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Abstract—Driven by the proliferation of mobile applica-
tions, the conflict between data communication requirement
and limited battery capacity is becoming sharp on modern
smartphones. Offloading mobile traffic from cellular to WiFi
is widely recognized as a viable solution to improve the energy
efficiency. However, through extensive field experiments, we
find WiFi offloading is not always energy efficient and even
consumes more energy than cellular network due to link quality
variation. In addition, we also observe that practical data
transmission deadline requirement and link utilization allows
scheduling of data traffic to time periods with good link quality.
Accordingly, we propose Q-offload, the first attempt towards
energy efficient WiFi offloading with link dynamics. In Q-
offload, we propose an iterative framework to achieve energy
efficient WiFi offloading by exploiting good link quality while
not affecting user experience. We evaluate the performance
of Q-offload through both trace-driven analysis and real-
world experiments. The results show that it can achieve
33.5%∼55.7% energy efficiency improvement, compared with
state-of-the-arts under different conditions.

I. INTRODUCTION

Driven by the proliferation of mobile applications, mobile

communication is playing an important role in our daily

life. Reported in [1], global mobile data traffic in Q1 2014

has exceeded 2400 PB. As a typical and commonly-used

network type, however, modern cellular network often falls

short in providing energy efficient network access due to its

relatively high power consumption [2].
On the other hand, WiFi [2], which is becoming a

common network access method in our daily life, provides

more energy efficient network access than typical modern

cellular networks. Therefore, offloading mobile data through

available WiFi [3]–[6] has been adopted as a viable solution

in saving energy cost of data transmission. By exploiting the

opportunistic WiFi connectivity in mobile environment, the

energy consumption in data transmission can be decreased.

Actually, most modern cellular phones have adopted such a

mechanism as the default setting in which they switch from

cellular network to WiFi when WiFi is available. Meanwhile,

various approaches are proposed to improve the offloading

efficiency, e.g., prefetching [7], delayed offloading [4], [8]

and collaborative offloading [3], [9].
Most existing works on WiFi offloading, however, as-

sumes that WiFi is always energy efficient and neglect an

important fact that the energy efficiency of WiFi is dynamic,

especially under mobile environment. This is because WiFi

link quality, which directly affects its energy efficiency [10],

may vary in different environments. For a lower link quality,

the transmission time for the same amount of data is longer

than that for a higher link quality. Thus, the energy consump-

tion will be higher for the lower link quality. By quantitative

tests in a 2000m2 office building with multiple APs as shown

in Figure 1, we find that in 45.6% download cases and 20.1%

upload cases, the energy efficiency of WiFi is even worse

than 4G HSPA+ on the same platform. Under those cases,

WiFi offloading brings no energy benefit and even increases

the energy consumption. This tells us the WiFi link quality,

which is previously overlooked, should be carefully con-

sidered. Accordingly, the data traffic for offloading should

be scheduled according to WiFi link dynamics. Driven by

the observation, we further find that for most data transfer,

the real-time requirement is not tight, which spares adequate

space for us to reschedule the transmission. This finding tells

us that we can exploit links with high quality to conduct data

offloading while avoiding using links with low quality, so

that the overall energy efficiency of WiFi offloading could

be greatly improved.

Under link dynamics, designing a scheme for energy

efficient WiFi offloading is challenging. The main reason

is that link quality is dynamic. This feature makes it hard to

determine a global optimal offloading scheme. As a result,

the effectiveness of a scheme is often restricted in small

time scales. In addition, the real-time requirement of data

transmission also suffers a risk of being violated under this

condition. To address those challenges, in this paper, we

propose Q-offload, a quality aware offloading scheme to

make the offloading decision towards optimal energy effi-

ciency without affecting user experience. First, we propose

a general iterative link quality prediction method to continu-

ously update the offloading decision by exploiting available

good links for data offloading. Thus the energy consumption

can be significantly reduced, especially with link dynamics.

Second, we also design a deadline guarantee mechanism

to estimate the data finish time in order to satisfy the

transmission deadline. Accordingly, user experience will not

be affected in Q-offload. We have implemented Q-offload

on the Android platform and evaluated its performance in

both trace-driven analysis and real-world experiments. To

summarize, our contributions are as follows:

• We introduce the idea of quality aware WiFi offload-

ing through empirical quantification on the impact of
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Figure 1: Experimental floorplan
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Figure 2: Eb analysis.
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Figure 3: Occupation of slots with good

link quality, i.e. top 20%.

