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ABSTRACT
With the development and popularization of WiFi, surfin-
g on the Internet with mobile devices has become an in-
dispensable part of people’s daily life. However, as an in-
frastructure, WiFi APs are easily connected by some un-
desired users nearby. In this paper, we propose NiFi, a
non-intrusive WiFi user identification system based on WiFi
signals that enables AP to automatically identify legitimate
users in indoor environment such as home, office and ho-
tel. The core idea is that legitimate and undesired users
may have different physical constraints, e.g., moving area,
walking path, etc, leading to different signal sequences. NiFi
analyzes and exploits the characteristics of signal sequences
generated by mobile devices. NiFi proposes a practical and
effective method to extract useful features and measure sim-
ilarity for signal sequences, while not relying on precise user
location information. We implement NiFi on Commercial
Off-The-Shelf (COTS) APs, and the implementation does
not require any modification to user devices. The exper-
iment results demonstrate that NiFi is able to achieve an
average identification accuracy at 90.83% with true positive
rate at 98.89%.
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1. INTRODUCTION

1.1 Motivation
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Nowadays, WiFi has become a fundamental part for pro-
viding wireless connection. According to ABI research’s re-
port [5], WiFi chip shipment reaches near 18 billion from
2015 to 2019. With the development and popularization
of mobile devices equipped with WiFi chip, e.g., laptops,
tablets and smartphones, WiFi becomes even more impor-
tant for ubiquitous wireless access.

Normally, a device needs to first connect to a WiFi access
point (AP) in order to use the network service. However,
a well-known problem is that an AP may be connected and
used by some undesired users nearby, which slows down the
network speed and brings harm to legitimate users. For ex-
ample, it has been reported [7] that the Internet fee loss
caused by undesired users reached up to 5 billions RMB in
China every year. Meanwhile, undesired users may even re-
sult in privacy and security issues. The most common way
for AP connection control is to set a password. However, ac-
cording to a security report of Rising Antivirus [1], a large
portion of passwords for APs are too simple. 86% of users
never login to the setting page after installing a AP, and 92%
of users do not change the default password (e.g. “admin”
and “root”). 73% of users choose an easy-to-guess or simple
password (e.g “12345678” ). Even worse, there exist a large
portion of users, especially for those non-experts, who never
set password for their APs. Even for complicated passwords,
there are cracking softwares and automatic password shar-
ing softwares [6] based on crowdsourcing, making password
based authorization invalid. Therefore, automatic user iden-
tification becomes more and more important, especially as
the increasing of non-expert WiFi AP users.

The AP vendors (e.g., Huawei, D-Link, TP-Link) have
noticed those problems. They have largely simplified AP
password setting process and encourage users to set pass-
word for each AP. They are also seeking to design automatic
methods for user identification. They propose some smart
APs (e.g., MiWiFi from XiaoMi, HiWiFi, etc) that claim to
be able to distinguish legitimate users and undesired users.
Those smart APs require users to set a white and black list
based on MAC addresses.

1.2 Proposed Approach
We propose NiFi, an automatic approach which requires

no user configurations, to identify legitimate WiFi users of
mobile devices. NiFi seeks to exploit the signal characteris-
tics from different users. We find that legitimate users and
undesired users may have very different physical constraints,
e.g., moving area, walking path, leading to different signal
sequences. Though signal characteristics from users at a s-



ingle location may be similar, signal sequences for users at
different areas can be very different.

NiFi analyzes and exploits the characteristics of signal se-
quence generated by mobile devices, and extracts useful fea-
tures from different users. Based on those features, NiFi
proposes a similarity measurement algorithm for user iden-
tification. Meanwhile, NiFi maintains a feature database for
legitimate users for similarity measurement and propose a
novel graph based online database update method.

Overall, NiFi can automatically identify legitimate users
without explicit password. NiFi can be deployed on com-
mercial WiFi AP while not requiring any modification to
user devices such as mobile phone and laptop. Undesired
users is difficult to use an AP with NiFi since physical sig-
nal sequence is difficult to mimic.

We implement NiFi on a COTS wireless router board
(RB912UAG-2HPnD [3]) as a prototype system. We al-
so conduct extensive experiments with different devices in
different environments. Experiment results show that NiFi
achieves an average user identification accuracy at 90.83%
with false negative rate at 1.11% and false positive rate at
17.22%. Such a result enables NiFi to be used for many d-
ifferent application scenarios, e.g., for a hotel or restaurant
that are willing to provide convenient and exclusive WiFi
access for guests. We also provide tunable parameters to
adjust the false positive rate and false negative rate. Our
current setting favors a low false negative rate while allowing
a certain false positive rate.

1.3 Technical Challenges and Solutions
Practically, if each connected user can be precisely locat-

ed, NiFi is easy to implement. However, precise localization
is difficult to obtain, especially when complex physical layer
information (e.g., CSI) and pre-collected signal fingerprints
are unavailable. NiFi is required to be used without precise
localization and thus its design has several challenges.

