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ABSTRACT

LoRa, a representative Low-Power Wide Area Network (LPWAN)

technology, has been shown as a promising platform to connect

Internet of Things. Practical LoRa deployments, however, suffer

from collisions, especially in dense networks and wide coverage

areas expected by LoRa applications. Existing collision resolution

approaches do not exploit the coding properties of LoRa and thus

cannot work well for low SNR LoRa signals. We propose NScale

to decompose concurrent transmissions by leveraging subtle inter-

packet time offsets for low SNR LoRa collisions. NScale (1) trans-

lates subtle time offsets, which are vulnerable to noise, to robust

frequency features, and (2) further amplifies the time offsets by

non-stationary signal scaling, i.e., scaling the amplitude of a sym-

bol differently at different positions. In practical implementation,

we propose a noise resistant iterative symbol recovery method to

combat symbol distortion in low SNR, and address frequency shifts

incurred by CFO and packet time offsets in decoding. We theoret-

ically show that NScale introduces < 1.7 dB SNR loss compared

with the original LoRa. We implement NScale on USRP N210 and

evaluate its performance in both indoor and outdoor networks.

NScale is implemented in software at the gateway and can work

for COTS LoRa nodes without any modification. The evaluation

results show that NScale improves the network throughput by 3.3×

for low SNR collided signals compared with other state-of-the-art

methods.
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1 INTRODUCTION

As a promising technology for Low-Power Wide Area Networks

(LPWANs), LoRa is recently drawing extensive interests from both

academia and industry. Different from high-power and high-bitrate

Wi-Fi or 4G/5G, LoRa focuses on the field of low-power, low-cost,

and long-range communications for millions of Internet of Things

(IoT) devices [1]. As one of the key communication technologies

for IoTs, LoRa is widely used in various IoT applications such as

environment monitoring [2], wild animal tracking [3], disaster

rescue [4], warehouse management [5], etc.

However, LoRa networks in practice suffer from packet collisions,

especially when connecting a large number of devices, which is

expected for most LoRa applications [6, 7]. Collisions adversely

cause packet loss and throughput degradation, which also drain

battery life and waste precious air time and spectrum. Moreover,

LoRa usually uses a star-of-stars topology where thousands of LoRa

nodes connect to a single LoRa gateway [8]. For design simplicity

and energy conservation, LoRa adopts a simple MAC layer design

(e.g., ALOHA based MAC protocol in LoRaWAN), which further

exacerbates packet collisions in LoRa networks [9, 10].

Existing Approaches. The collision problem should be care-

fully addressed before applying LoRa as the main technique for

connecting millions of IoT devices. Although there exist a large

collection of collision decoding approaches, they do not exploit the

coding properties of LoRa. Thus, they (e.g., time domain Successive

Interference Cancellation, SIC [11, 12]) cannot work well for low

SNR LoRa signals. For example, mLoRa [13] applies SIC to LoRa

collisions. It starts with a collision-free chunk and then iteratively

reconstructs and extracts each decoded symbols. According to their

experiment results, mLoRa mainly works for signals with SNR >

5 dB. Choir [14] exploits the hardware imperfections of low-cost

LoRa nodes to separate collided packets. FTrack [15] decodes multi-

ple LoRa packets from a collision by calculating the instantaneous

frequency continuity by short time spectrum analysis.

Fundamental limitations: Existing collision decoding approaches

[13, 15] have limitations in decoding low SNR LoRa signals (e.g.,

𝑆𝑁𝑅 < 0). They focus more on the time domain signal analysis and

interference cancellation. But they do not consider the decoding

features of LoRa which can concentrate energy in the frequency

domain. As a result, those methods have a high SNR loss compared

with the original LoRa decoding and cannot work for low SNR LoRa

signals.

Our Approach. To resolve collisions in low SNR LoRa signals,

we present NScale to decode packets from collided LoRa signals.

The heart of NScale is to leverage the subtle packet time offsets to

disentangle collided packets. To achieve low SNR collision decod-

ing, NScale (1) translates packet time offsets, which are vulnerable
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Figure 1: NScale decoding example: for each collided sym-

bol, NScale transforms and amplifies the time domain fea-

tures into frequency features through non-stationary scal-

ing. Chirp segments at different positions of the window are

amplified with different peak scaling factors.

to noise, to more robust frequency features, and (2) amplifies the

time offsets by non-stationary signal scaling, i.e., scaling a sym-

bol differently at different positions. NScale then leverages the

frequency features after non-stationary scaling to decompose con-

current transmissions.

To see how NScale works, consider a simplified collision scenario

in Figure 1, where two packets - each with three chirps (symbols)

- collide. The PHY layer of LoRa uses the Chirp Spread Spectrum

(CSS) modulation to modulate data into chirp symbols of linearly

increasing frequency. In demodulation, each window containing

a chirp symbol is multiplied with a base down-chirp of linearly

decreasing frequency. When there is no collision, this dechirp op-

eration results in a single frequency tone (a single peak after FFT)

which represents the modulated data. When there are collisions, the

dechirp results in multiple frequency tones in a window, making it

difficult to distinguish symbols from different packets.

To decode collided packets, as shown in Figure 1, we leverage

the down-chirp with non-stationary amplitude to translate the time

misalignment of packets into frequency features, which can be

leveraged to separate packets from different senders. NScale first

applies the standard demodulation with the base down-chirp to

each window. The three chirp segments, as shown in Figure 1, re-

sult in three FFT peaks (ℎ1, ℎ2 and ℎ3) with height proportional to

the segment length and the signal amplitude. Those three peaks

also show why traditional LoRa cannot decode the collision. Fur-

ther, NScale dechirps each window with a non-stationary scaled

down-chirp, i.e., a down-chirp with varying amplification along

time. We multiply the three chirp segments in the window by a

non-stationary scaled down-chirp with different amplitudes at dif-

ferent positions. This results in FFT peaks amplified with different

factors (𝛼1ℎ1, 𝛼2ℎ2 and 𝛼3ℎ3), depending on which part on the non-

stationary scaled down-chirp is multiplied with the chirp segment.

Combining the dechirp results, we can obtain the scaling factors 𝛼𝑖 .
By carefully designing the non-stationary scaled down-chirp, we

can make 𝛼𝑖 distinguishable and derive the chirp segment length

and position related to the non-stationary scaled down-chirp. Based

on this, we can group chirp segments for each packet with the same

misalignment and then decode each packet.

Challenges. Turning the idea into reality, however, entails non-

trivial challenges. First, NScale relies on accurate measurement of

peaks for frequency tones after dechirping, which is difficult due

to low SNR signal and the phase rotation property of the Fourier

transformation.We propose a noise resistant iterative peak recovery

algorithm to combat the peak distortion, and achieve an accurate

estimation of both frequency and height for each peak. Second, it is

non-trivial to design the non-stationary scaled down-chirp, which

affects the performance of NScale. We make an in-depth analysis

of the relationship between non-stationary scaled down-chirps and

the decoding performance, and propose the designing strategy for

non-stationary scaled down-chirps to optimize NScale’s decoding

performance in practice. Third, after grouping chirp segments to

packets for decoding, we find it is difficult to decode each group of

chirp segments due to the mixed impact of the Central Frequency

Offset (CFO) and symbol-window time offset.We design a technique

to calculate CFO and symbol-to-window time offset based on the

combination of up-chirps and down-chirps in the preamble and

SFD of LoRa packets. Finally, we decode each group of peaks after

compensating the CFO and time offset.

Main Results and Contributions.

