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Abstract—We propose Magic Wand which automatically recog-
nizes 2D gestures (e.g., symbol, circle, polygon, letter) performed
by users wearing a smartwatch in real-time manner. Meanwhile,
users can freely choose their convenient way to perform those
gestures in 3D space. In comparison with existing motion sensor
based methods, Magic Wand develops a white-box model which
adaptively copes with diverse hardware noises and user habits
with almost zero overhead. The key principle behind Magic
Wand is to utilize 2D stroke sequence for gesture recognition.
Magic Wand defines 8 strokes in a unified 2D plane to represent
various gestures. While a user is freely performing gestures in 3D
space, Magic Wand collects motion data from accelerometer and
gyroscope. Meanwhile, Magic Wand removes various acceleration
noises and reduces the dimension of 3D acceleration sequences of
user gestures. Moreover, Magic Wand develops stroke sequence
extraction and matching methods to timely and accurately
recognize gestures. We implement Magic Wand and evaluate its
performance with 4 smartwatches and 6 users. The evaluation
results show that the median recognition accuracy is 94.0% for
a set of 20 gestures. For each gesture, the processing overhead
is tens of milliseconds.

I. INTRODUCTION

Smartwatch becomes more and more popular in our daily

life, and they can enable quick and featured interaction with

diverse mobile and Internet of Things (IoT) applications. Par-

ticularly, wrist gesture recognition [8] [3] [5] [13] is a mean-

ingful interaction interface. When a user wearing a smartwatch

in his/her wrist freely performs familiar 2D gestures (i.e.,

symbol, circle, polygon, letter) in the air, various functions and

applications (e.g., motion sensing games, VR games, mobile

application shortcuts, IoT device control) can be enabled, if

those gestures can be accurately recognized.

As we know, motion sensors (e.g., accelerometer and gy-

roscope) are available on most smartwatches (e.g., Apple

Watch, LG Watch Sport, Moto 360, Samsung Gear S3, Huawei

Watch, Huawei Watch 2 Pro). Many works are proposed to

enable wrist gesture recognition by using those motion sensors.

However, they are still far from a plug-and-play manner due

to three limitations as follows.

1) Unscalable gestures. Given a set of pre-defined wrist

gestures, some works [3] [4] [11] [19] [20] generate gesture

templates or train a gesture classifier for gesture recognition.

Faced with diverse user habits (e.g., speed, size, rotation of

wrist and elbow, etc.), these works need much configuration

overhead to achieve a general recognition model, which limits

the scalability of gesture selection. Specifically, Xu et. al. [20]

assume that users perform letter gestures on a vertical surface

with his/her index finger. RisQ [11] only targets to recognize

smoking gesture.

2) Non-real-time recognition. With accelerometer and gyro-

scope, wrist trajectory can be recovered by using coordinate

rotation transformation and acceleration double integral in 3D

space. Hopefully, the trajectory can be used for ubiquitous

gesture recognition. Some methods [13] [14] are proposed for

wrist location tracking. With MUSE [14], the median error of

wrist location is 8.8cm when users perform simple gestures

like eating, smoking, walking, lecturing, etc. However, to

control the error of wrist motion tracking, the computational

complexity is usually unaffordable to support real-time data

processing. For example, MUSE [14] needs an edge-computer

or the cloud to achieve second-level end-to-end latencies. For

supporting more mobile applications, however, it is desirable

to guarantee millisecond-level end-to-end latency.

Overall, these limitations significantly hinder plug-and-play

gesture recognition on smartwatch. In this paper, we address

those limitations and propose Magic Wand, a plug-and-play

wrist gesture recognition system on smartwatch. Regarding to

diverse user habits, with Magic Wand, a user can perform

gestures as usual by performing only one starting gesture

which is just like raising user’s hand before using Kinect.

The key idea is that the DoFs (degrees of freedom) of wrist

motion is approximately stable and planar while a user is

performing different gestures in a specific scenario. With the

starting gesture, we initialize a temporal gesture transformation

function to represent the DoFs of wrist motion. It converts a

3D trajectory to an equivalent 2D trajectory on a unified plane

without losing much information.

Moreover, we are inspired by widely used speech recogni-

tion, which also needs to address diverse speaking variances

(e.g., speed, volume, accent). A word can be represented

by a phoneme sequence, which further serves as a natural

feature in speech recognition. We observe that 2D stroke is

the basic element for performing different gestures. No matter

what user habits are, the 2D stroke sequence of a gesture is

constant so that can be exploited as a natural feature for gesture

recognition.