WiFi link dynamics. We demonstrate that the energy

efficiency of WiFi offloading can be greatly improved

by exploiting feasible good link quality.

• We present the analytical formulation of the problem

and demonstrate its hardness. Following the analysis,

we propose the design of Q-offload, the first attempt

towards energy efficient WiFi offloading with link

dynamics. By leveraging different strategies to make

real-time offloading decisions on the link dynamics,

Q-offload can achieve energy efficient WiFi offloading

while also preserving user experience.

• We conduct extensive evaluation of Q-offload in both

trace-driven analysis and real-world experiments. The

results show that Q-offload can achieve 33.5%∼55.7%
energy efficiency improvement, compared with state-

of-the-arts under different conditions.

The rest of this paper is organized as follows: Section

II presents in detail the background and our motivation.

Section III presents the formulation of the problem. Section

IV introduces the design details of Q-offload. Section V

presents the implementation, followed by the performance

evaluation in Section VI. Section VII presents the related

work and we conclude this work in Section VIII.

II. BACKGROUND AND MOTIVATION

A. Background

To handle the explosive and ubiquitous data requiremen-

t, cellular networks, e.g., LTE, HSPA+, are widely used

nowadays, which provide fast network access with up to

100Mbps bandwidth [11]. However, cellular networks also

introduce a relatively high energy consumption [2], [10],

[12]. As measured in [2], the average power consumption

of LTE is around 1600mW (Download) and 2000mW (Up-

load). Considering the limited battery life on smartphones,

e.g., around 3000mAh, accessing the Internet only through

cellular networks would severely narrow down the usage

time, and thus affect the quality of user experience.

To save the energy consumed in data communication,

offloading data traffic through WiFi is recognized as a more

energy efficient approach to reduce communication overhead

[3]–[5], [13]. For example, the default setting of modern

smartphones is offloading traffic to WiFi when it is available.

B. Inefficiency of WiFi offloading
However, offloading traffic through WiFi is not always

energy efficient. The main reason is that WiFi link quality

varies in different environments. When link quality is poor,

it requires more time to transmit the same amount of data

[10], [14]. Accordingly, the energy consumption in data

transmission increases. Therefore, WiFi offloading, which

is traditionally presumed to be energy efficient, may not be

beneficial in poor link quality.
To quantify the impact of link quality variation on the

energy efficiency of WiFi offloading, we conduct field tests

in a 2000m2 office building with multiple APs. The floor

plan is shown in Fig.1. We use average energy consumption
per KB Eb to estimate the energy efficiency as in [2]. Eb

can be calculated as:

Eb =
β

b
+ α (1)

in which b is the throughput and α, β are two power

parameters. The power parameters of each network type

is measured by FLUKE 120 scopemeter. We use Sumsang

Galaxy Note3 as the testing platform and examine Eb of

WiFi at 52 different locations. The WiFi type is 802.11n

and we choose 4G HSPA+ as the benchmark. At each testing

point, we send/receive TCP packets to/from a remote server

located in Shanghai for 10 minutes.
We measure Eb(WiFi) for the average energy consump-

tion per KB of WiFi and Eb(HSPA+) for the average
energy consumption per KB of cellular network. We plot

the CDF of ΔEb = Eb(WiFi) − Eb(HSPA+) and

Eb(WiFi) for each position in Fig.2. First, we observe that
the link quality variation, which is estimated by Eb(WiFi),
is significant. For transmitting the same amount of data,

the Eb has a variation up to 29.8mJ/KB for download

and 37.6mJ/KB for upload. Moreover, if we perform best-

effort WiFi offloading as in most of existing works [3],

[5], 45.6% downloaded traffic and 20.1% uploaded traffic

through WiFi cost even more energy than HSPA+. On the

other hand, we also notice that if we can reschedule the

data transmission from poor link quality to good link quality,

e.g., 1MB data from Eb(WiFi download) = 30.43mJ/KB
to Eb(WiFi download) = 0.63mJ/KB, about 29.8J energy
could be saved, which is significant for the limited battery
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capacity. Therefore, this finding motivates us by exploring

good link quality, the energy efficiency of mobile data

offloading through WiFi can be significantly improved.

