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Abstract—We present the first comprehensive link-level mea-
surements in an operational large-scale urban sensor network.
By carefully analyzing the performance metrics, we seek to
answer several fundamental questions: what are the character-
istics of links in a real large-scale network, and what causes
link performance degradation? The key findings of this study
are that (1) the performance of intermediate links is the most
unpredictable and some links exhibit highly periodic patterns, (2)
the width of the reception “transitional region” is much larger
than those reported in previous experiments, indicating that an
outdoor environment might have a larger impact on the link
performance and current protocol parameters should be carefully
designed, and (3) different from previously reported results, link
performance degradation has a relatively weak correlation with
the corresponding RSSI (Received Signal Strength Indicator)
values fluctuating near the noise floor.

I. INTRODUCTION

As an emerging technology that bridges cyber systems and
the physical world, wireless sensor networks (WSNs) are envi-
sioned to support numerous applications that are unthinkable
before [1], [2], [3]. Today, technological advances already
make it possible to apply WSNs in many areas. Many real-
world deployments are witnessed: VigilNet [1] includes 200
nodes to support military surveillance; ExScal [4] consists of
over 1000 sensor nodes and 200 backbone nodes; SensorScope
[2], a real-world WSN system on rock glacier, consists of
nearly 100 sensor nodes.

We are still facing severe challenges, however, in designing
scalable, long-lived, and high-performance WSN systems.
Some of the difficulties come from the fact the current
understanding of WSN system has some limitations. Theoret-
ical models can hardly be applied in practical systems with
complex interactions among different components [5], [6].
Therefore, it is necessary to conduct empirical measurements
in real-world WSN systems, so that we can better under the
behavior of a large scale WSN and facilitate effective and
efficient design of such systems.

Indeed, there are many relevant measurement studies in the
past years. Aguayo et al. [7] present a link-level measurement
study on an 802.11b mesh network. Zhao et al. [8] report
a measurement study on packet delivery performance using
60 Mica nodes. Srinivasan et al. [9] measure packet delivery
performance of the Telos and Micaz platforms. Natarajan et
al. [10] measure and analyze the link layer behavior of a body
area network at 2.4GHz. Dawson-Haggerty et al. [11] analyze

the effect of link churn on wireless routing. Clearly, the above
measurement studies target at a certain subset of networking
metrics and do not provide a systematic study of operational
WSNs, and they all suffer from short term and relatively small
scale.

It is well-known that the measurement study on the Internet
is an important topic since its birth. Numerous efforts are paid
for characterizing a network with respect to different metrics,
testing or validating certain network protocols and software,
monitoring or evaluating network performance, and diagnosing
network anomalies [12], [13], [14], [15], [16], [17].

Measurements in WSN systems, on the other hand, are
very different from those in Internet, with different intrin-
sic difficulties. On one hand, the Internet has evolved to a
relatively mature system for development and measurement,
while there is few, if not none, deployed working WSN system
for measurement. On the other hand, Internet today already
consists of both computers and users, while WSNs mainly
consist of sensor nodes, interacting with outside objects like
unpredictable environment dynamics.

To address these challenges, we have deployed large-scale
WSN systems to explore the intrinsic properties. Previously,
we have reported the measurements on a WSN with 330
nodes, and identified three important factors that may interfere
with scalable WSNs [18], namely bottlenecked nodes, inherent
concurrency of network operations, as well as environmental
dynamics. Although the previous study gives us important
understanding for designing scalable WSNss, it does not deeply
investigate the link-level behaviors and thus fails to give
detailed guidelines to protocol designs. Motivated by this need,
we conduct a link-level measurement in a large-scale urban
sensor network system which consists of up to 1,200 sensor
nodes, providing us unprecedented opportunities to observe
system behaviors at scale. Our goal is to better understand
the link-level behaviors which form the foundation of packet
delivery performance in practical large scale network. We are
interested in the following questions: What are the temporal-
spatial characteristics of links, and what causes link perfor-
mance degradation?