To achieve stroke sequence based wrist gesture recognition,

we define 8 strokes in a unified 2D plane (called stroke plane)
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to represent various gestures (Section II). Magic Wand uses

accelerometer and gyroscope to sense users’ wrist motion.

Since the accelerometer is quite noisy while performing ges-

tures, we design a light-weight noise filtering model, which

can be efficiently initialized by the starting gesture. We extract

a stroke sequence from the measured acceleration sequences of

wrist motion. Then, we can timely and accurately recognize

the corresponding gesture by matching the extracted stroke

sequence with those pre-defined stroke sequence templates.

Overall, with smartwatch, Magic Wand achieves plug-and-

play gesture recognition and supports real-time interaction for

various applications.

We implement Magic Wand in Android and conduct exten-

sive experiments to evaluate the performance of Magic Wand

with six users and four smartwatches. The evaluation results

show that the median recognition accuracy is 94.0% for a set

of 20 gestures. Our contributions are summarized as follows.

• We propose an innovative stroke sequence based wrist

gesture recognition system. There is no constraint of

user habits. Various styles of gestures can be naturally

supported.

• We present the system design of Magic Wand, which

addresses several practical challenges to achieve accurate

and real-time wrist gesture recognition.

• We implement Magic Wand in Android and evaluate its

performance with 6 users and 4 smartwatches. The results

show a high recognition accuracy for a set of 20 gestures.

The rest of paper is organized as follows. Section II presents

system overview. Section III presents the detailed system

design. Section IV shows the implementation of Magic Wand.

Section V shows the evaluation results. Section VI introduces

the related work. Section VII concludes this work.

II. SYSTEM OVERVIEW

A. System Goals

Just like using Kinect to play motion sensing game, Magic

Wand aims to achieve plug-and-play wrist gesture recognition

on smartwatch with the following goals.

• Magic Wand should require no user-specific training (e.g.,

performing each gesture several times at the beginning).

• Magic Wand should require no scenario-limited wrist

motion (e.g., fixing the wrist, elbow and shoulder postures

in the air).

• Magic Wand should be able to recognize kinds of gestures

(e.g., geometric shape, symbol, number, letter) for various

applications and achieve a high recognition accuracy in

real-time manner.

B. System Design Principle

As shown in Figure 1(a), we define 8 unique strokes

pointing to 8 different directions in stroke plane. Those strokes

are indexed from 1 to 8 (called stroke index) in counterclock-

wise order. The directions of two adjacent strokes have 45◦

difference. We can use stroke sequences to represent various

gestures. Figure 1(b) shows how to use those 8 strokes to

1 2 3 4

5 6 7 8

(a) 8 unique strokes in stroke plane

37 1 8 7 6 5

6 2 8 4 16

7

(b) Stroke sequences of two letter gestures

Fig. 1: (a) the illustration of the stroke definition. (b) two letter

gestures A and D represented by a stroke sequence, separately.

represent two letter gestures A and D. 1©- 6© of A and 1©-
3© of D show the predetermined gesture trajectories. Then,

A and D can be represented by a stroke sequence “62841”

and “7318765”, respectively. For line trajectory (e.g., 1© of

A), we can use a stroke “6”, which has the similar direction,

to represent it. For curve trajectory (e.g., 3© of D), we can

use a stroke sequence “18765”, which consists of all possible

directions, to approximate the curve. Given the predetermined

trajectory of any gesture, we can easily generate its stroke

sequence by following the same rules.

C. System Architecture

To achieve stroke sequence based gesture recognition in

practice, Figure 2 shows the architecture of Magic Wand,

which consists of four components as follows.

1) Acceleration Noise Filtering (Section III-A). We use

motion sensors (e.g., accelerometer and gyroscope) to record

the motion of a wrist gesture. The acceleration noises, how-

ever, incur significant error of trajectory recovery [13] so

that hinder an easy way for stroke extraction. According to

our observation, one part of acceleration noises comes from

the accelerometer itself and can be calibrated by complicated

process [15] [21]. The other part is the gravity which is

hard to completely removed. This component filters out those

acceleration noises from raw acceleration sequence in a light-

weight way. Finally, we fetch the gesture acceleration sequence

in a unified coordinate system X-Y -Z.