The first challenge is how to extract useful user features
without precise location information. Instead of precise loca-
tion, NiFi uses the signal sequence from each user. However,
a user may spend different time at different positions. Even
for two legitimate users, one may stay in one room while
the other moves between different rooms, resulting in dif-
ferent signal sequences. We model the signal sequence from
each user as a signal transition path (STP), and extract key
features based on an iterative change point detection algo-
rithm.

The second challenge is how to construct and maintain the
feature database for user identification, and how to measure
the similarity. There are limited initial data of legitimate
users in order to reduce the deployment overhead. It is also
difficult to obtain the training set that covers all possible
paths. We design a path merging method to combine multi-
ple paths from legitimate users to a signal transition graph
(STG). Then we transfer user identification to the problem
of matching a STP in the STG. If a user is legitimate, we
can update the STG with the path merging method. To
match an STP in the STG, we propose two different meth-
ods for measuring the similarity for vertices or edges. Then
we propose a DFS-based path matching algorithm to find
the maximum similarity score for the STP on the STG.

The third challenge is to deal with device diversity. Differ-
ent phones may have different transmission power, antenna
layout and hardware configuration. Therefore, the received

signal strength from different phones at the same position
may even be different. This is also examined in our exper-
iment in Section 6.3. We further compare different devices
and find that the shift between the signals for two different
phones at different environments is relatively stable. Based
on this finding, we propose a shift-cancelation approach to
mitigate the impact of device diversity.

1.4 Key Contributions
The main contribution of this paper is as follows:

• We first propose to use signal information collected at
AP for user identification. We propose NiFi, an ap-
proach that enables automatic AP user identification.

• We present detailed practical analysis for signal from
different devices at AP. In NiFi, we transfer the us-
er identification problem to a path matching problem
in signal space. We further propose effective similarity
measure methods for signal sequences and path match-
ing algorithm for user identification.

• We implement NiFi as on COTS routers and evaluate
its performance for different mobile devices in different
environments.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces some related works in recent years. Sec-
tion 3 presents an overview of NiFi’s architecture. Section 4
elaborates on data collection and noise removal. Then, Sec-
tion 5 and Section 6 describes NiFi’s identification process
in detail. Section 7 presents our implementation of NiFi
on COTS routers and a comprehensive experimental evalu-
ation. Finally, Section 8 concludes the paper.

2. RELATED WORK

2.1 Indoor Localization
A large body of indoor localization approaches based on

WiFi signals have been proposed in the past two decades.
Many methods such as RADAR [11], Horus [30] and OIL [16]
leverage existing WiFi infrastructure to build a fingerprint
database for indoor localization. Further, several systems
such as LiFS [29], Zee [18] and UnLoc [24] use crowdsourcing
to collect signal fingerprints. Meanwhile, those approaches
assumes multiple APs in the environment and a user device
can obtain signal from multiple APs. Some recent works
use more complex physical layer information, e.g., channel
state information (CSI), to obtain more fundamental loca-
tion related information, e.g., the angle-of-arrival. There
are also approaches using complicate analysis methods or
special hardware [19, 14, 28], e.g., antenna array [27, 9].
With fine-grained signal information, Chronos [22] can even
achieve decimeter-level localization with a single WiFi AP.

Our work is inspired by those localization methods. In
our work, we seek to achieve user identification from the AP
side. We find that precise location information is difficult
to obtain especially with COTS WiFi APs. Nevertheless,
we also find that that precise location information is not
required towards our goal. Accordingly, we also do not use
complex physical layer information or infrastructure, which
are not commonly available for nowadays WiFi application
scenarios.



Figure 1: System architecture

2.2 Fine-grain Signal Based Activity Recogni-
tion

There are also a large collection of activity recognition
approaches based on wireless signals to recognize human ac-
tivities [20, 21, 17, 15, 8, 10, 23, 25, 26]. Most of those
approaches are based on fine-grained channel state informa-
tion (CSI). More specifically, different user activities may
have different impacts on wireless siginal and thus result
in different CSI values. For example, some early approach-
es focus on recognizing macro-movements such as motion-
s(crawling, lying down, standing up, and walking) [20, 21],
and gestures [17, 15, 8]. Recently, several works are pro-
posed to recognize micro-movements. WiKey [10] utilizes
the patterns in the time-series of CSI values to recognize
keystrokes using a laptop with Intel Link 5300 WiFi NIC
for CSI collection. WiHear [23] detects and analyzes fine-
grained signal reflections from mouth movements while s-
peaking. RF-IDraw [25] constructs a virtual touch screen
in the air using RF signals. Those approaches are used for
recognize small user activities with special hardware. Mean-
while, they often require a training set. Thus they may not
be appropriate for user identification especially on COTS
APs.