C. Link quality aware offloading scheme: feasibility and
challenges

In order to schedule traffic for energy efficient WiFi

offloading, we should answer two questions: (1) whether

the real-time requirement of mobile applications allows

such scheduling, and (2) whether those good links can

accommodate the scheduled network requests?

For the first question, many measurement studies have

been done on analyzing the deadlines of different mobile

applications. For example, the studies in [15], [16] suggest

more than 50% of the interviewed users would wait up to

10 minutes to stream YouTube videos and 3-5 hours for

file downloads. In addition, for delay-sensitive applications,

e.g., browser, not all objects are directly displayed on the

screen. Accordingly, the off-screen data can also be delayed

up to tens of seconds [17]. The results indicate that for many

applications, the real-time requirement is not tight, and thus

we can schedule the offloading time while also guaranteeing

the corresponding deadline.

To answer the second question, we conduct offline analy-

sis on two datasets, NetMaster [18] and SIGCOMM08 [19].

The former was collected with 8 users for three weeks. The

latter was collected at a conference that has a peak of 31

clients. We define the good link quality as the top 20%. We

plot the cdf of occupation of network capacity in Fig.3 and

find the average occupation ratios are low for both datasets,

i.e. 26.73% of network capacity are used for NetMaster

and 30.06% for SIGCOMM08. As a result, the analysis

demonstrates the link quality aware offloading scheme is

also feasible in practice.

D. Summary

In the section, we investigate the impact of link quality

variation on the energy efficiency of WiFi offloading and

show the inefficiency of existing WiFi offloading methods

due to link dynamics. We also illustrate that the deadline

requirement for typical data traffic and link utilization allows

scheduling of data to reduce energy consumption while not

affecting user experience. In the following sections, we will

show how to schedule the traffic based on link dynamics

while meeting users’ deadline requirement under different

conditions.

III. PROBLEM FORMULATION

We consider a mobile user who has data of size D to

transmit within a WiFi coverage. The data can be interpreted

as a game to be downloaded from Google play, a video

to be watched on YouTube App, a webpage to be loaded

in a browser or etc. For each type, it has a corresponding

deadline, e.g., the time when the user plays the game.

Without loss of generality, we denote the deadline as n

and the start of the network request as 1. The time period
between [1, n] forms the offloading decision window T1,n.
For window T1,n, we use a discrete time-slotted model to
denote it, i.e. T1,n is divided into n discrete equally-sized
time slots T1,n = {1, 2, ..., n}. For each slot, we define its
length as Δt. By default, we set Δt = 1s.

Let b(t) denote the WiFi link quality experienced by the
user in slot t. Without loss of generality, we specify b(t) as
the achievable link bandwidth (upload/download), as band-

width is the most critical factor in the energy consumption of

data transmission [2]. To model the varying pattern of b(t),
we denote Pi,j as the probability that b(t) transits from state
i to state j [20], [21]. Assume there are M states for b(t),
the transition matrix is given by:

P =

⎡
⎢⎢⎣
P1,1 P2,1 ... PM,1

· · ·
· · ·

PM,1 PM,1 ... PM,M

⎤
⎥⎥⎦ (2)

With link dynamics, the matrix may not be fixed, i.e., the

entry Pi,j is a time-varying variable. Other channel models,

like Gilbert-Elliott (GE) channel model [20], can also be

adopted in our scenario under the above settings. In addition,

we also notice that within a WiFi coverage, there may

exist multiple APs offering different b(t). Without loss of
generality, we denote b(t) as the best one.

Based on current bandwidth b(t) of a mobile device,
the decision set a contains two operations: “choose t for
transmission” and “remain idle”. For simplification, we

denote a(t) as follows:

a(t) =

{
1, choose t for transmission

0, remain idle

According to the offloading decision, let Z(t) denote the
amount of data transmitted in slot t, which can be calculated
as Z(t) = b(t) · a(t) ·Δt.

For energy consumption, we assume WiFi PSM is enabled

by default and a preferable AP has already been selected.