2) Gesture Transformation (Section III-B). Since a user

usually performs gestures with user-specific DoFs of wrist

motion in 3D space. To convert the user diversity to a unified

2D stroke plane, this component reduces the dimensions of the

gesture acceleration sequence from coordinate system X-Y -

Z to 2D coordinate system Xw-Yw (i.e., writing plane). Just

like raising user’s hand before using Kinect, a user performs

a predetermined starting gesture before using Magic Wand.
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Gesture Recognition

Stroke Sequence Matching

Gesture Candidates

Stroke Sequence Templates of Gestures

Gesture Transformation

Gesture Acce, Velo and Disp Sequences 
in Coordinate System Xw-Yw

Gesture Acceleration Sequence of Starting 
Gesture in Coordinate System X-Y-Z

Offline 
Training

Stroke Sequence Extraction

Extracted Stroke Sequence

Raw Acceleration 
Sequence

Raw Angular 
Velocity Sequence

Acceleration Noise Filtering

Gesture Acceleration Sequence 
 in Coordinate System X-Y-Z

Gesture Transformation FunctionGravity & Other 
Noise Filtering Stroke Classification & Outlier Filtering

8 Strokes in Coordinate System Xw-Yw

Accelerometer 
Calibration

Fig. 2: The illustration of system architecture. The grey rectangles show the key functions.

We use the starting gesture to determine the writing plane and

initialize the corresponding gesture transformation function.

Given another 3D wrist motion performed by the same user

in the same scenario, we can obtain its gesture acceleration

sequence in Xw-Yw with the gesture transformation function.

We further calculate corresponding velocity and displacement

sequences to represent the directions and trajectory of wrist

motion in Xw-Yw.

3) Stroke Sequence Classification (Section III-C). This

component extracts stroke sequence given the wrist motion

on writing plane. We compare the motion direction and the

defined stroke direction to classify strokes. Due to the poten-

tial distortion of gesture transformation, the bias of gesture

performance and residual acceleration noise, the error strokes

inevitably appear. We develop a heuristic method to filter out

those error strokes.

4) Gesture Recognition (Section III-D). This component

calculates the similarity between the extracted stroke sequence

and the stroke sequence templates of all possible gestures,

then the gesture is recognized as the one with the highest

similarity. Specifically, we utilize DTW to efficiently calculate

the similarity between two stroke sequences and adaptively set

the cost between different pairs of strokes.

III. SYSTEM DESIGN

In this section, we introduce the detailed design of the four

components in Magic Wand.

A. Acceleration Noise Filtering

A part of acceleration noise is from the gravity. Besides the

gravity, the acceleration noise contains another part (called

inherent accelerometer noise) due to the lack of MEMS IMU

calibration [15] [21].

1) Accelerometer Calibration: To model the inherent ac-

celerator noise, we assume the noise comes from two factors,

named scale and bias along each axis respectively. Specif-

ically, the acceleration measured by accelerator am(t) =
(amx (t), amy (t), amz (t))T can be represented by ground truth

acceleration a(t) = (ax(t), ay(t), az(t))
T as follow:

am(t) = Ka(t) + b (1)

where K =

⎛
⎝

kx 0 0
0 ky 0
0 0 kz

⎞
⎠ denotes 3-axis scale factors

and b = (bx, by, bz)
T denotes 3-axis bias factors. We assume

both K and b are constant for an accelerometer.

To initialize the parameters in a light-weight way, we

observe that the accelerometer of a smartwatch records the

gravity when it is static. We use g = [gx, gy, gz]
T to indicate

the gravity in initial smartwatch coordinates. When the smart-

watch moves in 3D space, we can use the angular velocity

measured by gyroscope to compute the rotation matrix R3×3

[17] [11] which can be used to convert the current smartwatch

coordinates to the initial smartwatch coordinates. Denote g(ti)
as the gravity measured at ti in current smartwatch coordi-

nates, we have:

g = R(ti)g(ti) (2)

Note that the rotation matrix R(ti) is an orthogonal matrix,

thus R(ti)
−1 = R(ti)

T . Combine Equation 1 and Equation 2,

when the smartwatch is static at time ti, the output acceleration

comes as:

am(ti) = Kg(ti) + b = K(R−1(ti)g) + b (3)

and it further gives:

K−1am(ti)−RT (ti)g −K−1b = 0 (4)

that is:

[Am(ti),−RT (ti),−I]
⎡
⎣

k
g
b′

⎤
⎦ = 0 (5)

where

Am =

⎛
⎝

amx 0 0
0 amy 0
0 0 amz

⎞
⎠ , k =

⎡
⎣

k−1
x

k−1
y

k−1
z

⎤
⎦ , b′ = K−1b (6)

Moreover, given N static acceleration measurements

{am(t1), am(t2), · · · , am(tN )}, we define a stack matrix X
as below:

X =

⎡
⎢⎢⎢⎣

Am(t1),−RT (t1),−I
Am(t2),−RT (t2),−I

...