3. NIFI OVERVIEW
In this section, we introduce NiFi’s design goals and an

overview of the system architecture.
Overall, the design goals of NiFi are as follows.

• NiFi should reside on the AP side to automatically
identify the legitimate user.

• NiFi should be non-intrusive, requiring no user active
participation or user device modification.

• NiFi uses physical signal information from users which
is difficult to mimic, and it does not require password
input from users.

3.1 System Architecture
The overall system architecture is shown in Figure 1. The

working process of NiFi consists of four major components.
Data collection: The first component is the Data Col-

lection component. In this component, NiFi collects raw
WiFi signal data from different users. Currently, NiFi works
on APs with OpenWrt system and uses commands provid-
ed by OpenWrt to collect RSSI information. It is noted

that NiFi can also leverage other types of signal informa-
tion. NiFi then groups all the RSSI information according
to MAC address of the corresponding packet. Meanwhile,
as there exists noise in the collected RSSI sequence, we need
to perform noise removal in this component.

Feature extraction: The second component is the fea-
ture extraction component. After data collection, NiFi has
a RSSI sequence for each user, which contains the RSSI val-
ues for users at different positions. Therefore, we partition
the RSSI sequence into groups according to user’s position
and moving status. More specifically, we seek to group RSSI
values for the same position together (position RSSI group),
and group RSSI values for a user moving between two differ-
ent positions together (transition RSSI group). We model a
position RSSI group as a vertex and a transition RSSI group
as a edge. Then the original RSSI sequence can be modeled
as a signal transition path (STP) consisting of vertexes and
edges in between.

Graph augmentation: In this component, we aim to
build a signal transition graph (STG) based on STPs of all
legitimate users. We design a graph augmentation algorith-
m to update the STG with the STP of legitimate users.
Initially, we can consider the first connected user as a legit-
imate user. Accordingly, we use the STP of the first user
to construct the initial STG. Then, we augment and update
the STG gradually when new legitimate STPs are identified.
The detailed graph augmentation algorithm is introduced in
Section 6.4.

Path matching: We design a path matching algorithm
to solve the user identification problem. After we have built
the STG, we can match a new coming STP (the result from
feature extraction) on STG. If there is a match for the STP
according to the path matching algorithm, the correspond-
ing user is considered as legitimate. It should be noted that,
in the path matching algorithm, we have different matching
methods for the vertexes and edges according to their prop-
erties. For example, for an edge (transition RSSI group),
we consider not only its absolute RSSI values and statistics,
but also its trend and so on. The detailed path matching
algorithm is introduced in Section 6.2.

3.2 Legitimate Users and Undesired Users
First, we consider there are legitimate areas (e.g., user-

defined). All other areas are considered as undesired areas.
Users in the legitimate areas are considered as legitimate
users. In our implementation, we consider the first connect-
ed user as the first legitimate user (e.g., the first user is the



administrator who installs the AP). We discuss the impact
of data from the first connected user in 7.5.

4. DATA COLLECTION AND NOISE REM-
OVAL

In this section, we introduce our data collection and noise
removal process. We assume legitimate users and undesired
users have different physical constraints, e.g., moving area,
walking path. For example, in home environment, legiti-
mate users may appear in rooms of a certain home. Tabel 1
summarizes the symbols used in this paper.

4.1 Data Collection
NiFi collects RSSI signal sequences on AP from different

users. NiFi has no special requirements on hardware. We
use a wireless router board (RB912UAG-2HPhD [3]) with
OpenWrt system. OpenWrt is an operating system based on
the Linux kernel, primarily and widely used on many routers
and APs.

4.2 Noise Removal
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Figure 2: Unfiltered and filtered RSSI sequence

As we can see in Figure 2 (a), there are three kinds of noise
in the RSSI sequence. The first type of noise is the slight
RSSI fluctuation due to environmental gaussian noise. This
can be observed in normal collected RSSI sequence. The
second type of noise is caused by small environment changes
such as device perturbation in one’s hand or people walking
nearby. Besides, we also notice there exists some impulsive
noise in the RSSI sequence for some type of mobile phones
(e.g., Xiaomi Mi3). We investigate the data and think this
may be related to the antenna layout and hardware design
in this type of phone. For a specific angle, the emitted signal
arrived at the AP becomes very small.

For the first two types of noise, we consider them as high
frequency and design a lowpass filter (e.g., Butterworth fil-
ter) to remove them. For example, we assume that device
perturbation on human hands is usually small and quick.
More specifically, as in [10], we assume that the hand and
finger movement approximately lies between 0.5Hz to 80Hz.
As we sample RSSI values at a rate of Fs = 10, we accord-
ingly set the cut-off frequency ωc of the Butterworth filter
at ωc = 2π×f

Fs
= 2π×0.5

10
≈ 0.31rad/s. However, a lowpass

filter can not remove the impulsive noise well as Figure 2 (b)
shows.