• We propose NScale, a protocol leveraging non-stationary

scaling to decompose concurrent transmissions for low SNR

LoRa collisions, trying to bridge the gap between LoRa vision

to provide low-power long-distance connection to large scale

IoT devices, and its practical limitations. To address practical

challenges in NScale design, we propose a noise-resistant

iterative peak recovery algorithm to resolve peak distortion

in low SNR LoRa signal, and remove the impact of the CFO

and time offset to accurately decode packets.

• We theoretically analyze NScale performance and show that

NScale incurs SNR loss <1.7 dB to original LoRa.

• We implement NScale on the SDR platform USRP N210.

NScale is completely implemented in software at the LoRa

gateway without any modification to LoRa end nodes. Thus,

it can be easily applied to COTS LoRa nodes and existing

LoRa networks.

• We thoroughly evaluate NScale’s performance in both in-

door and outdoor LoRa networks. The experiment results

show that NScale can improve the network throughput in

collisions by 3.3× for low SNR LoRa signals compared with

other state-of-the-art methods.

2 BACKGROUND AND MOTIVATION

2.1 LoRa Background

LoRa physical layer adopts the Chirp Spreading Spectrum (CSS)

technique for modulation [16]. CSS modulates data into chirp sym-

bols whose frequency change linearly over time. As shown in Fig-

ure 2(a), given a predefined bandwidth 𝐵𝑊 , the frequency of the

base up-chirp 𝐶 (𝑡) linearly increases from − 𝐵𝑊
2 to 𝐵𝑊

2 . Thus, the

frequency of the base up-chirp can be represented as 𝑘𝑡 − 𝐵𝑊
2 , where
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Figure 2: LoRa Physical Layer: (a)-(b) Spectrogram and de-

modulation result of a base chirp symbol. (c)-(d) Spectro-

gram and demodulation result of a shifted chirp symbol.

𝑘 denotes the frequency increasing rate of the chirp. The base up-

chirp 𝐶 (𝑡) can be represented as

𝐶 (𝑡) = 𝑒 𝑗2𝜋 (− 𝐵𝑊
2 + 𝑘𝑡

2 )𝑡 (1)

LoRa encodes data bits into symbols by shifting the initial frequency

of the base up-chirp. A LoRa symbol with initial frequency 𝑓𝑠𝑦𝑚
is denoted as 𝐶 (𝑡 )𝑒 𝑗2𝜋 𝑓𝑠𝑦𝑚𝑡 . Given the bandwidth 𝐵𝑊 , frequency

for a symbol higher than 𝐵𝑊
2 aligns down to −𝐵𝑊

2 as shown in

Figure 2(c). LoRa defines 𝑁 different shifted initial frequencies,

which results in 𝑁 uniformly shaped up-chirps to encode 𝑆𝐹 =
𝑙𝑜𝑔2𝑁 bits [17].

A typical LoRa receiver demodulates an incoming LoRa chirp as

follows. It first multiplies the received signal with a base down-chirp

𝐶−1 (𝑡), i.e., the conjugate of a base up-chirp𝐶 (𝑡). After multiplying,

the received signal is dechirped into a single tone at the frequency

of 𝑓𝑠𝑦𝑚 , i.e.,

𝐶−1 (𝑡) ×𝐶 (𝑡)𝑒 𝑗2𝜋 𝑓𝑠𝑦𝑚𝑡 = 𝑒 𝑗2𝜋 𝑓𝑠𝑦𝑚𝑡

Then the receiver applies the Fast Fourier Transform (FFT) on the

multiplication result, translating the time-domain signal into an

energy peak in the frequency domain, as shown in Figure 2(b) and

Figure 2(d). The index of the energy peak (i.e., frequency) indicates

the encoded data of the received chirp symbol.

LoRa follows a unique packet structure at the physical layer. A

typical LoRa packet is composed of multiple preamble symbols, 2

mandatory sync word symbols, 2.25 Start Frame Delimiter (SFD)

symbols followed by a variable number of payload symbols [18].

The preambles are identical base up-chirps, and the SFDs are identi-

cal base down-chirps. The payload symbols are all shifted up-chirps.

2.2 Limitations & Challenges

The main advantage of LoRa design is that it can concentrate time

domain energy into a single tone frequency peak by dechirping [19].
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Figure 3: Main workflow of NScale design.

CSS is inherently robust against channel noise. Thus, LoRa signals

can be detected and decoded even under extremely low SNR (e.g.

SNR as low as -20 dB) [20], enabling low power and long range

communications [21, 22].

When multiple LoRa nodes transmit simultaneously, their sig-

nals will collide at the receiver. As shown in Figure 1, multiple

chirp segments overlap in the same demodulation window, each of

which corresponds to an energy peak in the FFT result. The LoRa

demodulator cannot map FFT peaks to the correct transmitters,

and thus it fails to decode the collided signals. The key to decode

collisions is to correspond multiple peaks in each demodulation

window to different transmitters.

Existing collision decoding approaches do not thoroughly exploit

the LoRa encoding properties and cannot work well under low SNR

LoRa signals. For example, SIC usually focuses on time-domain

signal decoding and cancellation and does not leverage the LoRa

properties. As a result, existing collision decoding approaches [13,

15] cannot work for low SNR LoRa signals. They mainly provide

experiment results on high SNR decoding, like 𝑆𝑁𝑅 > 0 in [13]

and [15]. We argue this significantly removes the major advantages

of LoRa, which is supposed to provide long range and low power

communications with very low SNR of even −20 dB.

2.3 Motivation

We leverage the fact that collided LoRa packets are likely to be

misaligned in time. As shown in Figure 1, the collided signal is

divided into consecutive demodulation windows of 𝐿, where 𝐿
is the symbol length. When a packet is not exactly aligned with

the window, there will be two LoRa segments in each window.

Assuming the length of the first LoRa symbol and second LoRa

symbol are 𝛾1𝐿 and 𝛾2𝐿, respectively, we have 𝛾1𝐿 + 𝛾2𝐿 = 𝐿. We

have two observations: (1) Given a specific LoRa packet, the in-

window segment distribution, i.e., 𝛾1 and 𝛾2, are the same across all

consecutive windows. (2) For two unaligned LoRa packets, their in-

window segment distributions should be different. The in-window

segment distribution can be applied to disentangle different packets

in a collision.

3 NSCALE DESIGN

3.1 Design Overview

Design Goals.Overall, NScale has the following main design goals:

• NScale should work for low SNR LoRa collisions and incurs

very small SNR loss to LoRa decoding.
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Figure 4: Detecting LoRa packets by correlationwith a single

base up-chirp.

• NScale should incur no modification to LoRa node and thus

can be applied to COTS nodes and existing LoRa network

deployments.

• NScale should incur small computation overhead compared

with typical LoRa decoding.

Figure 3 illustrates the main flow of NScale design:

Packet identification. For a received signal sequence, NScale

first detects the existence of LoRa packets by correlatingwith pream-

bles. When there is no collision, the signal is sent directly to a

standard LoRa decoder. Otherwise, NScale utilizes up-chirps of

preambles to identify the coarse beginning of each collided packet.

Then the collided signal is divided into multiple consecutive de-

modulation windows of chirp length.

In-window distribution detection. For each demodulation

window, NScale transforms the in-window distribution of each low-

SNR symbol into robust FFT peak features by non-stationary scaling.