Am(tN ),−RT (tN ),−I

⎤
⎥⎥⎥⎦ (7)

Then according to Equation 5, we can obtain vector [k, g, b′]T

by solving a minimization problem as:

x0 = arg min
||x0||=1

||Xx0|| (8)

To ensure high computation efficiency, we adopt closed-form

solution by calculating the eigenvectors of X ′X , and x0 is

the eigenvector that corresponds to the minimal eigenvalue of
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X ′X . Once we get x0, since g represents gravity, we can scale

the vector x0 to [k, g, b′]T according to gravity magnitude and

direction, and then we get K and b and use them to filter

inherent accelerator noise.

In practice, before using Magic Wand, a user needs to

perform a calibration gesture for initializing the model of

accelerometer calibration. According to the variance of ac-

celeration data in a short period, we can use a threshold

based method to extract the static acceleration measurements

and generate the matrix X . In this way, we can calibrate the

accelerator in a light-weight way and real-time manner.

2) Gravity Filtering: After accelerometer calibration, given

the raw acceleration sequence of a wrist motion, we fur-

ther filter out the gravity. With the same rotation matrix

R (Section III-A1) measured by continuous angular velocity

readings, we transform all acceleration readings measured at

different time to the equivalent ones in X-Y -Z coordinate

system (called absolute coordinate system) [17] which is the

smartwatch coordinate system at the starting point. For a wrist

motion, {a(0), a(1), ..., a(n)} indicates the measured 3-axes

acceleration sequence in X-Y -Z. a(i) (i ∈ [0, n]) contains

gravity {gx, gy , gz}, which is constant along 3-axes in X-Y -

Z, and the acceleration of wrist motion a(i). The velocity of

wrist motion is usually zero when a user starts and finishes

performing a gesture. Thus, the gravity is the mean of the sum

of {a(0), a(1), ..., a(n)}. By using the mean removal [7][17],

we get rid of gravity and fetch the pure acceleration of wrist

motion in X-Y -Z.

B. Gesture Transformation

As shown in Figure 3(a), a user sits in front of a desk

and performs a letter gesture A (black A) on a sloping plane.

The writing plane should be parallel with the sloping paper

which is unknown in X-Y -Z. If we directly select X-Y
plane as the writing plane for simplicity, the obtained letter

gesture is the grey A which is the projection of black A
on X-Y plane. We can see obvious stroke distortion which

may degrade recognition accuracy. We use a starting gesture

(e.g., letter gesture A) to initialize a gesture transformation

function which can transform the acceleration sequence in the

X-Y -Z to an ideal writing plane (as Xw-Yw) while reserving

the most gesture information. Moreover, the transformation

function should guarantee the stroke directions on writing

plane are aligned to that on stroke plane. Therefore, other

gestures performed by the user in the same scenario can share

the same writing plane and gesture transformation function.

1) Writing Plane Selection: We use Principle Component
Analysis (PCA) [2] to determine the writing plane. Specif-

ically, given the acceleration sequence a = {ax, ay, az} in

X-Y -Z, PCA uses an orthogonal transformation, denoted as

x = (x1, x2, x3)
T , y = (y1, y2, y3)

T , z = (z1, z2, z3)
T , to

transform it to three principle components along X ′, Y ′ and

Z ′ axes (called PCA Coordinate System). PCA maximizes the

acceleration values on X ′ and Y ′ axes. X ′-Y ′ plane naturally

keeps the information of the original gesture as much as pos-

sible. Thus X ′-Y ′ plane can be selected as the writing plane.

(a) Scenario

X

Z

-Y

X’

Y’
X w

Yw

Writing Plane 
Coordinate Xw-Yw

Absolute Coordinate
X-Y-Z
PCA Coordinate

X’-Y’

θ

θ

(b) Gesture Transformation

Fig. 3: A scenario used to explain the principle of gesture

transformation.
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(b) Stroke displacement

Fig. 4: The trajectory of letter gesture A on their writing plane

and the corresponding displacement of extracted strokes.

Z ′ axis points to the normal direction of the selected writing

plane. Finally, we can calculate the acceleration sequence a′

in X ′-Y ′-Z ′ with a projection matrix (x, y, z).
However, as shown in Figure 3(b), we usually cannot

directly use the X ′ and Y ′ axes of PCA coordinate system

as the Xw and Yw axes of writing plane due to the unaligned

stroke directions. A rotation of angle θ may exists between

the X ′/Y ′ axis and Xw/Yw axis. In X ′-Y ′ coordinate system,

the direction of all strokes is rotated θ. If θ is large, a

stroke may be misclassified. For example, if θ is 45◦, strokes

{1,2,3,...,7,8} will be classified as {2,3,4,...,8,1}. Therefore,

to align the stroke directions on X ′-Y ′, we need derive the

rotation angle θ between coordinate system X ′-Y ′ and Xw-

Yw.