Table 1: Symbols in this paper

Symbol Description

fi Collected RSSI sequence F
ri Filtered RSSI sequence R
si Cumulative sums
Δ Position RSSI group shift
D Max distance between two empirical distributions
P a path with n vertexes and n-1 edges
V # of STG’s vertexes
E # of STG’s edges

Vk The kth vertex of STG

Ek The kth edge of STG
S The best matching score
M(vi, v

′
i) Similarity of two position RSSI groups

C(ei, e
′
i) Similarity of two transition RSSI groups

λ Threshold value of a legitimate user
γ Threshold value of Position RSSI group shift
δmin Low similarity threshold value of two vertexes
δmax High similarity threshold value of two vertexes
β A factor for adjusting the upper limit of scoring
σ Threshold score of terminating the current search

For the third type of impulsive noise, a median filter is
particularly effective as shown in Figure 2 (c). However,
for a median filter, it’s difficult to choose an appropriate
window size to remove all the three types of noise without
losing detailed characteristics.

Therefore, in this step, we first pass the sequence to a
median filter. We use a small window size for the median
filter, e.g., 20, in order to maintain the original data charac-
teristics. Then, the result is passed to a lowpass filter. The
final result is shown in Figure 2 (d). It should be noted that
after filtering, we only remove those high frequency noise.
There may still exist low frequency noise, e.g., noise due
to surrounding people’s movement. Therefore, there may
still exist fluctuations after filtering. We will address those
remaining fluctuations in Section 5.2.

5. FEATURE EXTRACTION & SIMILARI-
TY MEASUREMENT

In this section, we describe the feature extraction process
and similarity measurement methods in NiFi.

5.1 Feature Extraction
To extract features, we first partition a RSSI sequence in-

to groups according to user’s position and moving status.
As shown in Figure 3 (a), we find that the original RSSI
sequence consists of a series of sub-sequences of two types.
In the first type of subsequence, most of the RSSI values
are approximately at a certain level. We denote RSSIs in
the first type as position RSSI group. In the second type of
subsequence, the RSSIs change from a certain level to anoth-
er level. We denote RSSIs in the second type as transition
RSSI group. The position RSSI group and transition RSSI
group comprise the features of the RSSI sequence. In this
step, we design an iterative change point detection method
for feature extraction.

Iterative Change Point Detection: We use a change
point detection algorithm based on CUSUM [13]. Denote
the original RSSI sequence as r1, r2, . . . , rn, we compute a
signal sequence’s cumulative sums si as:

si = si−1 + (ri − r) (1)

where s0 = 0 and r =
∑n

i=1 ri
n

. Based on the slope change
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Figure 3: Partitioning a RSSI sequence

of the CUSUM curve s, we calculate the extreme points as
original change points. The black squares in Figure 3 (b)
show the original change points. The change points usually
reflect the position where the original sequence suddenly in-
creases or decreases. However, in the presence of transition
RSSI group, the original sequence may vary gradually from
one level to another level. Thus a change point corresponds
to a transition RSSI group nearby. We need to further ex-
tract the transition and position RSSI groups based on those
original change points.

For each change point, we need to identify the start and
end of the corresponding transition RSSI group (as the red
sub-sequences in Figure 3 (c)). We develop an iterative
change point detection algorithm. We partition the RSSI
sequence into segments based on original change points. For
each segment, we iteratively search for its change points.
For two consecutive segments i and i + 1, we use the last
change point in segment i and the first change point in seg-
ment i+ 1 as the start and end of a transition RSSI group.
The sequence between the first and last change point in seg-
ment i is identified as a position RSSI group. The resulted
transition RSSI groups (as the red sub-sequences) and posi-
tion RSSI groups (as the blue sub-sequences) are shown in
Figure 3 (c). It should be noted that it is difficult to define
the exact start and end of a transition group.

Based on the transition and position RSSI groups, we
transfer the original RSSI sequence to an STP, in which
position RSSI groups correspond to vertices and transition
RSSI groups correspond to edges.

5.2 Similarity Measurement
Till now, we have an STP for each user. To match a user’s

STP on STG, we first measure the similarity between two
vertices or edges. It is difficult for similarity measurement
due to the following reasons. First, users may stay in dif-
ferent positions for different amount of time or moving at
different speeds, resulting in different number of RSSIs in
vertices or edges. Second, two users may not be able to stay
in exactly the same position or moving along exactly the
same path. For example, two users may stay in two slightly
different positions in the same room, leading to difference
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Figure 4: Similarity measurement of position RSSI
groups

in RSSI for those two users. Third, due to the influence of
the surrounding environment, the sequence of RSSI groups
will randomly and slightly fluctuate. To address those dif-
ficulties, we introduce similarity measurement methods for
position RSSI group and transition RSSI group.

