], etc. Those approaches are usually based

on a signal attenuation model or pre-collecting a large num-

ber of fingerprints. Meanwhile, many wireless signal based

approaches need to analyze signal properties such as CSI,

which further leads to a high computation overhead. Thus

they usually require special designed hardware at the re-

ceiver or sender, making it difficult to implement on mobile



phone. Multiple path effect also affects the localization accu-

racy for many of those approaches. Our approach is largely

inspired by those approaches.

8 CONCLUSION

We present RainbowLight, a high-precision 3D visible light

based localization system. Comparedwith existing approaches,

RainbowLight does not require special hardware design and

pre-collected light features. RainbowLight works on COTS

mobile phones without strict user holding requirement. It

works well for different types of lamps as well as light off sce-

nario. Those features significantly reduce the deployment,

maintenance and using overhead. The evaluation results

show that RainbowLight achieves an average localization

error of 3.3 cm in 2D and 9.6 cm in 3D. We believe Rainbow-

Light can be applied to today’s buildings with a very small

overhead to enable many visible light based applications.
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APPENDIX

A. Calculation of ne , θe , and Δ
Inspired by [42], as shown in Figure 1, we let incident point

of light as origin, and the projection of incident light to the

incident plane as x-axis. We use θ to indicate the incident

angle, and θo and θe are refraction angle of ordinary ray

and extraordinary respectively. γ is angle between optic axis

and x-axis, i.e. angle between optic axis and projection of

incident light.

The directional vector of optical axis, ordinary ray, and

extraordinary ray in the birefringence are

ea = (cosγ , sinγ , 0) (13)

eko = (sinθo, 0, cosθo) (14)

eke = (sinθe , 0, cosθe ) (15)

We assume the angle between optic axis and extraordinary

ray is α , i.e. angle between ea and eke . So according to

(13),(15), we have:

cosα = ea · eke = cosγsinθe (16)

Because the refractive index of extraordinary ray varies for

different incident angle, according to the relationship be-

tween α and refractive index of extraordinary ray ne in [43],

we have

ne =
NoNe√

N 2
osin

2α + N 2
e cos

2α
=

NoNe√
N 2
o + (N

2
e − N 2

o )cos
2α

(17)

where No and Ne are principal refractive indices and are

fixed for each type of material. According to (16),(17), we

have:

ne =
NoNe√

N 2
o + (N

2
e − N 2

o )cos2γsin2θe
(18)

According to Snell’s Law, we have:

nair sinθ = nesinθe = nosinθo (19)

where nair ≈ 1 is the refractive index in air. Then we have

ne =
sinθ

sinθe
. (20)

According to (18),(20), we have:

θe = arcsin

√√√
sin2θ

N 2
e − sin2θ (N

2
e

N 2
o
cos2γ − cos2γ )

(21)

Finally, according to (20) and (21), we have:

ne =

√
N 2
e − sin2θ (

N 2
e

N 2
o

cos2γ − cos2γ ) (22)

Because the optical path difference is:

Δ = d(necosθe − nocosθo) (23)

We substitute ne , θe , and no , θo into Eq. 23, we can have

expression of Δ using known parameters:

Δ = d(

√
N 2
e − sin2θ (sin2γ +

N 2
e

N 2
o

cos2γ ) −

√
N 2
o − sin2θ )

(24)

REFERENCES
[1] Swarun Kumar, Stephanie Gil, Dina Katabi, and Daniela Rus. Accurate

indoor localization with zero start-up cost. In Proceedings of ACM

MobiCom, 2014.

[2] Souvik Sen, Jeongkeun Lee, Kyu-Han Kim, and Paul Congdon. Avoid-

ing multipath to revive inbuilding wifi localization. In Proceedings of

ACM MobiSys, 2013.

[3] Jie Xiong and Kyle Jamieson. Arraytrack: a fine-grained indoor location

system. In Proceedings of USENIX NSDI, 2013.

[4] Kiran Joshi, Steven Hong, and Sachin Katti. Pinpoint: Localizing

interfering radios. In Proceedings of USENIX NSDI, 2013.