Understanding the above issues would have broad implica-
tions for many aspects of sensor networking, such as carrier
sensing, link estimation, wireless routing, and etc. The major
findings of this study are as follows:

1) The performance of intermediate links is most unpre-



dictable and some links exhibit highly periodic patterns.

2) The width of the reception “transitional region” is much
larger than those previously reported in indoor experi-
ments [11], [9], indicating that the environment might
have a large impact on the link performance and protocol
parameters should be carefully designed.

3) Differing from previously reported results, link perfor-
mance degradation has a weak correlation with the cor-
responding RSSI (Received Signal Strength Indicator)
values fluctuating near the noise floor.

The rest of this paper is structured as follows. Section II
discusses related work. Section III introduces the measurement
platform and data sources. Section IV presents the link-level
performance, and temporal and spatial characteristics of all
visible links. Section V explores the root causes of link loss.
Finally, we conclude this study in Section VI.

II. RELATED WORK

An operational networking system can be viewed as the
integration of two parts: the inherent network infrastructure
(gateway, router, switch, cable, protocol stack, etc.) and mis-
cellaneous network traffic (data packets and control signals)
running on it. While the network infrastructure is usually pre-
built as a relatively fixed component, the network traffic is
often out of full control of network administrators, due to
the distributed and autonomous nature of network entities.
Network measurement is therefore a significant issue since the
birth of networking systems and carries many functions, such
as characterizing a network with respect to different metrics,
testing or validating certain network protocols and software,
monitoring or evaluating network performance, and diagnosing
network anomalies [12], [13], [14], [15].

Measurement of the Internet is one of the main flows
in network measurement studies. As the Internet is popular
worldwide nowadays, the research focus of Internet measure-
ments ranges from the microscopic experimental study on
lower level of the protocol stack to macroscopic understanding
of the networks in various aspects.

Turner et al. [12] present a methodology for understanding
the causes and impact of link failures. They opportunistically
mine data sources that are already available in modern net-
work environments and analyze failure events of over five
years in a large regional network. Wang et al. [13] conduct
a measurement study on the impact of routing events to
the end-to-end path performance. They show that end-to-
end Internet path performance degradation is correlated with
routing dynamics and analyze the root cause of the correlation
between routing dynamics and such performance degradation.
Mahimkar et al. [14] study the impact of upgrades on network
key performance indicators in a large operational network. Gill
et al. [15] study network failures in data centers. They find
that data centers are mostly reliable and network redundancy
is only 40% eftective in reducing the impact of failure.

The openness of the Internet presents sufficient work space
for measurements. Researchers deploy powerful agents to
sniffer the network, utilize technically-mature tools to conduct

targeted measurements, and even collect huge volumes of data
traces for fine-grained offline analysis. In contrast, the existing
studies on WSN measurements are by nature restricted due to
the limited scale of real deployments.

A WSN for habitat monitoring [19] is deployed at Great
Duck Island in 2002. Tolle et al. [20] report a sensor network
consisting of 33 nodes to monitor the microclimate of a
redwood tree, covering an area of about 50 square meters.
Werner-Allen et al. [21] deploy a WSN of 16 nodes to monitor
an active volcano. Experiences from those systems provide
basic findings that act as the early guidance to design the
building blocks of modern WSNs. Due to the limited system
scales and deployment periods, those efforts fail to capture
the fundamental challenges in large-scale WSN construction,
nor can they experience the real stumbling blocks towards a
sustainable WSN.

VigilNet [1] employs 200 sensor nodes to support military
surveillance, covering an area of 100x100 square meters.
ExScal [4], [22] used to attempt to deploy a WSN with
over 4,000 nodes but the system does not run for a long
time. SensorScope [2] is a real-world WSN system, in which
the largest deployment consists of 97 nodes. Those WSN
deployments are originally designed for a specific application,
without many efforts on measurement studies. In words, there
is still a huge gap between the disclosed facts and the need of
understanding practical WSNs.