5.2.1 Position RSSI Group
For a position RSSI group, we focus on the statistics while

ignore the varying trend due to its random fluctuations. Jac-
card similarity coefficient is a classical metric for comparing
the similarity and diversity of two sets A and B as:

J(A,B) =
|A ∩B|
|A ∪B| (2)

However, this metric is not feasible because it is used for
comparing two sets without duplicates. We calculate the
frequency distribution for each group and then calculate
the similarity based on frequency distribution. Figure 4 (a)
shows the frequency distribution histograms of two position
RSSI groups (a control group and a treatment group).

We utilize the Kolmogorov-Smirnov test (KS-test) [4] to
compare the similarity between two position RSSI groups.
The KS-test is a nonparametric test and has the advantage
of making no assumption about the distribution of data. As
Figure 4 (b) shows, KS-test quantifies a maximum distance
(the D statistic) between the empirical distribution curves
of two groups. With the decrease of the D statistic, the
similarity becomes higher. For two RSSI sequences R =
{r1, r2, . . . , rn} and R′ = {r′1, r′2, . . . , r′m}, we denote the KS-
test result as KS(R,R′) = 1−D.
Two users may not be able to stay at exactly the same

position or moving along exactly the same path. Once there
is a deviation existing between two groups, the KS-test will
output a poor similarity such as the result in Figure 4 (b),
KS(R,R′) = 1 − 0.6344 = 0.3656. Therefore, we shift the
treatment group with a certain threshold γ and then calcu-
late the KS-test result for the shifted group. For differen-
t shifts, we calculate the maximum KS-test result for the
similarity M . Denote Δ shifted group of R as R(Δ), i.e.,
R(Δ) = {r1 − Δ, r2 − Δ, . . . , rn − Δ}. We define the simi-
larity of two position RSSI groups as:

M(R,R′) = max{(1− λ× Δ

γ
)×KS(R(Δ), R′)} (3)



where −γ ≤ Δ ≤ γ and λ is a scale parameter between 0
and 1. λ is the threshold value and we set λ = 0.25 in our
experiments. When |Δ| > γ, we consider that there is less
similarity between two position RSSI groups and we will set
M = 0. As Δ is a integer and γ is small, we enumerate
different values for Δ to calculate M . In Figure 4 (c) and
Figure 4 (d), Δ is 6 and KS(R(Δ), R′) = 1 − 0.1067 =
0.8933, where we get the final similarity M(R,R′) = (1 −
0.25×6

10
)× 0.8933 = 0.7593.

5.2.2 Transition RSSI Group
Different from position RSSI group, we consider not only

the statistics but also the trend of a transition RSSI group,
which contains significant information such as walk speed,
time and orientation. Here, we adopt Hidden Markov Model
(HMM) to measure the similarity between transition RSSI
groups of STP and STG.

In HMM, the system is assumed to be a Markov process
with N unobserved states H = {H1, H2, . . . , HN}. There
are M observed states V = {V1, V2, . . . VM} corresponding
to all the probable RSSI values in our work. We denote the
state at time t as it and the transition probability distri-
bution between these N unobserved states as a matrix A.
Next, we denote the the probability of observing the symbol
vk given that we are in state j as B. Besides, we use π to
denote the initial state. Thus, we can describe an HMM
as ψ = (A,B, π) according to a classical tutorial of Hidden
Markov Model [12].

In our work, we set up an HMM ψk for every edge of
STG with initial parameters A, B and π. Next, for every
edge, we adjust its HMM parameters continually and get the
optimal unobserved state sequence using the corresponding
transition RSSI groups of legitimate users according to the
algorithm in [12] . Then, the similarity between a transition
RSSI group R = {r1, r2, . . . , rn} and the k’st edge Ek of
STG can be calculated as the probability of the observation
sequence R in ψk:

C(R,Ek) = P (R|ψk) (4)

Specially, if there isn’t a corresponding edge on STG for R,
we output a low score.

6. USER IDENTIFICATION
After extracting an STP of a user, the rest identification

process includes four parts: path scoring, path matching,
device diversity elimination and graph augmentation.

6.1 Path Scoring
Before introducing path matching algorithm, we first in-

troduce how to calculate the similarity score of two path-
s. Basically, the score of legitimate users’ STP should be
higher than that of undesired users. For two paths P =
(v1, e1, v2, e2, . . . , vn−1, en−1, vn) and P ′ = (v′1, e

′
1, v

′
2, e

′
2, . . . ,

v′n−1, e
′
n−1, v

′
n), both of which contain n position RSSI group-

s and n−1 transition RSSI groups, we have several rules for
similarity score calculation:

1. The final score should be calculated from both ver-
tex similarity score (i.e. M(vi, v

′
i)) and edge similarity

score (i.e. C(ei, e
′
i)) on two paths. We not only consid-

er user staying in one position but also consider user
moving from one position to another.