Usually, in a demodulation window, there will be multiple chirp

segments when the window and the packet are misaligned. As long

as two packets are not aligned, the in-window distribution of chirp

segments for those two packets are different. Consequently, we can

infer which packet the corresponding chirp segments belongs to

according to the segment distribution. NScale accurately recovers

the features of peaks in the presence of distortion due to the phase

rotation property of the Fourier transform.

Symbol recovery. Based on the estimated in-window distribu-

tion information, NScale classifies symbols into multiple clusters,

each corresponding to a collided LoRa packet. Before decoding,

we estimate the CFO and the packet-window time offsets utilizing

up-chirps and down-chirps from the preamble and SFD of the corre-

sponding LoRa packet. Finally, NScale combines each pair of chirp

segments into packet chirps, and the output chirps are fed to the

standard LoRa decoder for packet decoding.

3.2 Packet Identification

Upon receiving a signal sequence, NScale first detects the existence

of LoRa packets. One intuitive idea for packet identification is to

correlate the received digital samples with a standard LoRa pre-

amble [23], which consists of 𝑁𝑐 consecutive base up-chirps. The

correlation is expected to create a peak when the standard preamble

aligns with a received packet. This, however, has some practical

limitations. Due to the CFO between the transmitter and the re-

ceiver, up-chirps in the received preamble have different initial

phases. Thus, the up-chirps in the standard LoRa preamble may

have different initial phases compared to the received up-chirps.

After correlating the received samples with a standard LoRa pream-

ble, the resulting correlation peak of the entire preamble becomes

low or disappears, even when the correlated sequence accurately

aligns with the received packet.

We propose an enhanced two-step preamble detection. We lever-

age the fact that CFO influences the correlation of the entire pre-

amble, but has less effect on correlating a single up-chirp. Thus, we

use a single moving base up-chirp with constant amplitude to cor-

relate with the incoming signal, resulting in 𝑁𝑐 correlation peaks,

as shown in Figure 4. The intervals between each two adjacent

correlation peaks are identical, equal to the number of samples

within a chirp, i.e., 𝑁 . Denote 𝐶 [𝑖] as the 𝑖th correlation output,

our packet identification works as

𝑓 𝑖𝑛𝑑 𝑠, 𝑠 .𝑡 . |𝐶 [𝑠 + 𝑘𝑁 ] | > 𝛿, ∀𝑘 ∈ [0, 𝑁𝑐 − 1]

where 𝑠 is the start of packet preamble and 𝛿 represents the mini-

mum correlation requirements, which can be determined by chan-

nel estimation.

3.3 In-Window Distribution Detection

NScale separates LoRa collisions according to the in-window dis-

tribution of each chirp symbol. A practical challenge is precisely

extracting the time domain segment distribution under low SNR.

We address this from the following aspects: (1) translating the

time-domain feature to robust FFT peak features in the frequency

domain; (2) concentrating the energy in the time domain to fre-

quency features by dechirping, which preserves the merits of LoRa

decoding; (3) using the non-stationary signal scaling to further

amplify the features. The algorithm chiefly involves the following

three steps. (1) For signals in each window, we multiply it with a

base down-chirp, and perform the Fourier transform on the mul-

tiplication. This translates time-domain chirp segments to energy

peaks in the frequency domain. (2) We further multiply the received

signal with a non-stationary scaled down-chirp with varying ampli-

tude over time. We transform the result of multiplication to energy

peaks in the frequency domain, extracting each peak’s index and

height. (3) We pair the energy peaks from the above two steps ac-

cording to peak indexes, and calculate peak scaling factors as the

height ratios of each pair of peaks. Given the scaling function of the

non-stationary scaled down-chirp, we can derive the in-window

distribution of each chirp segment from the peak scaling factors.

Suppose𝑛 LoRa packets collide at the receiver.We detect the start

time of the received signal and divide the collision into consecutive

demodulation windows, each having the same length as a chirp. For

signals in each demodulation window, we illustrate how to extract

the in-window distribution information of two chirp segments: a

left segment to the start of the window (Figure 5(a)) and a right

segment adjacent to the end of the window (Figure 5(d)). Figure 5(a)

shows an example of the left segment with a symbol-window time

237



Combating Packet Collisions Using Non-Stationary

Signal Scaling in LPWANs MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

0 0.01 0.02 0.03
Time (in ms)

-5

0

5

Fr
eq

ue
nc

y 
(in

 H
z)

104

(a)

-5 0 5
Frequency (in Hz) 104

0

100

200

300

400

ab
s.

 F
FT

168

(b)

-5 0 5
Frequency (in Hz) 104

0

100

200

300

400

ab
s.

 F
FT

292

(c)

0 0.01 0.02 0.03
Time (in ms)

-5

0

5

Fr
eq

ue
nc

y 
(in

 H
z)

104

(d)

-5 0 5
Frequency (in Hz) 104

0

100

200

300

400

ab
s.

 F
FT

169

(e)

-5 0 5
Frequency (in Hz) 104

0

100

200

300

400

ab
s.

 F
FT

385

(f)

Figure 5: In-Window Distribution Detection: (a)(d) Symbol

segments with different in-window distributions. (b)(e) FFT

after multiplying with a base down-chirp. (c)(f) FFT after

multiplying with a non-stationary scaled down-chirp. In-

window distributions of multiple collided segments can be

detected simultaneously through a single non-stationary

dechirping.

offset of Δ𝑡 , i.e.,

𝐶𝐿 (𝑡) = 𝐻𝑒
𝑗2𝜋 𝑓 𝑡𝐶 (𝑡 + Δ𝑡) 0 ≤ 𝑡 < 𝑇 − Δ𝑡 (2)

where 𝐶 (𝑡) is the base up-chirp, 𝑓 and 𝐻 denotes the initial fre-

quency and amplitude of the received chirp. As the time offsets of

chirps can be translated to frequency shifts, we have 𝐶 (𝑡 + Δ𝑡) =
𝑒 𝑗2𝜋 (𝑘Δ𝑡 )𝑡𝐶 (𝑡), where𝑘 is the increasing rate of the chirp frequency.
We multiply 𝐶𝐿 (𝑡) by a base down-chirp (i.e., 𝐶−1 (𝑡)) with sta-

tionary amplitude throughout the whole symbol duration. This

multiplication dechirps the chirp segment into a single tone, with

the frequency of 𝑓 + 𝑘Δ𝑡 and time range of [0,𝑇 − Δ𝑡). After the
multiplication, we perform FFT to aggregate the energy of the chirp

segment to an energy peak in the frequency domain, as shown

in Figure 5(b). We perform zero-padding to the original signal be-

fore the Fourier transform to improve the frequency granularity.

Suppose the energy peak of the chirp segment appears at the𝑚th
FFT bin of transformation result. The height of that peak can be

calculated as:

ℎ1 = |𝑋1 [𝑚] | =
���𝑁0−1∑
𝑛=0

𝐶−1 [𝑛] ×𝐶𝐿 [𝑛]𝑒
−𝑗2𝜋 𝑛𝑚

𝑁

���
where 𝐶𝐿 [𝑛] is the 𝑛th discrete sample of the chirp segment, 𝑁0
and 𝑁 represent the number of samples for the chirp segment and

the whole demodulation window, respectively. Substituting 𝐶𝐿 [𝑛]
with Eq. 2, we have the peak height as ℎ1 = 𝐻 × 𝑁0.