Accordingly, the idle listening, scanning and initial energy

consumption are excluded in our model and the transmission

energy is proportional to the transmission time. We adopt a

consistent power consumption model in [22] and denote the

power rate of WiFi as Pwifi. Then we can calculate the

energy consumption of a slot E(t) as follows:

E(t) = Pwifi · a(t) ·Δt

Based on the definition, for network request D with finite

window T1,n, we aim to find an offloading scheme S∗ =
{a(1), ..., a(n)} such that the total energy consumption is

241241241
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Figure 4: The workflow of Q-offload

minimized, i.e.

min

n∑
i=1

a(i) · E(i)

s.t.
n∑

i=1

Z(t) ≥ D

a(i) ∈ {0, 1}, ∀i

(3)

Notice the optimization problem (Eq.3) is in fact an

online knapsack problem with unknown optimal number of

knapsacks [23]. Even if the optimal number is known, the

problem is still NP-hard to solve and does not admit any

competitive deterministic online algorithm [23]. Given this

fact, we resort to Model Predictive Control (MPC) method

[24] and propose Q-offload, a heuristic scheme to solve this

problem in the following section.

IV. DESIGN OF Q-OFFLOAD

In the section, we propose the design of Q-offload, a

heuristic scheme to achieve energy efficient WiFi data of-

floading. Since long-term link quality is hard to be accurately

predicted, the basic idea of Q-offload is continuously ex-

ploring local energy efficient offloading opportunities within

the predictable window, and keeping shifting the window

to update the offloading decision. Therefore, the good link

quality in the deadline can be efficiently utilized.

In the section, we first present an overview of Q-offload,

and then discuss three key components of Q-offload: dynam-

ic window length control, local offloading scheme determi-

nation and deadline guarantee mechanism.

A. Overview

Figure.4 depicts the workflow of Q-offload. Assuming

current slot is t and the system state is (D, b, t) with D > 0,
the process of Q-offload can be stated as follows:

1) At time t and for the current system state (D, b, t),
determining the local offloading scheme over a fixed

future interval, say [t, t+ c] under two conditions:
1. t + c ≥ n. The scenario indicates we can obtain a
global information over the window Tt,n. Then we can
directly solve Eq.3 to determine the optimal offloading

scheme. This may be possible if the link follows some

link models, e.g., link bursty model [20], [25], link

temporal correlation model [21], [26], or the deadline

is near.

2. t + c < n. It indicates we cannot have the total
global information. Accordingly, we use “transmit D
in the slot i ∈ [t, t+c] with largest b(i)” as the decision
criterion.

2) Checking whether the deadline constraint can be guar-

anteed at current system state (D, b, t), i.e. whether the
expected remaining capacity is sufficient to transmit

D. If yes, applying only the first step in the resulting
control sequences. Otherwise, performing the trans-

mission at t and set a(D, b, t) = 1.
3) Updating system parameters based on the scheme

a(D, b, t).
4) Measuring the system state reached at slot t + 1 and
repeating the fixed window optimization at time t+1
over the future interval [t+1, t+1+ c], starting from
the current (D, b, t+ 1).

B. Dynamic window length control

To realize Q-offload, it is important to determine an appro-

priate window length within which the prediction accuracy

can be guaranteed, so that the local offloading scheme is

likely to be most energy efficient. In this subsection, we dis-

cuss how to determine the length of decision window under

different conditions to guarantee the prediction accuracy.

First, we define the prediction accuracy as:

Definition IV.1. The prediction accuracy in [t, t+ c] is the
mean gap between the predicted values and actual values,
i.e.,

Accuracy = 1− 1

c

t+c∑
i=t

| ˆb(i)− b(i)|
b(i)

(4)

where ˆb(i) is the predicted value at i-th slot based on
transition matrix P and b(i) is the true value.

Clearly, if Accuracy is higher, the determined offloading
scheme is more likely to be effective in the decision window.