[5] Jon Gjengset, Jie Xiong, GraemeMcPhillips, and Kyle Jamieson. Phaser:

enabling phased array signal processing on commodity wifi access

points. In Proceedings of ACM MobiCom, 2014.

[6] Fadel Adib, Hongzi Mao, Zachary Kabelac, Dina Katabi, and Robert C

Miller. Smart homes that monitor breathing and heart rate. In Pro-

ceedings of ACM CHI, 2015.

[7] Fadel Adib, Zachary Kabelac, and Dina Katabi. Multi-person localiza-

tion via rf body reflections. In Proceedings of USENIX NSDI, 2015.

[8] Fadel Adib, Zach Kabelac, Dina Katabi, and Robert CMiller. 3d tracking

via body radio reflections. In Proceedings of USENIX NSDI, 2014.

[9] Yu-Lin Wei, Chang-Jung Huang, Hsin-Mu Tsai, and Kate Ching-Ju Lin.

Celli: Indoor positioning using polarized sweeping light beams. In

Proceedings of ACM MobiSys, 2017.



[10] Julian Randall, Oliver Amft, Jürgen Bohn, and Martin Burri. Luxtrace:

indoor positioning using building illumination. Personal and ubiquitous

computing, 11(6):417–428, 2007.

[11] Nishkam Ravi and Liviu Iftode. Fiatlux: Fingerprinting rooms using

light intensity. na, 2007.

[12] Jean Armstrong, Y Sekercioglu, and Adrian Neild. Visible light position-

ing: a roadmap for international standardization. IEEE Communications

Magazine, 51(12):68–73, 2013.

[13] Bo Xie, Kongyang Chen, Guang Tan, Mingming Lu, Yunhuai Liu, Jie

Wu, and Tian He. Lips: A light intensity–based positioning system for

indoor environments. ACM Transactions on Sensor Networks, 12(4):28,

2016.

[14] Radu Stoleru, Tian He, John A. Stankovic, and David Luebke. A high-

accuracy, low-cost localization system for wireless sensor networks.

In Proceedings of ACM SenSys, 2005.

[15] Bo Xie, Guang Tan, and Tian He. Spinlight: A high accuracy and

robust light positioning system for indoor applications. In Proceedings

of ACM SenSys, 2015.

[16] Song Liu and Tian He. Smartlight: Light-weight 3d indoor localization

using a single led lamp. In Proceedings of ACM SenSys, 2017.

[17] Zhice Yang, Zeyu Wang, Jiansong Zhang, Chenyu Huang, and Qian

Zhang. Wearables can afford: Light-weight indoor positioning with

visible light. In Proceedings of ACM MobiSys, 2015.

[18] Chi Zhang and Xinyu Zhang. Litell: robust indoor localization using

unmodified light fixtures. In Proceedings of ACM MobiCom, 2016.

[19] Chi Zhang and Xinyu Zhang. Pulsar: Towards ubiquitous visible light

localization. In Proceedings of ACM MobiCom, 2017.

[20] Shilin Zhu and Xinyu Zhang. Enabling high-precision visible light

localization in today’s buildings. In Proceedings of ACM MobiSys, 2017.

[21] Masaki Yoshino, Shinichiro Haruyama, and Masao Nakagawa. High-

accuracy positioning system using visible led lights and image sensor.

In Proceedings of IEEE RWS, 2008.

[22] S-H Yang, E-M Jeong, D-R Kim, H-S Kim, Y-H Son, and S-K Han.

Indoor three-dimensional location estimation based on led visible light

communication. Electronics Letters, 49(1):54–56, 2013.

[23] Ye-Sheng Kuo, Pat Pannuto, Ko-Jen Hsiao, and Prabal Dutta. Luxapose:

Indoor positioning with mobile phones and visible light. In Proceedings

of ACM MobiCom, 2014.

[24] Ruipeng Gao, Yang Tian, Fan Ye, Guojie Luo, Kaigui Bian, Yizhou

Wang, Tao Wang, and Xiaoming Li. Sextant: Towards ubiquitous

indoor localization service by photo-taking of the environment. IEEE

Transactions on Mobile Computing, 15(2):460–474, 2016.

[25] Edward Collett. Field guide to polarization, volume 15. SPIE press

Bellingham, 2005.