2) Rotation Angle Calculation: Given the acceleration se-

quence a′ = {a′x, a′y} in PCA coordinate system X ′-Y ′

and the stroke sequence template of the starting gesture, we

enumerate all possible θ (0 < θ ≤ 360) with a step Δθ. For

each θ, we rotate X ′/Y ′ for θ to generate new acceleration

sequence a′(θ), which is further taken as the input to extract

a stroke sequence (Section III-C). We calculate the similarity

between the extracted stroke sequence and the stroke sequence

template of the starting gesture (Section III-D). Finally, we

choose the θ∗ with the highest similarity as the rotation angle.

After a user performs the starting gesture, we derive the

projection matrix and the rotation angle θ∗ as his/her gesture

transformation function in the scenario.
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C. Stroke Sequence Extraction

The velocity indicates the instantaneous direction of wrist

motion, namely the stroke direction. We convert the acceler-

ation sequence to the corresponding velocity sequence {v(0),
v(1), ..., v(n)} on writing plane. Given an instantaneous

velocity v(t) at time t, we find the stroke s(t) whose direction

is the most similar with v(t) as the instantaneous stroke. With

the velocity sequence of wrist motion, we extract a sequence

of strokes {s(0), s(1), ..., s(n)}. If two adjacent strokes s(t)
and s(t+ 1) are the same, they can be merged as one stroke

s(t). We filter out the redundant strokes from {s(0), s(1), ...,

s(n)} and achieve a short stroke sequence {s(t0), s(t1), ...,

s(tm)} where ti ∈ [0, n] (i ∈ [0,m]) is the time of stroke

change. However, due to the gesture distortion, some error

strokes may exist. Figure 4(a) shows the trajectory of a letter

gesture A. The black circles show several error strokes that

appear during the transition between two strokes. We notice

that the displacements of these error strokes are much shorter

than the correct ones. Hence, we filter out those strokes whose

displacement is too short.

We use D(i) to indicate the displacement of the stroke

s(ti), where i ∈ [0,m], on writing plane. Then, we sort

the stroke displacement sequence {D(0), D(1), ..., D(m)} in

descending order as {D0, D1, ..., Dm}. Figure 4(b) shows the

displacement of all 20 extracted strokes for the letter gesture A
shown in Figure 4(a). Because setting a fixed threshold cannot

adapt to various gesture sizes, we develop a heuristic method

to filter out the error strokes. We define two metrics. One

metric ρ(i) indicates the degree of the displacement difference

between Di and Di+1. ρ(i) can be calculated as:

ρ(i) =
Di −Di+1

Di+1
(9)

If ρ(i) equals to 1, Di is twice as long as Di+1. The larger

ρ(i) is, the longer Di is in comparison with Di+1. Hence, if

Di is the boundary between correct strokes and error strokes,

ρ(i) should be large. In Figure 4(b), we can see ρ(5) is very

large. The other metric ε(i) indicates how much gesture stroke

information is reserved if we filter out the strokes whose

displacement is shorter than Di. We calculate ε(i) as:

ε(i) =

∑i
k=0 Dk∑m
k=0 Dk

(10)

The larger ε(i) is, the more gesture information is reserved.

In Figure 4(b), we can see the ε(5) is large enough to reserve

the most of gesture information.

We set two thresholds ρ0 (e.g, 1) and ε0 (e.g., 0.9) for

those two metrics, respectively. We find the first D(i) which

simultaneously makes ρ(i) > ρ0 and ε(i) > ε0. Then, we filter

out those strokes whose displacement is shorter than D(i). In

this way, we adaptively set the displacement boundary of error

strokes, while reserving the most of gesture stroke information.

In Figure 4(b), the five strokes of letter gesture A can be

extracted with the heuristic method. Although most error

strokes can be filtered out, two cases will blind the heuristic

method: an error stroke remains when its displacement is as

Fig. 5: The system implementation of Magic Wand.

large as the correct ones; a correct stroke is wrongly filtered

out when its displacement is too small.

D. Gesture Recognition

To convert an extracted stroke sequence to a gesture, we find

the stroke sequence template which has the highest similarity

with the extracted stroke sequence. Due to possible error

strokes, the length of an extracted stroke sequence may be

different with its corresponding stroke sequence template.