On the other hand, we should also notice that high Accuracy
is hard to be achieved with a fixed length c under different
conditions. For example, the best window length between

a static user and a mobile user is often different, since the
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Algorithm 1: Pseudo code for Q-offload
Input: Window T1,n, prediction length c, untransmitted data D,

transition matrix P, current slot t;
Output: Offloading decision;

1 //Dynamic prediction length control

2 Accuracy = 1− 1
c

∑t
i=t−c+1

| ˆb(i)−b(i)|
b(i)

;

3 if Accuracy < γ then
4 c = max{c0, 1

2
c};

5 else
6 c = c+ 1;

7 Predict { ˆb(t+ 1), ˆb(t+ 2), ..., ˆb(t+ c)} based on P;
8 //Deadline guarantee mechanism
9 if t+ c ≥ n then
10 Dsafe =

∑n
i=t

ˆb(i) ·Δt;

11 else
12 Dsafe = n−t+1

t−1

∑t−1
i=1 b(i) ·Δt;

13 if D > Dsafe then
14 Exec Trans(D, t);

15 //Local offloading scheme determination
16 if t+ c ≥ n then
17 SL(t) =Solve Eq.3;
18 if b(t) ≥ min{b(i)|i ∈ SL(t)} then
19 Exec Trans(D, t);

20 else
21 if b(t) ≥ max{ ˆb(t+ 1), ˆb(t+ 2), ..., ˆb(t+ c)} then
22 Exec Trans(D, i);
23 D = max{0, D(k)− Z(ik)};

24 if D equals to 0 then
25 Return;
26 else
27 Continue Algorithm.1 with t+ 1;

variation of link quality is usually more significant in the

latter scenario. As a result, we should accordingly adjust c
to ensure the prediction accuracy.

To achieve this goal, we propose a dynamic control

scheme to determine the appropriate c under different con-
ditions. Without loss of generality, we assume the minimum

prediction length is c0 > 1 and the accuracy threshold is γ.
Basically, we consider two cases:

1) Accuracy < γ. It indicates under current condition,
the prediction length is too long. This may be caused

by the change of user mobility, e.g., from static to mo-

bile or meeting new impact factors. Accordingly, the

effectiveness of offloading decision would be affected,

and thus we should decrease the prediction length. By

default, we set c = max{c0, 12c} to guarantee quick
reaction.

2) Accuracy ≥ γ. It indicates the prediction is accu-
rate in the current condition. Accordingly, we can

extend the prediction length to improve the decision by

considering more candidates. To avoid making wrong

extensions, we set c = c+ 1 under this condition.

By default, we set c0 = 10 and γ = 0.8. In the evaluation
part, we validate that this setting achieves a good perfor-

mance in practice.

C. Local offloading scheme determination

In order to determine the local offloading scheme, we

should consider whether current prediction window can

cover the remaining slots. If yes, we can use a deterministic

method to make the offloading decision since we can predict

the remaining link quality variation. Otherwise, we introduce

a greedy method to handle the condition. More specifically,

our scheme is stated as follows:

Case 1: t + c ≥ n. This condition indicates that we can
obtain a global information of the link quality variation for

the remaining slots. Accordingly, the optimal scheme should

be selecting L largest slots in Tt,n such that their aggregated
capacity just holds D. Without loss of generality, we denote
the scheme as SL(t). Then the offloading decision should
be transmitting D in the slot i ∈ [t, n] whose bandwidth is
no smaller than the minimum bandwidth in SL(t), i.e.

a(D, b, i) =

{
1, b(i) ≥ min{b(i)|i ∈ SL(t)}
0, Otherwise

(5)

Case 2: t+c < n. In this case, we only have limited infor-
mation about link quality variation over Tt,n. To minimize
the energy consumption, we should use the slot with the best

link quality in the [t, t + c] for data offloading. Therefore,
we use “transmit D in the slot i ∈ [t, t+c] with largest b(i)”
as the decision criterion. If the most probable evolving path

from t to t + c is L([t, t + c]|P). Then the transmission
scheme for slot i ∈ [t, n] under this condition is:

a(D, b, i) =

{
1, b(i) ≥ max{b(i)|b(i) ∈ L([t, t+ c]|P)}
0, Otherwise

(6)

It should be noted for a time window [t, t+ c], the method
of finding the best link quality is related to the link model.

The calculation of max{b(i)|b(i) ∈ L([t, t+ c]|P)} may be
different if other models are applied [27], [30].

D. Deadline guarantee mechanism

We propose a deadline guarantee mechanism in Q-offload.