[26] Wikipedia. Color wheel. https://en.wikipedia.org/wiki/Color_wheel#

Color_wheels_and_paint_color_mixing.

[27] Zhao Tian, Yu-Lin Wei, Xi Xiong, Wei-Nin Chang, Hsin-Mu Tsai, Kate

Ching-Ju Lin, Changxi Zheng, and Xia Zhou. Position: Augmenting

inertial tracking with light. In Proceedings of ACM VLCS, 2017.

[28] Yuanqing Zheng, Guobin Shen, Liqun Li, Chunshui Zhao, Mo Li, Feng

Zhao, Yuanqing Zheng, Guobin Shen, Liqun Li, Chunshui Zhao, et al.

Travi-navi: Self-deployable indoor navigation system. IEEE/ACM

Transactions on Networking (TON), 25(5):2655–2669, 2017.

[29] MeiWang, Zhehui Zhang, Xiaohua Tian, and XinbingWang. Temporal

correlation of the rss improves accuracy of fingerprinting localization.

In INFOCOM 2016-The 35th Annual IEEE International Conference on

Computer Communications, IEEE, pages 1–9. IEEE, 2016.

[30] Jizhong Zhao, Wei Xi, Yuan He, Yunhao Liu, Xiang-Yang Li, Lufeng

Mo, and Zheng Yang. Localization of wireless sensor networks in the

wild: Pursuit of ranging quality. IEEE/ACM Transactions on Networking

(ToN), 21(1):311–323, 2013.
[31] Kun Qian, Chenshu Wu, Zheng Yang, Yunhao Liu, Fugui He, and

Tianzhang Xing. Enabling contactless detection of moving humans

with dynamic speeds using csi. ACM Transactions on Embedded Com-

puting Systems (TECS), 17(2):52, 2018.

[32] Zuwei Yin, Chenshu Wu, Zheng Yang, and Yunhao Liu. Peer-to-peer

indoor navigation using smartphones. IEEE Journal on Selected Areas

in Communications, 35(5):1141–1153, 2017.

[33] Kun Qian, Chenshu Wu, Yi Zhang, Guidong Zhang, Zheng Yang, and

Yunhao Liu. Widar2. 0: Passive human tracking with a single wi-fi

link. Procs. of ACM MobiSys, 2018.

[34] Chunyi Peng, Guobin Shen, and Yongguang Zhang. Beepbeep: A high-

accuracy acoustic-based system for ranging and localization using

cots devices. ACM Transactions on Embedded Computing Systems,

11(1):4:1–4:29, 2012.

[35] K. Liu, X. Liu, L. Xie, and X. Li. Towards accurate acoustic localization

on a smartphone. In Proceedings of IEEE INFOCOM, 2013.

[36] K. Liu, Xinxin Liu, and Xiaolin Li. Acoustic ranging and communi-

cation via microphone channel. In Proceedings of IEEE GLOBECOM,

2012.

[37] K. Liu, X. Liu, and X. Li. Guoguo: Enabling fine-grained smartphone lo-

calization via acoustic anchors. IEEE Transactions onMobile Computing,

15(5):1144–1156, 2016.

[38] R. Nandakumar, S. Gollakota, and N. Watson. Contactless sleep apnea

detection on smartphones. In Proceedings of ACM MobiSys, 2015.

[39] Pengfei Zhou, Yuanqing Zheng, and Mo Li. How long to wait?: Predict-

ing bus arrival time with mobile phone based participatory sensing.

In Proceedings of ACM MobiSys, 2014.

[40] Yin Chen, Jie Liu, Dimitrios Lymberopoulos, and Bodhi and Priyantha.

Fm-based indoor localization. In Proceedings of ACM MobiSys, 2012.

[41] Yonghang Jiang, Zhenjiang Li, and Jianping Wang. Ptrack: Enhancing

the applicability of pedestrian tracking with wearables. IEEE Transac-

tions on Mobile Computing, 2018.

[42] SHENWei-min. Interference pattern of convergent light for a uniaxial

crystal with optical axis parallel to surface [j]. College Physics, 6:001,

2005.

[43] Dennis H Goldstein. Polarized light. CRC press, 2017.