Beside the base down-chirp, we design a non-stationary scaled

down-chirp 𝐴(𝑡)𝐶−1 (𝑡), whose amplitude changes over time with

a known scaling function 𝐴(𝑡). We multiply the left segment𝐶𝐿 (𝑡)
with the non-stationary scaled down-chirp. After the Fourier trans-

formation on the multiplication result, we obtain an energy peak

in the frequency domain, as shown in Figure 5(c), with the height:

ℎ2 = |𝑋2 [𝑚] | =
���𝑁0−1∑
𝑛=0

𝐴[𝑛]𝐶−1 [𝑛] ×𝐶𝐿 [𝑛]𝑒
−𝑗2𝜋 𝑛𝑚

𝑁

���
where 𝐴[𝑛] is the discrete sample of scaling function. Substituting

𝐶𝐿 [𝑛] with Eq. 2, the height of the energy peak is simplified as

ℎ2 = 𝐻
∑𝑁0−1
𝑛=0 𝐴[𝑛].

Note that the non-stationary scaling on the down-chirp does not

affect the frequency of the FFT result. The energy peaks of both

ℎ1 and ℎ2 locate at the same frequency, i.e., 𝑓 + 𝑘Δ𝑡 . The above

procedures also translate the right segment in Figure 5(d) into two

FFT peaks with the same frequency, as shown in Figure 5(e) and (f).

In the presence of collisions, multiple overlapped chirp segments

can be translated into FFT peaks simultaneously through a single

dechirping. For each chirp segment, we pair its energy peaks from

the multiplication of base down-chirp and non-stationary down-

chip according to the peak frequencies. For paired peaks of the

same chirp segment, we calculate the peak scaling factor 𝑃 as the
ratio of peak heights

𝑃 =
ℎ2
ℎ1

=

∑𝑁0−1
𝑛=0 𝐴[𝑛]

𝑁0
(3)

As the scaling function 𝐴[𝑛] is already known, we can infer the

in-window distribution for each chirp segment directly from the

peak scaling factor 𝑃 .
At this point, we can calculate the in-window distribution of

chirp segments. Then, two consecutive chirp segments for the same

chirp are paired and merged by searching peaks with the same

frequency in consecutive windows. Finally, we can obtain all chirp

symbols extracted from the collision, each with the estimated in-

window distribution information.

3.4 Peak Estimation in Practice

The above in-window distribution calculation relies on accurately

estimating FFT peaks from the LoRa collisions, including both the

peak frequency and the peak height. However, accurate peak estima-

tion is challenging due to peak distortion caused by phase rotation

property of the Fourier transform. In this subsection, we discuss

the reason of peak distortion and further show how to improve the

estimation accuracy in practice.

In practice, the phase rotation property of the Fourier trans-

form distorts frequency peaks. A shift in the time domain can be

translated into a phase rotation in the frequency domain [24]:

F {𝑟 (𝑡)} = 𝑅(𝑓 )
F {𝑟 (𝑡 + 𝜏)} = 𝑅(𝑓 ) · 𝑒 𝑗2𝜋 𝑓 𝜏

(4)

where 𝑟 (𝑡) is the signal in the time domain, and 𝑅(𝑓 ) is the corre-
sponding frequency-domain representation. LoRa conveys data by

cyclically shifting the frequency of base up-chirps. After dechirp-

ing, a LoRa symbol generates two frequencies, i.e., 𝑓 and 𝑓 − 𝐵𝑊 ,

respectively. When the sampling rate is equal to the chirp band-

width 𝐵𝑊 , the Fourier transform of the two frequencies will result

in two peaks, denoted as 𝑅1 (𝑓 ) and 𝑅2 (𝑓 ), at the same location. If

the LoRa chirp accurately aligns with the demodulation window,

𝑅1 (𝑓 ) and 𝑅2 (𝑓 ) add up constructively, resulting in an ideal peak

as shown in Figure 6(a). However, when the LoRa symbol and the
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Figure 6: Peak Distortion Example: (a) Ideal peak when a

chirp is aligned with the demodulation window. (b)(c) Dis-

torted peaks when a chirp and demodulation window are

misaligned by a time offset 𝜏 .

demodulation window are misaligned (suppose the time offset is 𝜏 ),
the Fourier transform of the two frequencies will rotate by different

phases. Recall the phase rotation property in Eq. 4, with the same

time offset 𝜏 , peaks of different frequencies have different phase

shifts, i.e., 𝑅1 (𝑓 ) ·𝑒
𝑗2𝜋 𝑓 𝜏 and 𝑅2 (𝑓 ) ·𝑒

𝑗2𝜋 (𝑓 −𝐵𝑊 )𝜏 . Those two peaks

with different phase shifts add up destructively, resulting in peak

distortions. As shown in Figure 6(b) and (c), with a different time

offset 𝜏 , peaks in the frequency domain are distorted differently, im-

pacting the estimation of accurate peak frequency and peak height

in practice.

To solve this problem, NScale recovers FFT peaks from distortion

by compensating the phase rotation of the two frequencies, i.e., 𝑓
and 𝑓 −𝐵𝑊 , which relies on the sampling rate of off-the-shelf ADCs

being much higher than the chirp bandwidth 𝐵𝑊 . When sampling

the received signal at a high rate (e.g., higher than 2𝐵𝑊 according

to the Nyquist-Shannon theorem [25]), the Fourier transform of

the received signal will result in two separate peaks, 𝑅(𝑓 ) and
𝑅(𝑓 −𝐵𝑊 ), respectively. To compensate the phase rotation, NScale

searches the phase difference between 𝑅(𝑓 ) and 𝑅(𝑓 − 𝐵𝑊 ) via:

𝜙 = arg max
0<𝜙≤2𝜋

𝑅(𝑓 ) · 𝑒 𝑗𝜙 + 𝑅(𝑓 − 𝐵𝑊 ) (5)

The maximum can be obtained only when the phase rotation effect

is compensated. Then we can estimate the peak accurately. It is

worth noting that we can apply stochastic gradient-descent algo-

rithms on Eq. 5 with randomly chosen initial points that are likely

to converge to the global maximum.

3.5 Symbol Recovery

To decode the collisions, we further need to group symbols into

different packets and then recover the precise information of each

symbol.

NScale utilizes a constrained k-means based approach to group

the symbols into 𝑘 clusters (i.e., the 𝑘 collided packets). The in-

window distribution, which is identical for symbols of the same

packet but distinct for symbols of different packets, is selected as the

characteristic value for clustering. The chirp symbols with different

in-window distribution are fed into the clustering algorithm for

symbol grouping. The grouping method further applies constraints

from the following aspects. (1) Symbols are grouped to the clusters

in time order. (2) A new cluster can only emerge and start gathering

symbols after detecting the start of a packet. (3) Each cluster has

one and only one symbol in each demodulation window. Based

Base Up-Chirp Base Down-Chirp

...

...

Figure 7: Detecting accurate packet start by eliminating the

impact of CFO.

on the constraints, we obtain 𝑘 groups of symbols, each of which

corresponds to a collided packet. Finally, we send the recovered

symbols to a standard LoRa decoder for decoding.