The basic idea of the mechanism is to check whether the

expected remaining capacity is enough to hold D before

conducting the corresponding local scheme. Without loss of

generality, we denote the expected remaining capacity at slot

t as Dsafe(t):

Dsafe(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
i=t

ˆb(i) ·Δt, t+ c ≥ n

n− t+ 1

t− 1

t−1∑
i=1

b(i) ·Δt, Otherwise

(7)

If D ≤ Dsafe(t), it indicates there is enough space for
scheduling. Then Q-offload follows the resulting offloading

scheme. Otherwise, if D > Dsafe(t), the deadline constraint
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Figure 5: The system overview of Q-offload

of D may be violated if a(D, b, t) = 0. To avoid this
phenomenon, Q-offload will perform the transmission of D
in the current slot.

E. Summary

Based on the descriptions mentioned above, we summa-

rize Q-offload in Algorithm.1. According to our design, Q-

offload is a moderate offloading scheme whose first con-

cern is satisfying users’ requirement. When the offloading

pressure is light, it will exploit the good link quality for

offloading and achieve energy efficiency improvement. On

the other hand, when the offloading pressure is high, e.g.,

there is less space for scheduling data offloading within the

deadline, Q-offload will offload as much data as possible

to to satisfy users’ requirement. In addition, if multiple D
coexist with different deadlines, we can also apply Q-offload

in the scenario by offloading D sequentially according to

their deadline urgency.

V. IMPLEMENTATION

Based on the design, we have implemented Q-offload as a

cross layer approach on Android system for energy efficient

offloading.

A. System overview

The system architecture of Q-offload is shown in Fig.5.

First, for each App, it tracks the usage feature in the

database, i.e. the average interval between the start of the

network request and usage. When the App has a network

request, the window estimator will extract the corresponding

deadline and pass it to the scheduler. Meanwhile, the link

quality monitor will also pass current link quality and

transition matrix to the scheduler. Following Algorithm.1,

the scheduler will determine the offloading scheme for each

network request.

B. Window Estimator

This part is responsible for deriving the window T for

each offloading request. To obtain the value, we query the

database and extract the mean window for the corresponding

App. If there is no information about the App, e.g., newly

installed, we also allow the part to obtain the information

from user’s input before making offloading decisions. Since

user only needs to enter one number, the extra overhead is

negligible and will not affect normal user experience.

C. Link Quality Monitor

As aforementioned, this part tracks the link quality values

from network interface card and derives the transition matrix

for the scheduler. Based on the link quality values, it

maintains a transition matrix P. For each transition, e.g.,

b(i) to b(j), the link quality monitor updates the entry from
b(i) to b(j) as follows:

Pb(i)→b(j) =
δ ·Nb(i)→b(j) + 1

δ ·∑∀k Nb(i)→b(k) + 1
(8)

where Nb(i)→b(k) denotes the number of transitions from

b(i) to b(k) and δ is a loss ratio. We set δ = 0.5 to make in-

time update. Moreover, we set b(i) = 50KB/s · � b(i)
50KB/s�

to control the number of entries in the matrix.

D. Scheduler

The scheduler makes offloading decisions based on the

information from the window estimator, socket controller

and link quality monitor. For each iteration in Algorithm.1,

the scheduler will pass the offloading decision to the socket

controller. Accordingly, socket controller will implement

the decision and return the size of untransmitted data to

the scheduler to make further decisions. This process will

continue until data D is fully offloaded. After that, c will
be set as 10 again.

E. Socket Controller

The socket controller is implemented as a firewall of the

standard socket implementation based on the kernel function

iptables, which manages the real-time rules of data streams.
When the offloading decision is “transmitting data in the

current slot”, the module makes no change. On the other

hand, when the offloading decision is “remain idle”, then the

module adds the rule –limit 1/minute for the corresponding
port to restrict the speed for 1 packet per minute for the

data stream. By doing this, we maintain the activeness of

the stream while also limiting the transmission in undesired

slots. Accordingly, we can reschedule data transmission to

our offloading decisions.