The work in [18] for the first time reports the measurements
on a 330-node outdoor sensor network, GreenOrbs. The study
identifies three important factors that may interfere with scal-
able WSNs, namely bottlenecked nodes, inherent concurrency
of network operations, and environmental dynamics.

In order to get more insights, there have been many existing
works with particular interest on a certain aspect of WSNs.
Aguayo et al. [7] present a link-level measurement study on
an 802.11b mesh network. Subramanian et al. [23] present a
measurement study on channel and interface heterogeneity in
wireless mesh networks. Zhao et al. [8] carry out measure-
ments on packet delivery performance using 60 Mica nodes.
Maheshwasi et al. [24] carry out measurements on interference
modeling and scheduling with two 20-node TelosB testbeds.
Srinivasan et al. [9] present measurements of packet delivery
performance of the Telos and Micaz platforms. Natarajan et
al. [10] measure and analyze the link layer behavior of a body
area network at 2.4GHz. Dawson-Haggerty et al. [11] analyze
the effect of link churn on wireless routing. They validate
the hairy edge hypothesis under practical routing protocols,
i.e. whether the most important links for routing are the most
difficult to predict.

III. BACKGROUND AND DATA SOURCES
A. Application Background

“The world has just ten years to bring greenhouse gas e-
missions under control before the damage they cause becomes
irreversible.” Global climate change causes a series of damage
to the earth environment, such as global warming, glacier
melting, sea level rise, and extreme weather events. It poses



Fig. 1: The network deployment

increasingly severe threats to the subsistence of human beings
and the sustainable development of human society.

People have taken various efforts to combat global climate
change. Environmental research reveals that the increasing
emission of greenhouse gases, of which carbon dioxide is a
major component, is the main culprit of global climate change.
According to the statistical results, forest sequestrates 77% of
the total carbon stocks in the terrestrial ecosystem, while CO»
emissions from cities account for 75% of the total emissions of
human activities. Correspondingly, people realize that there are
two aspects of countermeasures. One is to reduce the emission
of carbon dioxide by advocating low-carbon economy, and the
other is to enhance the sequestration of carbon dioxide by
developing forest and urban greening.

The goal of our project, CitySee, is to deploy thousands of
wireless sensor nodes in an urban area of Wuxi City, China,
such that multi-dimensional data including CO,, temperature,
humidity, illumination, location, and etc., could be collected in
a real-time manner for further analysis. The need of the long-
term, large-scale, continuous, and synchronized surveillance
of urban areas poses new challenges to the design of a WSN
system [25] [26] [27]. Thus we exercise a series of innovative
designs with our system.

Figure 1 plots the current deployment. The left subfigure
shows a real deployment scene, where we can see all the three
types of nodes deployed at different positions. The upper right
subfigure shows the overall node distribution, where every
dot represents a node and different subnets are differentiated
in different colors. The lower right subfigure shows the first
subnet of CitySee on the real satellite map, where a snapshot
of routing paths in the subnet is included as well.

B. Data Sources

The measurement is carried out mainly using the data from
normal nodes. Four types of data are collected, defined as
packet types C1, C2, C3, and C4, respectively.

Type C1. It includes two kinds of information: (1) sensor
readings, such as CO,, temperature, humidity, light, and
battery voltage; (2) routing metrics: path-ETX [28] from the
original node to the sink node and node IDs along a routing
path (the maximum length is set to 10).

Type C2. It contains the routing table with a pre-configured
maximum size of 10. Each routing entry includes the neighbor

node ID, the RSSI value from the neighbor, the link-ETX, and
the path-ETX. We denote them as nb[i], RSSI[{], linkETX[i],
and pathETX([i] (0 <i < 10).

Type C3. It contains different counters: (1) the CPU counter
records the accumulated task execution time; (2) the radio
counter records the accumulated radio-on-time in millisecond;
(3) the transmission counter records the accumulated number
of transmitted packets; (4) the reception counter records the
accumulated number of received packets; (5) the drop_no_ack
counter records the accumulated times of packet drops because
of exceeding the retransmission threshold (set at 30 in CTP);
(6) the drop_overflow counter records the accumulated times
of packet drops due to queue overflow; (7) the loop counter
records the accumulated number of detected routing loops;
(8) the MACI counter records the accumulated number of
the MAC initial backoffs; (9) the MACC counter records the
accumulated number of MAC congestion backoffs.