Before packet decoding, we need to (1) eliminate the impact

of CFO to recover the accurate frequency of each chirp, and (2)

find the accurate start of each packet to compensate for the time

offset of each chirp. A practical challenge is that the CFO and the

packet time offset are cross dependent, impacting the estimation

of each other. We leverage the unique structure of LoRa packets

in accurately calculating CFO and packet time offsets. One key

finding is that for the same amount of CFO, the resulted correlation

peaks of up-chirps and down-chirps shift oppositely. As shown in

Figure 7, assuming a LoRa packet is received with a positive CFO,

we correlate the received signal with a base up-chirp followed by a

base down-chirp, respectively. The shift of peak frequency of the

up-chirp is −𝑁 · 𝐶𝐹𝑂/𝐵𝑊 , while the shift for the down-chirp is

𝑁 ·𝐶𝐹𝑂/𝐵𝑊 . Denote Δ = 𝑁 ·𝐶𝐹𝑂/𝐵𝑊 . For the base up-chirp, the

correlation peak appears at 𝐼1 = 𝑖 − Δ, where 𝑖 is the actual start
of the packet. While for the base down-chirp, the correlation peak

appears at 𝐼2 = (𝑖 + 𝑘𝑁 ) + Δ. We calculate the shift of correlation

peaks as

Δ = 𝑀𝑂𝐷 (𝐼2 − 𝐼1, 𝑁 )/2 (6)

Then we can calculate CFO as

𝐶𝐹𝑂 = Δ × 𝐵𝑊 /𝑁 (7)

Therefore, we can eliminate the impact of CFO and time offset for

each chirp, and finally recover the accurate frequency for packet

decoding.

4 NSCALE ANALYSIS

4.1 SNR Loss

We present an analysis of the SNR requirements of NScale and show

that the non-stationary amplitude scaling introduces a very small

SNR loss, allowing NScale to decode collisions under extremely low

SNR.

NScale processes the signal in each demodulation window. Let

𝑦 = 𝑦𝐴 +𝑤 be the received signal within a demodulation window,

where 𝑦𝐴 is the chirp segment and 𝑤 is the channel noise. By

multiplying with a base down-chirp, 𝑦𝐴 is dechirped into a single

tone, while𝑤 still follows the compound Gaussian distribution [26].
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NScale then performs the FFT on the multiplication as

F (𝑦 ·𝐶−1) =
𝑁−1∑
𝑛=0

𝑒−𝑗2𝜋
𝑛𝑘
𝑁 · (𝑦 [𝑛] ·𝐶−1 [𝑛])

=
𝑁−1∑
𝑛=0

𝑒−𝑗2𝜋
𝑛𝑘
𝑁 · (𝑦𝐴 [𝑛] + 𝑤̂ [𝑛])

For the target segment𝑦𝐴 , after the transformation, the energy of𝑦𝐴
is aggregated, resulting in an energy peak at the corresponding FFT

bin. The height of the energy peak is the product of the amplitude

and the length of the target segment, i.e.,

𝐻 = lim
𝑘/𝑇→𝑓𝑠𝑦𝑚

��� 𝐿−1∑
𝑛=0

ℎ𝑒 𝑗2𝜋 (𝑓𝑠𝑦𝑚
𝑛𝑇
𝑁 −𝑛𝑘

𝑁 )
��� = ℎ × 𝐿

where 𝑓𝑠𝑦𝑚 , ℎ and 𝐿 are the frequency, amplitude and length of 𝑦𝐴 ,
respectively.

We also apply dechirping and the FFT with a non-stationary

scaled down-chirp. With a non-stationary scaling function 𝐴[𝑛],
the peak height of the resulted signal is

𝐻 =
𝐿−1∑
𝑛=0

𝐴[𝑛]ℎ = ℎ
𝐿−1∑
𝑛=0

𝐴[𝑛] (8)

For the noise 𝑤̂ , generally, it follows the compound Gaussian

distribution, where�(𝑤̂) ∼ N (0, 𝜎2) and �(𝑤̂) ∼ N (0, 𝜎2). Thus
for signal in a demodulation window, the total energy of noise can

be calculated as:

𝐶𝑤 =
𝑁−1∑
𝑛=0

|𝑤̂ [𝑛] |2 = 𝑁 × 𝐸 ( |𝑤̂ [𝑛] |2) = 2𝜎2𝑁

where 𝐸 ( |𝑤̂ [𝑛] |2) = 2𝜎2 is the expectation of the instant noise

energy density [27]. After applying the FFT on the received signal,

the noise 𝑤̂ also transforms from the time domain to the frequency

domain. Based on the Parseval’s theorem, the total energy of the

signal in the time domain is equal to the energy of the frequency

domain, i.e., 𝐶𝑤 = 2𝜎2𝑁 = 1
𝑁

∑𝑁−1
𝑘=0 |𝑋 [𝑘] |2, where 𝑋 [𝑘] is the

power spectral density (PSD) of 𝑤̂ at the frequency of 𝑘/𝑇 . As the
PSD of Gaussian white noise is subject to uniform distribution, the

energy strength of 𝑤̂ at each FFT bin can be expressed as |𝑋 [𝑘] |2 =
2𝜎2𝑁 .

Now considering the non-stationary scaling on the received sig-

nal, both the target symbols and the noise within the window are

amplified non-stationarily. The noise amplified by factor 𝐴[𝑛] fol-
lows the distribution ofN(0, 𝜎2𝐴[𝑛]2). Thus, the total energy of the
noise within a demodulation window is 𝐶 ′𝑤 = 2𝜎2

∑𝑁−1
𝑛=0 |𝐴[𝑛] |2

and the energy strength at any frequency is:

|𝑋 ′[𝑘] |2 = 2𝜎2
𝑁−1∑
𝑛=0

|𝐴[𝑛] |2

Consequently, in the frequency domain, the energy output of noise

follows the Rayleigh distribution with the parameter of |𝑋 ′[𝑘] |.
According to [28], for a sequence of 𝑁 random values, each of

which follows the Rayleigh distribution with the parameter of 𝛿 ,

the maximum of the sequence approximates to
√
𝛿2 × 𝐻𝑁 , where

𝐻𝑁 =
∑𝑁
𝑛=1

1
𝑛 is the 𝑁 th value of the harmonic series. Therefore,

A B

(a)

i j

Pi
Pj

(b)

Figure 8: Designing non-stationary scaling: (a) A non-

monotonous scaling function leads to two different chirp

segments corresponding to the same peak scaling factor. (b)

A linear scaling function maximize the mean inter-object

distances.

after performing the FFT on the noise, the maximum output in the

frequency domain is:

𝑀 = max
𝑘,𝑘≠𝑙

|𝑋 ′[𝑘] | ≈

√√√
2𝜎2

𝑁−1∑
𝑛=0

|𝐴[𝑛] |2 × 𝐻2𝑠 𝑓 −1 (9)

To decode signal from noise, the energy peak in Eq. 8 should be

higher than the maximum noise output in Eq. 9, i.e., 𝐻 > 𝑀 . Thus,

the minimal SNR requirement for NScale is:

𝑅1 = 10 lg
( ℎ2
2𝜎2

)
= 10 lg

(∑𝑁−1
𝑛=0 |𝐴[𝑛] |2 × 𝐻2𝑠 𝑓 −1

(
∑𝐿−1
𝑛=0 𝐴[𝑛])

2

)

Ideally, the SNR requirement for original LoRa in the case of no

collision is 𝑅2 = 10 lg(𝐻2𝑠 𝑓 −1/𝑁 ). Thus, the SNR loss introduced

by NScale’s non-stationary amplitude scaling is

𝐿𝑜𝑠𝑠 = 𝑅1 − 𝑅2 = 10 lg

(
𝑁
∑𝑁−1
𝑛=0 |𝐴[𝑛] |2

(
∑𝐿−1
𝑛=0 𝐴[𝑛])

2

)
(10)

We can see that the SNR loss is related to both the segment

length 𝐿 and the scaling function 𝐴[𝑛]. We further show how to

design non-stationary scaled down-chirps, and show that the SNR

loss by a well-designed scaling function can be less than 1.7 dB in

Sec. 4.2.