Algorithm 1 PathMatching

Require: a STP with n vertexes and n-1 edges, the STG with V
vertexes and E edges, current vertex matching index l.

Ensure: The best matching score of the STP on STG.
1: S ← 0;
2: currentScore ← 0;
3: for each i < V do
4: M ← M(vl, Vi);
5: currentScore ← Sl(STP, Pl);
6: if currentScore < σ then;
7: return;
8: else
9: if l = n then
10: Output(currentScore);
11: if currentScore > S then
12: S ← currentScore;
13: else
14: PathMatching(l+1,STP,STG);
15: end for

2. The influence of position RSSI group and transition
RSSI group to final score should be tunable. Current-
ly, we consider position RSSI group plays a more im-
portant role than transition RSSI group. The reason
is that position RSSI group is relatively stable in the
same position, while transition RSSI group is prone to
vary due to different factors such as walking speed.

3. With more vertexes (nl) having very low similarity s-
core (e.g., less than a threshold δmin), the path similar-
ity score should be lower. We have nl = |{i|M(vi, v

′
i) <

δmin, 1 ≤ i ≤ n}|.
4. With more vertices (nh) having very high similarity s-

core (e.g., higher than a threshold δmax), the path sim-
ilarity score should be higher. We have nh = |{i|M(vi,
v′i) > δmax, 1 ≤ i ≤ n}|.

Based on those rules and similarity measurement methods
for vertexes and edges, we process the vertexes and edges of
an STP sequentially to calculate the path similarity score.
For two path P and P ′, we compute their similarity score
as:

Sn(P, P
′
) =β × ((1 − λ) ×

∑n
i=1 M(vi, v

′
i)

n + nl

+ λ ×
∑n−1

i=1
C(ei, e

′
i)

n − 1
) (5)

where λ is a tuning parameter (according to rule 2) and β is
a factor for adjusting the upper limit of scoring (according
to rule 4).

6.2 Path Matching
We transfer the user identification into a path matching

problem on STG. In this step, we match each STP with the
STG to check whether the corresponding user of the STP is
legitimate. Initially, we use the STP from the first connected
user as the STG. Later, we will introduce how to augment
the STG with STPs from legitimate users in Section 6.4.

For a STP with n position RSSI groups, the goal of path
matching is to find the maximum similarity score between
the STP and all paths P on STG. Thus we have,

S(STP, STG) = max{Sn(STP, P )} (6)

for any path P with n vertexes on STG.
To reduce the overhead, we develop a pruned DFS-based

path matching algorithm as in Algorithm 1. We denote the
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Figure 5: Device diversity of four devices

final path matching score as S and the current matching
score between STP and a path Pl = (v1, e1, v2, e2, . . . , vl) as
currentScore. From line 3 to 15, for each vertex vl of STG,
we calculate the similarity score. We measure the similarity
between two vertexes V pl and V gi in line 4 and calculate the
currentScore in line 5 with Equation 5. For line 6 and 7,
if the currentScore is smaller than the scoring threshold σ,
we will terminate the current search and return. From line 9
to 12, if l = n, we will output the currentScore and update
the best matching score S. Otherwise, we will recursively
invoke Algorithm 1 to search the next position RSSI group.
Until searching all branches of STG, the path matching will
terminate and get the best matching score S.

6.3 Device Diversity
RSSI is a measurement of the power present in a received

radio signal and is susceptible to the device diversity. Fig-
ure 5 (a) shows the RSSI sequences of four mobile devices
for the same moving path among three rooms.

Obviously, there is some deviation among the RSSI of dif-
ferent devices in the same position. Such a deviation will af-
fect NiFi’s identification accuracy for different devices, e.g.,
using Xiaomi MI3’s RSSI data as the initial set to identify
other devices.

We also notice that though there may exist a deviation
between two types of devices (e.g., Xiaomi MI3 and Huawei
Honor6 in Figure 5 (a)), the deviation between those two
devices types of is relatively stable across different position-
s. We calculate the deviations between the RSSIs of Xiaomi
MI3 and three other kinds of devices. Further, we calcu-
late the mean, median, maximum, minimum and standard
deviation of the deviations for different devices in different
rooms as we can see in Table 2. Here, we focus on the mean
deviations and the standard deviations. First, the mean
deviations for the same device in three rooms are close, es-
pecially for Honor6 and iPhone6. Second, all of the standard
deviations are quite small so the deviates in the same room
are stable. These indicates that NiFi can eliminate the effect
of device diversity with an appropriate offset compensation.
As shown in Figure 5 (b), the RSSI series of four devices
become similar through different offset compensations.