Type C4. It contains other networking information about
the current packet: (1) a sequence of node IDs along the
routing path; (2) queue length at each forwarding node upon
the packet’s arrival; (3) the retransmission number at each
forwarding node.

The four types of packets share a common routing header,
which is formatted to include the following fields: (1) origin
- the packet origin; (2) SEQ - sequence number of CTP [29]
forwarding; (3) THL - the hop count of the incoming packet;
(4) SOURCE_TIME - the packet transmission time in the
local clock of the original node; (5) SINK_TIME - the packet
reception time in the local clock of the sink.

Each sensor node transmits four kinds of packets every 10
min. We conduct our experiments using all data collected in
four months.

IV. LINK CHARACTERISTICS

In this section, we analyze the packet trace to explore the
link performance, and its temporal and spatial characteristics.

A. Methodology

We mainly utilize type C2 packets to extract the link
statistics. A C2 packet contains information of up to ten links.
linkETX[{] (0 <i < 10) denotes the ETX of the link origin —
nb[i]. RSSI[/] denotes the RSSI from nb[i] to origin upon a
beacon’s reception.

Our current protocol uses the 4 bit link estimation method
[30] to estimate the link quality. The 4 bit link estimation
combines both control plane information (i.e. using beacons)
and data plane information (i.e. using data packets). For non-
routing links (i.e. nb[i] is not the parent), since there is no
data traffic and there is no exchange of the link quality in the
current implementation, we use linkETX as the incoming link
quality from nb to origin. For routing links (i.e. nb[i] is the
current parent), we use linkETX as the outgoing link quality
from origin to nb[i].

We extract link statistics from the packet trace. We then
obtain time series of all visible links. Previous wireless mea-
surements explore the set of all possible links while in this
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study we consider all visible links. We reduce the complexity
of recording all possible links while preserving the set of most
important links (since they are candidates for routing).

In particular, a visible link has a time series about its PRR
(1/MinkETX), i.e., link a—b: PRR(z}), ..., PRR(z,), where t;
(1 <i < n) denotes the timestamp. It also has a time series
about its RSSL, i.e. link a—b: RSSI(#)), ..., RSSI(#),), where
t: (1 < j <m) denotes the timestamp.

In order to find the correlation between RSSI and PRR, we
use a link’s PRR time series and RSSI time series. We match
the PRR value to the nearest RSSI value with respect to time.
If the nearest time difference exceeds a threshold (10 min),
we do not match the corresponding PRR and RSSI.

We also find that there are circumstances that the values of
three fields in C2 packets (i.e. RSSI, linkETX, ETX) remain
unchanged for a long time period. This is because the statistics
of the corresponding link are not updated during the period.
The link record remains in the neighbor table since the current
CTP does not have an effective aging mechanism to rule it out.
We discard these data in order not to bias our analysis.

In the deployment process, we use GPS cameras to record
node locations. Hence, the link distance can be calculated
using the node locations. In particular, the link distance d can
be calculated by the haversine formula:

20— ¢
2

22—y
2 ey
where ¢; and ¢, are the longitudes of two nodes, y; and y»
are latitudes, and r denotes the radius of the earth.
When necessary, we use the SING dataset [9] for compar-
ison. This dataset contains data for 100 telosB nodes in the
Mirage indoor testbed.

d = 2rarcsin \/sin + cos ¢ cos ¢ sin

B. Link Performance

In this section, we analyze the link performance in terms of
the observed PRR and RSSI. We also examine the relation-
ships among PRR, RSSI, and distance.

PRR. Figure 2(a) gives the CDF of PRRs of all visible
links. The PRR of a visible link is the median of its PRR time
series. We can see that the majority of links are good, i.e. 75%
link PRRs are higher than 0.9. We also see that the PRRs have
an almost uniform distribution in the range of 0-0.9. This is
because the observed PRRs are moving averages. Thus it is
possible that a short time duration of poor channel condition
can cause modest link performance in a long time duration.