4.2 Designing Non-Stationary Scaling

NScale calculates the in-window distributions of collided symbols

using non-stationary signal scaling. Therefore, the design of the

scaling function impacts the decoding performance. We show the

effect of the non-stationary scaling function on the decoding perfor-

mance of NScale, and present strategies on designing an effective

function.

The first rule for non-stationary scaling function is being monot-

onous. Through non-stationary amplitude scaling, the in-window

distributions of chirps are translated to peak scaling factors in the
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Figure 9: Performance comparison of linear scaling func-

tions with different slopes (i.e., change of the amplitude,

starting at 1, over the whole symbol duration): (a) Averaged

SER. (b) SNR Loss.

frequency domain (i.e., 𝑃𝑖 in Eq.3). As shown in Figure 8(b), for a

monotonous scaling function, the chirp segments with different in-

window distributions can generate different peak heights, leading

to different peak scaling factors. Otherwise, for a non-monotonous

scaling function, symbols with different in-window time distribu-

tions may result in the same peak scaling factor, leading to ambi-

guity. We show an example in Figure 8(a) with a down-chirp of

non-monotonous scaling function. The bottom of this figure is the

relationship between peak scaling factors and in-window distribu-

tions, calculated according to Eq. 2. It is possible for two different

in-window distributions to result in the same peak scaling factor.

As shown in Figure 8(a), the points A and B in this figure represent

two chirp segments of different in-window distributions. Due to the

non-monotonicity of the scaling function, these two segments with

distinct in-window distributions generate the same peak scaling

factor, making it difficult to distinguish them.

The scaling function should also be linear. Here we describe why

linear scaling functions are required for separating collided sym-

bols. As illustrated in Sec. 3.5, NScale groups collided symbols into

different packets according to the symbol in-window distribution,

which is reflected by the peak scaling factor in Eq. 3. For accurate

distribution calculation, the peak scaling factors for symbols of dif-

ferent in-window distributions should be different. Thus, the goal

of our non-stationary scaling design is to maximize the difference

in peak scaling factors of different in-window distributions. For two

different in-window distributions 𝑖 and 𝑗 , we define the distance
between their peak scaling factors as

𝑑 (𝑖, 𝑗) =
|𝑃𝑖 − 𝑃 𝑗 |

max{P} −min{P}

where 𝑃𝑖 and 𝑃 𝑗 are the scaling factors for 𝑖 and 𝑗 , as shown in

Figure 8(b); and P is a set of all possible peak scaling factors. For a

demodulation window with 𝑁 sample points, there are 2𝑁 possible

in-window distributions corresponding to 2𝑁 different peak scaling

factors, i.e., |P| = 2𝑁 . All scaling factors are normalized to the range

of (0, 1] by dividing max{P} −min{P}.

Given a specific scaling function, the set of all possible peak

scaling factors, i.e., P, can be derived according to Eq. 2. Each object

in P corresponds to a different in-window distribution. For object

𝑖 ∈ P, let

𝑎(𝑖) =
1

|P| − 1

∑
𝑗 ∈P, 𝑗≠𝑖

|𝑑 (𝑖, 𝑗) |2

be the mean distance between 𝑖 and all other objects. We can in-

terpret 𝑎(𝑖) as a measure of how well 𝑖 is separated from other

in-window distributions (the bigger the value, the better the sep-

aration). Thus, the problem of designing non-stationary scaling

is to finding a collection of P to maximize the mean inter-object

distances, i.e.,

P𝑜𝑝𝑡 = argmax
P

1

|P|

∑
𝑖∈P

𝑎(𝑖) (11)

Given a monotonous scaling function and the number of 𝑗 greater

than 𝑖 , as shown in Figure 8(b), we have 𝑑 (𝑖, 𝑗) =
∑𝑗−1
𝑘=𝑖 𝑑 (𝑘, 𝑘 + 1).

The mean inter-object distances in Eq.11 achieves maximum only

when the distances between each pair of neighboring objects are

identical, i.e., 𝑑 (𝑘, 𝑘 + 1) = 1
|P |
,∀𝑘 ∈ P, indicating that the scaling

function should be linear.

We finally evaluate the NScale’s decoding performance under

different linear scaling functions.We use the slope of a linear scaling

function to represent the change of its amplitude (starting at 1) over

the whole chirp duration. We use linear scaling functions with

different slopes to decode the same set of two-packet collision. As

shown in Figure 9(a), for collisions with small inter-packet offsets (<
10% symbol duration), the SER decreases as the slope increases. This

is because scaling functions of large slope magnify the small time

offsets. While for collisions with large time offsets (> 35% symbol

duration), the slopes of scaling functions have less impact on the

SERs, as the packets can already be distinguished. We also examine

the SNR loss for scaling functions of different slopes. We vary the

SNR of the received LoRa signal bymanually adding white Gaussian

noise, and evaluate the minimum decoding SNR requirement for

both original LoRa and NScale with different linear scaling slope.

The results of the experiment are shown in Figure 9(b). We can see

from the results that NScale introduces less than 1.7 dB SNR loss

compared with the original LoRa.

Summary. Linear function is a good design for the non-stationary

scaling. The slope of the linear scaling function can be determined

according to the inter-packet offset and SNR of the received col-

lisions. Compared with the original LoRa, NScale introduces less

than 1.7 dB SNR loss.

5 EVALUATION

We implement NScale on the software defined radios (SDRs) and

evaluate its performance with commercial LoRa devices. The proto-

type of NScale is shown in Figure 10, which is composed of a USRP

N210 along with a UBX daughter board, operating at the 470MHz

bands. Decoding algorithms of NScale are hardware-independent,

so it can be implemented on any other commercial LoRa gateways

as long as the physical samples can be obtained. Note that LoRa

gateways are usually deployed with tethered power supplies, and

thus we do not consider energy consumption at the gateway. We

use the UHD+GNU-Radio library [29] for developing our own LoRa

demodulator, and implement NScale in MATLAB to process the

PHY samples offline. By default, our experiment uses the spreading

factor SF = 10, coding rate CR = 4/5 and bandwidth BW = 125 kHz.

The sampling rate of NScale in our experiment is set to 1 MS/s.
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Gateway:
Antenna
USRP N210
Low Noise Amplifier
Power Supply

Testbed Node:
Raspberry Pi 3B Platform
SX1278MB1LAS Client

Figure 10: LoRaGateway andTestbed Setup:DepictsNScale’s

USRPN210 based gateway and commodity client based LoRa

testbed.

5.1 Evaluation Methodology

5.1.1 Experiment environments. WeevaluatedNScale’s performance

in both indoor and outdoor environments.

• As shown in Figure 10, the indoor testbed (LoRaNet) consists

of 40 LoRa end nodes, each of which uses an SX1278 radio

chip [30] and works at the frequency of 470 MHz. Each node

is connected to a Raspberry Pi and placed at a fixed position

on a shelf. All the Raspberry Pis are connected to a backbone

network and thus all the LoRa nodes can be efficiently and

accurately controlled to facilitate precise collision generation

and measurement.

• The outdoor LoRa testbed is composed of enclosed nodes

shown in Figure 15, each of which can sense the temperature

and humidity of the environment and transmits the sensed

data to the gateway via an SX1268 LoRa radio chip. The

nodes of the outdoor testbed can harvest energy from solar

power, making them easy to deploy on different locations

such as roads, roofs, and parking lots.

5.1.2 Compared methods. We compare NScale with three recent

works for LoRa collision decoding.

• Choir [14]: a collision decoding method for LoRa using hard-

ware imperfection.