We utilize Dynamic Time Warping (DTW) for calculating

the similarity between these two stroke sequences. In this

algorithm, C(i, j) is denoted to indicate the non-negative

cost between stroke i and stroke j. DTW further finds the

matching function to minimize the DTW cost using dynamic

programming. We use the calculated DTW cost as the similar-

ity between two stroke sequences. The smaller the DTW cost

is, the higher the similarity is.

IV. IMPLEMENTATION

We implement Magic Wand in Android. As shown in

Figure 5, our prototype system consists of three parts, a

smartwatch, a smartphone (e.g., Google Pixel) and a notebook

(e.g., Macbook Pro). The smartwatch connects the smartphone

via Bluetooth. The smartphone is connected with the notebook

by a cable. With Magic Wand, users can perform wrist

gestures as usual in various scenarios as shown in Figure 5.

The smartwatch records the readings of motion sensors, then

sends the data to the notebook for gesture recognition in

real time manner. We use four smartwatches (Moto 360,

LG Watch Sport, Huawei Watch and Huawei Watch 2 Pro)

in our experiments. The sampling rate of motion sensors is

approximate 50Hz for Moto 360 and 100Hz for the other

three. We utilize interpolation to ensure the stable sampling

rate. Facing different gestures and diverse wrist moving speed,

the data size of a gesture is about 5K - 20K bytes. For a

gesture, the transmission time over bluetooth link is about tens

of milliseconds.

In Figure 1(a), the stroke set contains 8 strokes. With

more strokes, we can depict more details in stroke sequence

templates so that distinguish more gestures. However, it also

risks increasing the probability of the error strokes in the

extracted stroke sequences so that degrades the recognition

accuracy. To balance the tradeoff, we adopt the 8 strokes

in our implementation. For stroke sequence extraction, we

empirically set ρ0 and ε0 as 1 and 0.8.
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Fig. 6: The 7 geometric gestures and stroke order.
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Fig. 7: The velocity comparison along VICON X-axis.

V. EVALUATION

We invite six volunteers (3 females and 3 males, 20-30 years

old) to evaluate the performance of Magic Wand. We define a

set of 20 gestures which include 7 geometric gestures {RL

(right-left), LR (left-right), UD (up-down), RO (clockwise-

circle), LO (counterclockwise-circle), OO (infinity) and PE

(pentagram)} as shown in Figure 6, 3 number gestures {1, 3,

8} and 10 letter gestures {A, C, D, E, H, K, N, Q, R, Z}. We

further generate the corresponding stroke sequence templates

by following the rules in Section II-B.

To verify the performance of Magic Wand for different users

and smartwatches, we gather the data sequences as follows.

Each volunteer performs each gesture 10 times following the

predetermined stroke order with both Moto 360 and Huawei

2 Pro in his/her comfortable wrist motion scenario. Two male

volunteers also perform each gesture 10 times with the other

two smartwatches. For different smartwatch, each volunteer

performs a calibration gesture to initialize the parameters

of our inherent accelerometer noise model at the beginning.

For different users, they perform all 20 gestures with their

convenient ways and habits. For example, for different users,

the shortest average gesture performance time is 1.5 seconds,

but the longest one is 2.4 seconds.

A. Acceleration Noise Filtering

We verify the performance of our methods for acceleration

noise filtering. A volunteer wears a Moto 360 smartwatch and

performs a calibration gesture in the air. When the calibration

gesture is performed, we use raw acceleration data sequences

and our noise filtering methods to compute the corresponding

velocity, as well as make use of a VICON motion capture

system [1] as ground truth. We take the VICON coordinates as

TABLE I: The recognition accuracy in terms of different

gesture scales.

Gesture Scale 1/2 A4 1/4 A4 1/8 A4
long (cm), wide (cm) (21, 14.9) (14.9, 10.5) (10.5, 7.5)

Recognition Accuracy (%) 97.0 98.0 98.0

the reference coordinates and align the smartwatch coordinates

to them before performing the calibration gesture.

The X-axis velocity of the calibration gesture is shown

in Figure 7. We can see that with our acceleration noise

filtering, there is little difference from the velocity computed

by smartwatch accelerometer to the ground truth. The velocity

error does not accumulate with time. The result verifies that

our methods of acceleration noise can work efficiently and

guarantee the accuracy of later stroke extraction.