Based on these experimental observations, we address this
problem with a shift-cancelation approach. First, NiFi per-
forms the path matching for the original STP. Second, if
the output result is an undesired user, NiFi performs a new
path matching with an offset compensation. For a vertex
of the original STP which is matched on STG, the original
STP will be shifted according to the mean deviation of these
two vertexes. Third, NiFi continues the rest of path match-
ing process as described in Section 6.2. NiFi will repeat
the second and third step for every vertex of the STP un-

iPhone6 Honor6 Galaxy
r1 r2 r3 r1 r2 r3 r1 r2 r3

Mean 11.6 7.2 13.5 16.7 13.6 12.5 13.8 2.3 5.8

Median 12 6 14 18 13 12 14 2 6

Max 16 12 16 25 18 14 18 5 7

Min 1 3 6 2 9 3 1 0 2

Std 2.79 3.26 2.16 3.19 2.52 1.40 2.77 1.19 0.85

Table 2: Deviations between the RSSI sequences of
Xiaomi MI3 and three other kinds of devices. R1,
r2, and r3 represents three different rooms

til a matching score is higher than the legitimate threshold.
Otherwise, NiFi outputs a negative result.

6.4 Graph Augmentation
We construct the STG as a database by combining STPs

of legitimate users. Initially, we use the STP of the first
legitimate user (e.g., the first connected user ) to construct
the initial STG. Since the initial STP may contain the same
position RSSI groups on the path, we combine similar ver-
texes according the vertex similarity measurement method.
Then, we augment and update the STG online when a new
legitimate STP is identified. If a vertex or edge of the STP
is match with that in the STG, we update the corresponding
vertex or edge in the STG. Otherwise, we extend the STG
with the vertex or edge, which implies that a new possible
legitimate position or moving path is found.

7. EVALUATION
In this section, we present the evaluation results of NiFi.

7.1 Evaluation Methodology
We implement NiFi on off-the-shelf hardware devices. Spe-

cially, we use a wireless router board (RB912UAG-2HPnD
[3]) with OpenWrt, which works in 802.11n AP mode at
2.4GHz. Since our implementation does not rely on any
specific hardware, it can be used for other wireless routers
based on OpenWrt, which is widely used in a large collec-
tion of wireless routers such as TP-Link, Huawei, D-Link,
and HiWiFi [2].

We evaluate the performance of NiFi from different as-
pects:

• To verify the effectiveness and usability of NiFi in d-
ifferent scenarios, we evaluate NiFi in three environ-
ments including an office, a laboratory and a dormitory
environment. Figure 6 shows the experiment environ-
ments.

• We evaluate the performance of NiFi under different
user activities. We test six kinds of user activities for
each mobile device. (1) L1: Keeping still in a legit-
imate area. (2) L2: Walking between two legitimate
areas. (3) L3: Walking among all legitimate areas. (4)
I1: Keeping still in an undesired area. (5) I2: Walking
between two undesired areas. (6) I3: Walking among
undesired areas.

• We evaluate the performance of NiFi with different
mobile devices, i.e., Samsung Galaxy Note8, Xiaomi
MI3, iPhone6 and Huawei Honor6.

For different experiment settings, we evaluate the accuracy
of NiFi. For each experiment, we perform 10 runs of tests
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Figure 7: Heat map of matching scores under differ-
ent environments with different user activities. The
color indicates the matching score.

and record all the results. Further, we conduct cross vali-
dation and address device diversity. Then we evaluate the
impact of initial signal samples and different users activities
to the performance of NiFi.

In Figure 6, the blue areas are legitimate areas and the
rest are undesired areas. The location of AP with NiFi is
also indicated in the Figure.

7.2 Accuracy Evaluation
Across all the experiments, NiFi outputs a score according

to the path matching algorithm described in Section 6.2. We
record all the results and draw the heat map in Figure 7.
The figure consists of twelve squares corresponding to four
kinds of devices and three kinds of scenarios. The row in
each square corresponds to a experiment run and the column
corresponds to different user activities (L1-L3 and I1-I3).

Overall, we have the following observations.

• We can see that each square is divided into two parts:
most blocks in the left three columns have a higher
score than those in the right three columns. This shows
that NiFi can correctly identify the legitimate users
(L1-L3) from the undesired users (I1-I3).

• A device may have different performance under differ-
ent scenarios. For example, in the laboratory environ-
ment, we can see that most devices have the lowest
performance. This is because the laboratory environ-
ment is a single large room, in which our STG contains
little path information of legitimate users for identifi-
cation.

• Different types of devices also have different perfor-
mance even under the same scenario. For example,

Office Laboratory Dormitory Average
Rtp 100% 98.33% 98.33% 98.89%
Rfn 0% 1.67% 1.67% 1.11%
Rtn 85.83% 75% 87.5% 82.78%
Rfp 14.17% 25% 12.5% 17.22%

Table 3: Rtp, Rfn, Rtn, and Rfp in three environ-
ments

Office Laboratory Dormitory
Samsung 91.67% 93.33% 98.33%
Xiaomi 88.33% 83.33% 91.67%
iPhone 91.67% 93.3% 91.67%
Huawei 100% 76.66% 85%

Table 4: Identification accuracy of four devices in
three environments

in the office experiment, we can see Huawei Honor6
outperforms other devices.