• FTrack [15]: a collision decoding method for LoRa based on

time domain signal analysis.

• mLoRa [13]: a collision decoding method for LoRa based on

SIC.

5.2 Comparing with Existing Works

We first compare NScale’s performance with three existing works.

Three LoRa nodes are used for generating LoRa collisions. We

configure one node to send beacons every 3 seconds. Upon receiving

a beacon, the other two nodes each replies with a LoRa packet, to

generate collisions. We configure an additional processing delay

(smaller than a packet duration) for each transmitter to generate

different misalignment. Thus, packets from transmitters collide

at different parts with different time offsets (e.g., preambles, sync

words, SFDs and payloads). We vary the transmitting power of the

transmitters to generate collisions with different SNRs. For fine-

grained SNR control, we add white Gaussian noise with controlled

amplitudes to the collected I and Q traces.
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Figure 11: Performance comparison of four methods under

different SNRs: (a) Averaged Symbol Error Rate (SER). (b)

Network throughput.

We compare the performance of NScale with the other three LoRa

demodulation schemes, in terms of SNR. Figure 11 shows the results

of the experiment. When packets collide with a relatively high SNR

(> 20 dB), both NScale and FTrack experience a low symbol error

rate (SER < 0.01) as well as a high network throughput. Choir

and mLoRa fail to decode some of the concurrent transmissions

even under such high SNR conditions. Choir uses the fraction of

the FFT bin to distinguish collided symbols, which has errors due

to the frequency offsets of low-cost LoRa nodes drift over time.

Thus, collided symbols may be classified incorrectly, resulting in

decoding errors. mLoRa uses an SIC based approach for decoding

packet collisions, which suffers from error propagation. This leads

to symbol recovering errors for mLoRa, especially when the packet

length is long or the concurrency increases. As the SNR decreases,

the SER of mLoRa and FTrack increase rapidly, because both of

these two methods have fundamental limitations in decoding low

SNR LoRa signals. For collisions under extremely low SNR (< −5

dB), both mLoRa and FTrack even turn to be invalid, resulting in a

network throughput close to zero. The performance of Choir also

decreases for low SNR situations, as the tiny hardware offsets are

vulnerable to noise interference. NScale performs much better than

the other three methods. When packets collide under extremely

low SNR (−10 dB), the network throughput of NScale (49 symbols

per second, sps) is about 3.3× of Choir (15 sps).

5.3 Basic Performance

In this subsection, we examine NScale’s basic performance for

separating LoRa collisions regarding spreading factors (SFs), SNRs,

and inter-packet offsets.

First, we evaluate the impact of SNR on the performance of

NScale. The decoding performance is evaluate under four SNR

regimes: high (>20 dB), medium (5∼20 dB), low (-5∼5 dB) and ex-

tremely low (< -5 dB). High channel noise cause peaks of chirp

segments suffering from distortion, which further disturbs the de-

tection of symbol in-window distribution. Figure 12 shows the

SER for NScale under different levels of SNRs with different SFs.

NScale can decode collisions even with extremely low SNR as it

concentrates the energy of a chirp and translate the time domain

information to robust peak features in the frequency domain. As
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Figure 12: In-depth study of SNR and SF on NScale’s performance: (a) Overall performance of averaged SER. (b-d) CDF of the

SER with different SNRs and SFs.
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Figure 13: Relationship between the SER and symbol offsets of collisions: (a) Overall performance of averaged SER. (b-d) CDF

of the SERs when symbol offset is small (< 20%), medium (20% ∼ 35%) and large (> 35%), respectively.

shown in Figure 12(a), the SER is low under all four different SNR

levels. The performance slightly degrades for extremely low SNR

scenarios. However, those errors can mostly be recovered by the

Forward Error Correction strategy of LoRa. Figure 12(b-d) shows

the relationships between SERs and SNR levels regarding three

different SFs. We observe that in high, medium and low SNR condi-

tions, the SERs of 100% with high SF (SF12 and SF10) and 90% with

small SF (SF8) are lower than 20%. This is because NScale reduces

some of the noise interference, making its SER performance robust

against channel noise. In the situation of extremely low SNR, the

median SERs for SF8, SF10, and SF12 are 0.28, 0.07, and 0.02, re-
spectively. In practice, small SFs in LoRa are used for near-range

high data rate transmission. Therefore, we can increase SF for the

scenario of low SNRs to improve the decoding performance to a

very low SER of 0.02.
We also explore the impact of inter-symbol time offsets, i.e.,

packet misalignment. It has been shown that the NScale leverages

the time offset information to separate collided packets. We exam-

ine how the inter-symbol time offsets affect NScale’s performance.

Figure 13(a) shows the averaged SER of NScale in terms of the

inter-symbol time offsets and SNR levels. The SER performance of

NScale decreases when packets collide with smaller inter-symbol

time offsets. This is because a small offset leads to a small difference

between in-window distributions, which further makes it difficult

to distinguish collided packets. While in practice, nodes in LoRa

transmit packets in random time, where the inter-symbol offset

follows a uniform distribution within a symbol duration. Thus, the

inter-symbol offsets vary in practice, and NScale can successfully

separate collisions in most cases. We can further solve the decod-

ing failures by using the retransmission mechanism of LoRaWAN

protocol. Figure 13(b-d) present the detailed SER performance re-

garding SNRs and inter-symbol time offsets. For collisions with

small offsets, decoding errors are mainly due to the ambiguity of

in-window distributions. And the influence of the SNR is not that

obvious, as high SNR collisions may also fail to decode due to am-

biguous in-window distribution clustered incorrectly. The SER in

Figure 13(b) is higher than that of medium offsets (Figure 13(c)) and

the large offsets (Figure 13(d)) under all three SNR levels. While

for collisions with median and large offsets, the median SERs of

NScale for both high SNR and low SNR scenarios are below 0.02,
indicating that most collided packets are correctly decoded.

5.4 Impact of Concurrency

In this experiment, we examine the scalability of NScale by decoding

LoRa collisions with different number of concurrent transmissions.

As mLoRa and FTrack cannot work for 𝑆𝑁𝑅 < 0, we only show

the performance of NScale and Choir. We use the indoor LoRaNet

testbed to efficiently generate multi-packet collisions. To produce a

collisionwith𝑚 overlapped packets, we use a beacon to synchronize

transmissions for𝑚 different end nodes. At the gateway, we use
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Figure 14: Decoding collided transmissions with different

concurrency. (a) Averaged SER. (b) Network throughput.

NScale and Choir to decompose the collided packets. The packets

sent by each end node is known in prior. Thus, we can calculate

the SER and network throughput in this experiment.

Figure 14(a) shows the SER for NScale and Choir. As the number

of concurrent nodes increases from 1 to 10, the SERs of both NScale

and Choir grow up. We can see that the SER of NScale increases

much more slowly than that of Choir, because NScale extracts more

efficient features to separate packets while Choir uses hardware

imperfection, which is less stable and difficult to detect, especially

under inter-chirp interference and channel noise. We further inves-

tigated the performance of NScale and found that a symbol error

usually happens when the in-window distribution of a symbol is

incorrectly detected or a symbol is incorrectly clustered to a packet.

We also show the overall network throughput in Figure 14(b).

The network throughput of both NScale and Choir increase as the

number of concurrent transmitters increases, due to the benefit of

multi-packet reception from collision resolution. Meanwhile, the

network throughput of Choir is much lower than that of NScale,

especially for the large concurrency situations. That is because the

hardware offsets in Choir inevitably resemble each other as the

number of LoRa nodes increases, which leads to symbol clustering

errors. We will further show the performance of NScale in the

outdoor real deployed LoRa networks in Sec.5.5.