B. Overall Gesture Recognition

1) Accuracy and Error: With total 3200 gathered data

sequences of the 20 gestures, we select 16 different gestures

(e.g., ‘A’, ‘E’, ‘K’, ‘D’) as the starting gesture in 16 scenarios

with different users/smartwatches. The rest 3184 gestures are

used for testing. We show the recognition accuracy of all 20

gestures in ascending order in Figure 8(a). We can see the

median recognition accuracy is 94.0%. There are 5 gestures

whose recognition accuracies are lower than 90% and the

worst is 79.4% for letter gesture ‘R’.

We further examine the distribution of recognition error. The

results are shown in Figure 8(b). We can see that gesture ‘R’

can be misclassified as ‘A’ (6.9%), ‘D’ (5.0%) and ‘K’ (4.4%).

The reason is that they have similar stroke sequence. thus the

possible error of stroke extraction leads the wrong gesture

recognition, The same situation holds for ‘LO’ misclassified

as ‘Q’ (9.4%) and ‘A’ misclassified as ‘N’ (5.6%). We also

notice that 5.0% of gesture ‘UD’ is recognized as ‘RL’. The

reason is that these two gesture are sensitive to the direction

of writing plane. The possible error of writing plane rotation

leads bias of gesture recognition. Finally, the distribution

of recognition error is asymmetric. For example, some ‘R’

gestures are recognized as ‘A’ (6.9%), but none of ‘A’ gestures

are recognized as ‘R’. This reflects that the extraction accuracy

is different for straight stroke and curve stroke. It is easier to

perform ‘A’ by following the pre-determined stroke sequence.

Some strokes of the curve stroke may be filtered if the curve

is not well performed.
2) Multiple Users and Smartwatches: We further evaluate

the influence of different smartwatches and users on the

recognition accuracy. Figure 9(a) shows the average recog-

nition accuracy regarding to different users. The recognition

accuracies of different users are between 90.0% and 98.3%.

We can see the recognition accuracies of different users are

high. The difference mainly comes from whether users are

familiar with the stroke order, but not depends on user habits.

This verifies the stroke sequence based gesture recognition can

adapt to various user habits.

Figure 9(b) shows the average recognition accuracy regard-

ing to different smartwatches. The recognition accuracy of
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(a) and smartwatches (b).

different smartwatches are between 88.0% and 98.3%. The

performance of Moto 360 is better than the other three smart-

watch. The major difference is the motion sensor sampling

rate of Moto 360 is 50Hz, which is lower than 100Hz of the

other three smartwatches. The high sampling rate may record

more velocity glitches which have different motion directions

with others in a long stroke trajectory. These glitches can

split the long stroke trajectory into short ones during stroke

sequence extraction so that increase the probability of error

strokes. Hence, Moto 360 with low sampling rate have better

recognition accuracy.

C. Recognition Method Comparison

We compare Magic Wand with two state-of-the-art ap-

proaches in terms of gesture recognition accuracy and the

computation efficiency. One approach (called Accel DTW)

[4] [6] directly matches the measure acceleration sequences

with the reference gesture acceleration sequences. The other

approach (called Naive Bayes) [12] [18] [20] utilizes the char-

acteristics (e.g., energy, frequency, variation, etc.) of measured

acceleration readings as gesture features and Naive Bayes as

the gesture classifier. We adopt the 9 characteristics used by

[20].

For the set of 20 gestures, we use the data sequences of

1200 gestures performed by six volunteers with Moto 360

smartwatch as the test set. With Magic Wand, we select the

same 6 starting gestures with Section V-B for the 6 users.

With Accel DTW, we select 360 acceleration sequences as

reference sequences for different gestures. With Naive Bayes,

we randomly select 600 acceleration sequences of different

gestures performed by different users in different scenarios

for classifier training. For all three approaches, we filter out

the acceleration noises from the acceleration sequences of all

gestures with our method.

1) Recognition Accuracy: Table II shows the average

recognition accuracy among different approaches. We can see

that With Naive Bayes, the recognition accuracy is the lowest,

namely 48.2%. This indicates the acceleration characteristics

cannot well represent a large set of gestures. With Accel DTW

and Magic Wand, the average recognition accuracies of all

20 gestures are 99.2% and 97.4%, respectively. We can see

Accel DTW has higher recognition accuracy. The reason is

TABLE II: The performance comparison among different

gesture recognition approaches.

Naive Bayes Accel DTW Magic Wand
Accuracy (%) 48.2 99.2 97.4

Time (s) 0.014 5.58 0.014

the long acceleration sequence is more representable than our

short stroke sequences for the set of 20 gestures.