• Different user activity may also influence the perfor-
mance of NiFi. For example, the performance in the
4th column (I1: keeping still in an undesired area) is
lower than that in the last column (I3: moving among
all the illegal areas). This is because NiFi has more
information for identification in I3.

Further, we explain the details and quantify the results
under different scenarios. We quantify the accuracy in terms
of true positive rates (Rtp), false positive rates (Rfp), true
negative rates (Rtn) and false negative rates (Rfn). The
result is shown in Table 3. As we known, the Rfn indicates
a legitimate user is mis-identified as an undesired user and
vice verse the Rfp. We have two observations. First, Rfn

is negligible. In our experiment, we prefer to reduce the
Rfn as much as possible because we do not want to affect
legitimate users. In fact, we can adjust the matching score
method to tradeoff the Rfp and Rfn for different application
goals. So if the Rfp is acceptable, it means our identifica-
tion program does work. In the worst case, Rfp is 25% and
NiFi can still get rid of 75% of the undesired devices. Sec-
ond, as mentioned above, NiFi performs slightly worse in the
laboratory, so the error rate is related to the experimental
environments.

We also quantify the identification accuracy for different
devices in different environments as we can see in Table 4.
The results demonstrate NiFi can achieve a high accuracy
of all users, i.e. 90.83% in average.

7.3 Device Diversity
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ination

To quantify the impact of device diversity, we use Xiaomi
MI3’s RSSI sequence to construct the initial STG and calcu-
late cross-matching score of other devices. As a comparison,
for each device, we use its own RSSI sequence as the initial
data to calculate the self-matching score. In the experimen-
t, we perform 10 runs for each test under each user activity
and average the scores of all 10 runs. In Figure 8, the solid
and dashed lines denote the average self-matching score and
cross-matching score. In some cases (e.g., the right half of
Figure 8 (a)), the two lines are close to each other. How-
ever, in most cases (e.g., Figure 8 (b)), the dashed lines are
lower than the solid lines, indicating a possible error for user
identification due to device diversity.

Then we repeat the above experiment with our device di-
versity elimination method. As Figure 9 show, in most cases,
the dashed lines are close to the solid lines, which demon-
strates that NiFi can effectively address device diversity.

7.4 Impact of Different User Activities
To further investigate why Rfp is a little high in some

cases, we study the influence of different user activities. In
our experiment, we perform six kinds of tests for different
users with different spatial states (L1-L3 and I1-I3). We
calculate the average score and error rate for each kind of
test as shown in Figure 10.

There are three observations. First, the average scores of
L1, L2, and L3 are much higher than those of I1, I2, and
I3, which demonstrates the effectiveness of our identification
approach. Second, the average score gradually increases for
L1-L3, which coincides the fourth scoring rule. Third, the
error rates of I1 and I2 are higher than that of I3. It is
because that the information NiFi can use for identification
in I1 and I2 is less than that of I3. Once a user frequently
moves, the identification accuracy accordingly increases.

7.5 Impact of Initial Signal Samples
The initial data will also affects NiFi’s usability and accu-

racy because it determines the integrality of the initial STG.
An incomplete STG may make NiFi outputs a low score for
a legitimate user, which will increase the Rfn of NiFi. We
conduct an experiment to study the impact of changing the
initial RSSI sequence. There are three kinds of initial RSSI
sequences for three user activities in one legitimate area, t-
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initial data

wo legitimate areas and multiple legitimate areas. Then, we
calculate the average scores for L1-L3. As we can see in
Figure 11, the average score becomes higher when the ini-
tial data becomes more complete. When the initial RSSI
sequence only contains one legitimate area, the score is also
low for legitimate users. However, even though the initial
STG is incomplete, NiFi will make itself perform better and
better with the graph augmentation in Section 6.4.

8. CONCLUSION
In this paper, we propose NiFi, the first attempt for a

non-intrusive, automatical user identification approach us-
ing WiFi signals on WiFi APs. NiFi can be deployed on
most COTS WiFi routers and requires no special software
and hardware support. It also does not require any modifi-
cation to user devices. We implement NiFi on WiFi routers
and evaluate its performance with different mobile devices
in different environments. The results demonstrate NiFi can
achieve an accuracy up to 90.83% in average. We believe
that such a result enables NiFi be appropriate for various
application scenarios such as home and hotel environment
that are willing to provide convenient and exclusive WiFi
access. In future, we will work on further improving the
accuracy of NiFi with more physical layer information that
can be obtained on COTS WiFi APs.
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