RSSI. Figure 2(b) shows the CDF of RSSIs of all visible
links. We can see that the average RSSI is relatively low under
the current settings with the maximum transmission power (i.e.
0dBm) and the distribution has a wide range from -95dBm to
-60dBm.

Distance. Figure 2(c) shows the CDF of distance of all visi-
ble links. The average link distance is 60m in our deployment.

Researchers spent many efforts to explain the link perfor-
mance. There are many relevant works which examine the
relationships among PRR, RSSI, and distance.

Aguayo et al. [7] points out that PRR has a weak correlation
with RSSI for 802.11 radios while Srinivasan et al. [9]
concludes that PRR has a strong correlation with RSSI for
802.15.4 radios.

There is also a consensus that there exists a transitional
region where the PRR performance is highly unpredictable
with respect to distance.

Cerpa et al. [31] conduct measurements in indoor (Office)
and outdoor (Habitat) environments using Mica 1 and Mica
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2 platforms with different power levels, namely -10 dBm, -6
dBm and 1 dBm. They show that the width of the transitional
region is significant, ranging from 50% up to 80% of the
transmission range. On the other hand, Zhao et al. [8] show
that the transitional region width is smaller, almost one-fifth
to one-third of the transmission range. Using CC2420 radios,
Dawson-Haggerty et al. [11] find out that the transitional
region is smaller than what was previously observed with
CC1000 radios: it is only 25% of the size of the good region.

We revisit these issues in our practical deployments since
the quantitative results can have a significant implication on
system design and network deployment. For example, if we
know where the transitional region locates, we can avoid the
region in order to improve link predictability.

RSSI vs PRR. Figure 2(d) shows how PRR varies with
RSSI. At each RSSI value, we show the 10% percentile, 25%
percentile, median, 75% percentile, and the 90% percentile of
PRRs. At a glance, the RSSI-PRR curve is consistent with
previous studies: PRR increases with the increase of RSSI
and there is a grey region in which the PRRs are highly
unpredictable. Looking deeper, there are observations worth
noting.

First, the RSSI threshold, beyond which the PRR is almost
100%, is -86dBm. This threshold is much lower than what
is used in many existing protocols. For example, the current
CCA (Clear Channel Assessment) value in TinyOS is set to
-77dBm. That means the channel will be considered as idle
when the signal power is lower than -77dBm. However, from
this figure, we see that the transmission would be successful
w.h.p. when the signal power is higher than -86dBm. This
observation implies that the current CCA value may cause
heavy interference since the MAC will mistakenly consider
a busy channel (e.g. with signal power between -86dBm and
-77dBm) to be idle.

Second, the width of the grey region is almost 11dBm and it
is much greater than 6dB reported by [9]. This may be due to
several reasons. First, the RSSI is measured upon a beacon’s
arrival rather than on a per-packet basis. Besides, the PRR
value is a moving average. These facts cause the PRR-RSSI
correlation to be weaker. Second, both hardware diversity (e.g.
the radio receive sensitivity is different for different nodes) and
environmental factors can also cause a wider grey region.

Distance vs PRR. Figure 2(e) shows how PRR varies with
distance. We see that there is a general trend that the PRR
decreases as the link distance increases. We define the start
of the transitional region to be the distance at which 90%
links are above 90% PRR, and the end to be the distance at
which 90% links are below 10% PRR. We observe that the
transitional region is almost 80m, twice the width of the good
region. This result deviates significantly from previous studies.
It means that the link performance might have a huge variance
due to environmental factors.

Distance vs RSSI. Figure 2(f) shows how RSSI varies with
distance. RSSI decreases as the distance increases. We also see
that even under the same distance, the RSSI variation is huge.
This raises practical challenges for RSSI-based localization
[32]. Besides, we observe that RSSI values seem insensitive
when the distance is relatively long.