2) Computation Efficiency: Table II shows the average

computation time used to recognize each gesture. Due to

long acceleration sequence and the resulted high computation

complexity of DTW, the computation overhead of Accel DTW

is extremely high. It consumes 5.58s to recognize a gesture,

but Magic Wand only consume 0.014s. In comparison with

Magic Wand, Accel DTW has two fatal limitations. To adapt

to diverse users’ habits, it needs all users’ overhead to perform

360 gesture references in advance, but Magic Wand only needs

6 starting gestures. Moreover, Accel DTW cannot achieve real-

time gesture recognition due to high computation complexity.

Magic Wand can achieve real-time gesture recognition while

keeping the recognition accuracy high.

VI. RELATED WORK

Wrist gesture recognition acts as a meaningful interac-

tion interface between human and devices. Recently, with

the smartphone/smartwatch motion sensors, many works are

proposed to recognize various gestures represented by wrist

motion. We summarize those methods as follows.

Template matching based approaches. Some works [4]

[6] [8] [3] recognize wrist gestures by matching the extracted

feature sequence with pre-configured gesture templates. There

are two ways to generate gesture templates. On one hand, [4],

[6] and [8] directly use the entire acceleration sequence as the

gesture template, then DTW severs the matching function. On

the other hand, P3 [3] uses 6 strokes (e.g., 2 curve strokes

and 4 line strokes) to represent letter gestures, then a decision

tree is utilized for stroke sequence matching. Magic Wand

proposes a new stroke sequence based template matching. In

comparison with P3 [3], 8 unique strokes that point to 8 dif-

ferent directions are more flexible to represent different kinds

of gestures and avoid the ambiguity of two different gestures.

Moreover, to ensure that the space of gesture template is finite,
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Magic Wand can automatically convert free 3D wrist motion to

a unified writing plane with low overhead, but existing works

usually assume a fixed DoFs of wrist and elbow motion which

restricts the scalability of gestures.

Machine learning based approaches. Some works [19]

[20] [11] [5] [16] extract several characteristics (e.g., dura-

tion, velocity, displacement, angle, motion energy, acceleration

variation, etc.) of the acceleration and gyroscope sequence

to represent different gestures. Moreover, various learning

models (e.g., Decision Tree, Naive Bayes, Logistic Regression,

Support Vector Machine, k-Nearest Neighbor, Hidden Markov

Model, Random Forest etc.) are used to classify different

gestures. For example, Risq [11] trains a decision tree with

the gesture features of duration, velocity, displacement and

angle to recognize smoking gesture. [20] use various features

defined in [10] to represent letter gestures writing on a vertical

whiteboard and trains a Naive Bayes model as the classifier.

However, these low-level motion features are usually user-

habit and scenario-DoF dependent. Therefore, to train the

learning model, a user has to perform each gesture several

times or the system developer needs to collect a large set

of labeled gesture motion data under various scenario from

different users. In contrast, Magic Wand utilizes high-level

feature (i.e., gesture stroke sequence) so that requires neither

scenario-specific wrist motion nor user-specific training.

Wrist tracking based approaches. Some works [13] [14]

[9] track the trajectory of wrist movement with motion sensors.

The trajectory can be further utilized for wrist gesture recogni-

tion. Specifically, ArmTrak [13] establishes a hidden Markov

model (HMM) to fuse the motion sensors and the anatomy of

arm joints, then tracks the wrist location by estimate the state

variables. Combining with the real-time smartwatch facing

orientation, MUSE [14] establishes particle filter model to

estimate wrist location with the constraints of accelerometer

readings and wrist motion model. However, both ArmTrak and

MUSE suffer from high computation complexity so that cannot

be applied in real-time applications. ArmTroi [9] further opti-

mizes the HMM model of ArmTrak to reduce the computation

complexity. In comparison, Magic Wand develops a white-

box model for wrist gesture recognition. The computation

complexity of the white-box model is much less than HMM

model of ArmTroi. Hence, Magic Wand can be applied for the

applications (e.g., motion sensing games, VR control) which

are time-sensitive.

Overall, in comparison with existing methods, Magic Wand

can support various kinds of gestures in a light-weight way.

Moreover, Magic Wand can achieve user-independent and real-

VII. CONCLUSION

In this paper, we propose Magic Wand which develops a

high-level feature (i.e., stroke sequence) to achieve a plug-and-

play wrist gesture recognition on smartwatch. In comparison

with existing methods, Magic Wand naturally supports several

kinds of gestures without any constraint of user habits. With

time wrist gesture recognition with high accuracy.

Magic Wand, a user wearing a smartwatch can freely perform

various wrist gestures and interact with many applications.
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