5.5 Performance in a Real Network

We evaluate the performance of NScale in a real deployed LoRa net-

work. As illustrated in Figure 15, the outdoor LoRa network consists

of 30 LoRa sensor nodes, each of which can sense the temperature

and humidity information from the surrounding environment. We

deploy the sensor nodes across various environments with different

distance from the gateway, and the SNR of the received signal varies

from −15dB to 10dB. With an integrated solar panel, each sensor

node collects and transmits sensed data by harvesting solar power.

The LoRa sensors transmit to the LoRa gateway in a duty-cycled

manner, where we set the duty cycle ratio of each node to 10%.

In the experiment, we change the number of active nodes in the

network, and evaluate NScale’s performance regarding to different

network sizes.

Figure 16 shows the performance of NScale and original Lo-

RaWAN in the outdoor LoRa network. For the LoRaWAN receiver

260m

14
0m

Bottom view

Top view (solar panel)

Sensor
Gateway
Sensor
Gateway

Figure 15: Outdoor Real LoRa Network: LoRa nodes with

temperature and humidity sensors are placed around the

campus, which consist of SX1268 radio chip and operate by

harvesting solar power.
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Figure 16: Performance in real outdoor deployed LoRa net-

works: (a) Packet Delivery Rate. (b) Network throughput.

without collision resolution, the Packet Delivery Rate (PDR) de-

creases rapidly as the network scales. The network throughput of

the LoRaWAN receiver first grows up and then rapidly drops down

as the size of the network increases. When the network size is small,

the increase of concurrent nodes improves the channel utilization.

However, when the network scales, frequent collisions occur, which

significantly degrades the performance of the LoRaWAN receiver.

The performance of NScale is much better than the original

LoRaWAN due to NScale’s decoding advantage. As the network

scales, NScale shows a relatively high PDR, where more than 90%

packets are successfully delivered evenwhen the size of the network

reaches 30. The overall network throughput of NScale increases as

the number of transmitters goes up. As shown in Figure 16(b), when

30 sensor nodes operate simultaneously, the network throughput

of NScale (247 sps) is about 27× than that of the original LoRaWAN

(9 sps).

6 RELATEDWORK

Orthogonal chirp division multiplexing: The idea of orthogo-

nal chirp division multiplexing has received much interest in radar

and communication systems. Some FMCW radars use orthogonal

chirp waveforms for simultaneously transmitting and receiving

radar signals in multiple paths, thereby increasing the diversity
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or dimension of the information [31–37]. The radar systems pro-

posed in [31–33] introduce the orthogonality of the transmitted

signals by frequency multiplexing, where any two sources are sep-

arated by a carrier frequency offset. In [34] and [35], the chirp rate

division is adopted for the orthogonality between simultaneous

transmissions. In [36] and [37], the researchers designed multiple

orthogonal chirp waveforms (including nonlinear chirps) to enable

multi-user radar systems. Multi-user orthogonal chirp division is

also exploited in communication systems for improving the spec-

tral efficiency [38–42]. In [38] and [39], constraints are derived for

assigning different users with different frequency-modulated rates,

so that the cross-correlation between different users minimizes. The

work [40] presents the orthogonal chirp spread spectrum (OCSS)

based on the Fresnel transform and its convolution theorem. This

work assumes perfect synchronization between all transmitters

and receivers, and shows that OCSS outperforms the conventional

OFDM by exhibiting higher resilience to inter-symbol interference.

In [41] and [42], nonlinear time-frequency functions are designed

to enable orthogonal multiple access with the assumption of syn-

chronous or quasi-synchronous transmitters. The main feature

that distinguishes NScale from those prior works is that NScale

resolves chirp collisions without requiring any scheduling, power

controlling, and synchronization assumptions.

Resolve collisions in traditional wireless: Combating signal

collision is a traditional problem in wireless. There are many ex-

cellent works in this area. Some works aim to avoid collisions by

usingMIMO/MU-MIMO onwireless devices [43–46]. They synchro-

nize signal phases from different transmitters, enabling concurrent

transmissions without inter-packet interference. However, such so-

lutions have high demands on hardware overheads, and thus is not

appropriate for LPWAN devices. Successive Interference Cancella-

tion (SIC) eliminates signal collisions by estimating and extracting

decoded symbols iteratively [47–50]. ZigZag[51] combats signal

collisions in 802.11, where the collision free chunk, due to the mis-

alignment between collided packets, are leveraged for separating

overlapped signals. For decoding an m-packet collision, ZigZag re-

quires each end node retransmitting𝑚 times to generate𝑚 repeated

collisions. Similar to ZigZag, mZig [52] also leverages the packet

misalignment to decode collisions in ZigBee networks. mZig can

decompose𝑚 concurrent ZigBee packets from one collision directly.

Both ZigZag and mZig decode collisions based on the signal in the

time domain, and they cannot work well for low SNR LoRa signal.

Parallel transmissions in LoRa: This work is inspired by some

recent advances for concurrent transmission and collision resolu-

tion in LoRa. Netscatter [53] migrates LoRa encoding mechanism

to backscatter devices and enables hundreds of concurrent trans-

missions for backscatter systems. Transmissions in Netscatter are

strictly synchronized. Thus, we cannot apply Netscatter in current

LoRa networks, where end nodes transmit to the gateway in the

manner of ALOHA. DeepSense[54] enables random access and co-

existence for LPWANs by identifying collided frames using neural

networks. It can support carrier sense across different LPWAN pro-

tocols. However, in the emergence of packet collisions, DeepSense

only identifies the existence of each frame, without recovering the

encoded data bits.

The most related works to ours are Choir [14], mLoRa [13],

and FTrack [15]. Choir [14] exploits the hardware imperfection of

low-cost LoRa devices to decompose overlapped signals. However,

as demonstrated in [53], this approach does not scale well as the

tiny frequency offset is difficult to extract under low SNR. More

recently, mLoRa [13] and FTrack [15] exploit the misaligned edges

of LoRa symbols to separate collisions. mLoRa [13] uses a collision-

free chunk to boot up the decoding, and iteratively reproduces

and extracts collided symbols based on the known patten of LoRa

chirps. FTrack [15] recovers collisions by detecting the edge of

each LoRa symbol and then removing interference based on the

continuity of each symbol’s frequency. Both of the two approaches

have fundamental limitations in processing low SNR signals.

7 CONCLUSION

We present NScale, a novel protocol to resolve the low SNR LoRa

packet collisions, whereby NScale utilizes the subtle packet time

offset to decompose multiple collided packets. To deal with colli-

sions with extremely low SNR, NScale translates the packet time

offset, which is vulnerable to noise, to more robust frequency fea-

tures through non-stationary signal scaling. We propose several

novel techniques to address practical challenges in NScale design.

To accurately measure frequency peaks, we propose a noise resis-

tant iterative peak recovery algorithm to combat peak distortion in

low SNR LoRa signal. Further, we remove the impact of the CFO

and symbol-window time offset to decode each separated packet.

We implement NScale on USRP N210 and thoroughly evaluate its

performance in both indoor and outdoor networks. NScale is com-

pletely implemented in software at the gateway, without requiring

any modifications to the end nodes; thus we can apply NScale to

current LoRa networks with little overhead. The evaluation results

show that NScale improves the network throughput by 3.3× for low

SNR collided signals compared with other state-of-the-art methods.
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