The overall link characteristics give us some practical
guidelines to real-world WSN deployments. First, as a rule of
thumb, the link will almost be reliable when RSSI>-86dBm.
This threshold should be carefully measured in practical
protocol design. Increasing the transmit power (e.g. using
external antennas) is obviously effective in improving the link
performance. However, special care should be taken to avoid
potential interference. Second, current CCA value in TinyOS
CSMA MAC is likely to cause unnecessary collisions since it
might mistakenly consider a busy channel to be idle.
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C. Temporal Characteristics

We now look at the temporal characteristics by calculating
the standard deviation and entropy.

Standard deviation. Figure 3(a) plots the CDF of standard
deviation of PRR and Figure 3(b) plots the CDF of standard
deviation of RSSI. We compare our results to those using the
SING dataset [9]. The average PRR deviation is 0.107 for our
dataset, comparing to 0.087 for the SING dataset. The average
RSSI deviation is 1.5dBm for our dataset, comparing to 0.5dB-
m for the SING dataset. While PRR dynamics are comparable,
our system has higher RSSI dynamics. The instability of our
system is probably due to the environmental impact.

Entropy. We examine a more fundamental notion of un-
predictability by using the concept of entropy. We define the
entropy H(x) by

H(X) = =) p(xi)log, p(xi) (2)

-

We measure the entropy of packet delivery and observed RSSI.
For packet delivery, X indicates a binary random variable of
packet delivery and x; is a value of the random variable, which
indicates either a success or a failure. For RSSI, X indicates
a discrete random variable of RSSI and x; indicates possible
RSSI values.

Figure 3(c) shows the CDF of the entropy of packet delivery
and Figure 3(d) shows the CDF of the RSSI entropy. We
can see similar results as shown in Figure 3(a) and Figure
3(b), i.e. the predictability of PRRs is comparable while the
predictability of RSSI is lower in our system.

We proceed to look at the correlation among entropy, RSSI
and PRR.

PRR vs packet delivery entropy. Figure 3(e) shows the
scatter plot of PRR and the entropy of packet delivery. We
see that high quality links (and low quality links) have a more
predictable performance while the intermediate links are less
predictable. This result is consistent with previous results.

RSSI vs RSSI entropy. Figure 3(f) shows the scatter
plot of RSSI and the RSSI entropy. Similar to Figure 3(e),
intermediate links are less predictable. Different from Figure
3(e), the variation is higher for the intermediate links, i.e. while
some intermediate links are more unpredictable, some others
are as predictable as good links.

001 2 3 45 6 7 8 9 10 11 12 13 14 15 2 3 4 5 6
SNR (dB)

Fig. 5: SNR vs PRR
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Fig. 6: Correlation ratio

Autocorrelation. Being aware that the link performance can
have a high variation, we are interested in whether or not the
changes have some intrinsic patterns. To this end, we measure
the autocorrelation of PRR and RSSI. We use the following
formula to calculate the autocorrelation:

A

n—k
R = Lo n O

where k denotes the time lag (hours); 6 denotes the variance
of total samples; and u denotes the mean of total sample. The
value of 1 indicates the strongest positive correlation while the
value of -1 indicates the strongest negative correlation.

Figure 3(g) shows the PRR autocorrelation of a representa-
tive link 1186-1153. Figure 3(h) shows the RSSI autocorre-
lation of a representative link 1021-1363. We indeed see that
some links exhibit periodic patterns. The period is approxi-
mately 24 hours, indicating that environmental differences in
day and night may cause link quality changes.

V. CAUSES OF LINK DEGRADATION

In this section, we seek to answer the following important
questions:
1) Can RSSI or SNR (Signal to Noise Ratio) predict the
link performance in practice?
2) To what extent RSSI/SNR can predict the link perfor-
mance?

The work in [9] concludes that link degradation correlates
closely with RSSI fluctuating near the noise floor while the
work of [7] finds a weak correlation between link performance
and RSSI. We desire to quantify the correlation between
RSSI/SNR and link degradation.

As we can see in Figure 2(d) that the RSSI grey region is
about 11dB which is wider than the sensitivity of 3dB reported
in the CC2420 datasheet. One reason is due to the hardware
diversity, i.e. the RSSI noise floors (the RSSI in absence of
packet transmissions) of different nodes are different. Thus
SNR is a better indicator of signal reception. SNR measures
the signal power relative to the noise floor. It can isolate the
impact of hardware diversity and is considered to have a better
correlation with link performance [24].

In order to calculate SNR, we first need to calculate the
noise floors of all nodes. The detailed calculation process can
be referred to [9]. The basic idea is to find out the minimum



valid RSSI value. It is worth noting that the approximated
RSSI noise floor may be larger than the real value since the
node collects the RSSI upon a beacon’s arrival. However, the
error should be small because (1) a node can hear weak signals
from far away nodes by chance, (2) the RSSI time series
usually contains sufficient data including low RSSI values.

Noise floor. Figure 4 shows the approximated noise floors
in our system , which are in general similar to previous results
[9].

After obtaining the noise floor, we revisit the SNR-PRR
correlations. It is supposed to have a better correlation with
PRR and the grey region will be smaller than we see in Figure
2(d).

SNR-PRR correlation. Figure 5 shows the SNR-PRR
correlation in CitySee. We clearly see that the width of the grey
region is approximately 6dB, smaller than 11dB as observed
in Figure 2(d), indicating that SNR-PRR correlation is better
than the RSSI-PRR correlation.

In order to quantify whether the PRR degradation correlates
closely with RSSI fluctuating near the noise floor, we make
the following definitions:

1) PRR degradation event. For time instant ¢;, if
PRR(#;)<0.85, it is considered as a PRR degradation
event for the given link.

2) Weak signal event. For time
SNR(#;)=RSSI(#;)-noise<w, it is
weak signal event.

3) For a given link, if the PRR degradation event and
weak signal event have been observed close in time,
i.e. for a given link, PRR(#,)<0.85, SNR(z;)<w, and
|t; —t;|<10min, we consider that the PRR degradation
event is correlated with the weak signal event. It is
highly probable that the PRR degradation is caused by
the weak signal power.

It is worth explaining some of the parameters mentioned
above. We denote w as the sensitivity of the radio. It is reported
as 3dB in the CC2420 datasheet [33], and is measured as 6dB
in both our study (cf. Figure 5) and the previous study [9].
We consider it to be in the range of 3dB—6dB.

We then calculate the ratio of the number of correlated
events to the number of all PRR degradation events. SNR can
better explain the degradation if the ratio is closer to 1.

Figure 6 shows the ratio with respect to w. We can see
that the percentage of the correlated events increases with the
increase of w. This is because the number of correlated events
will be larger with less stringent criteria. Our system has a
lower ratio than that of [9]. With w=6dB, the ratio of SING
dataset is 98% while the ratio is 60% for our system, indicating
that PRR does not correlate closely with RSSI fluctuating near
the noise floor, and there might be other factors impacting link
degradation, e.g. interference, multipath, etc.

instant ¢;, if
considered as a

VI. CONCLUSION

In this paper, we present a measurement study on the link-
level behaviors in a large-scale urban sensor network. By
carefully analyzing the performance metrics, we investigate the

system performance, characterize link behaviors, and investi-
gate the causes of link loss and the impacts of link performance
on wireless routing.

The contributions of this work are follows: (1) We design
and deploy a large-scale urban sensor network, providing us
the measurement platform for observing system behaviors at
scale. (2) We conduct a comprehensive measurement study
to investigate the system performance, characterize link be-
haviors, explore the causes of link degradation, and examine
the effect of link performance on wireless routing. (3) We
present observations in our network. The empirical findings
have many implications to WSN deployments and network
protocol designs.

Future work leads to two directions. (1) We would like
to investigate other important aspects of sensor networking,
such as routing dynamics, traffic distributions, and etc. (2)
We would like to improve our system design based on the
implications.
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