VI. EVALUATION

In this section, we demonstrate the evaluation of Q-offload

scheme through both trace-driven analysis and real-world

experiments.
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Figure 6: Prediction error on initial c0.
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Figure 7: Prediction error when user is

static.
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Figure 8: Robustness of deadline guaran-

tee mechanism.

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

Throughput(KB/s)

C
D

F

Wiffler
eTime
Oracle
Q�offload

(a) On NetMaster

0 15 30 45
0

0.2

0.4

0.6

0.8

1

Throughput(KB/s)

C
D

F

Wiffler
eTime
Oracle
Q�offload

(b) On SIGCOMM08

0 12 24 36 48
0

0.2

0.4

0.6

0.8

1

Throughput(KB/s)

C
D

F

Wiffler
eTime
Oracle
Q�offload

(c) On SIGCOMM04

NetMaster SIGCOMM08 SIGCOMM04
10�1

100

101

102

E
ne

rg
y 

ef
fic

ie
nc

y 
E

b(m
J/

K
B

) Wiffler
eTime
Oracle
Q�offload

(d) Energy efficiency comparison

Figure 9: Trace driven analysis of the performance of Wiffler, eTime, Q-offload and the oracle.

A. Experimental setup

In order to evaluate the performance of Q-offload scheme

comprehensively, we conduct both trace-driven analysis and

real world experiments detailed as follows:

Trace-driven analysis: We use three datasets for testing:
SIGCOMM08, NetMaster and SIGCOMM04. The number

of tested sessions are ≈ 105, which contain over 109 packet
transmissions over WiFi. In each test, we vary the deadline

length from 20 to 500 seconds to simulate different usage

patterns and user requirements. In addition, we set the

offloaded data size as 20% of total capacity within the

deadline by default. The target platform is also Samsung

Galaxy Note3.

Real-world experiments:We also implement a prototype of
Q-offload on Samsung Galaxy Note3 to evaluate its perfor-

mance in practice. To test the performance of Q-offload in

different scenarios, we develop a file download application

with about 500 lines of java code. It downloads files with

sizes varying from 50KB to 10MB from a remote server

in Wuxi. The file download application can receive user

specified deadline for the corresponding download, which

is specified in the following subsection. To evaluate the

performance of different schemes, for each file size, we input

different feasible deadlines and repeat the download for 10

times in a walking environment with different trajectories. To

derive accurate Eb for the download operation, we enable

Power-saving Mode (PSM) to eliminate energy consumed

in idle listening and include the CPU energy consumption

of Algorithm.1 by offline analysis. Moreover, Eb is still

calculated from Eq.1.

State-of-the-arts:We compare Q-offload against the follow-
ing state-of-the-arts: (1) Wiffler [5], which is a best-effort

offloading scheme widely adopted in many existing works,

(2) eTime [22], which utilizes a local greedy framework

to derive the efficient offloading decision, and (3) QATO

[28], which alternates between different network access for

data offloading. In our experiments, we use cellular network

(HSPA+) as the alternative if WiFi link quality is poor. We

implement QATO in the real-world experiments. We also

compare different approaches to the (4) Oracle, the optimal

scheme by offline analysis.

B. Component analysis

We first investigate whether the components of Q-offload

are robust under different conditions. Basically, we focus on

three components: the setting of c0, the setting of γ and the
deadline guarantee mechanism.

1) The setting of c0: First, we examine whether the initial
state of c0 = 10 can guarantee a high prediction accuracy.
By conducting trace-driven analysis, we plot the cdf of

prediction error in Fig.6. As shown in the figure, we observe

that under the prediction length of 10 seconds, the mean

prediction error in over 60% of traces in less than 20%. The

results demonstrate c0 = 10 is in fact an appropriate initial
state for Q-offload to start with.

2) The setting of γ: The value of γ impacts the decision
horizon evolution. Clearly, an appropriate γ should satisfy:
(1) increasing the horizon length when link quality is stable

and (2) restricting the horizon length to around c0 when
link quality varies. For the first requirement, we should

notice that even when the user remains static, there still

exists link quality variation. If γ is too small, the system
will not perform well under this scenario. To address this

issue, we conduct both trace-driven analysis and real-world
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Figure 10: Throughput analysis in real-world experiments

evaluations with different WiFi APs when the user remains

static. We plot the prediction error with c0 under this

scenario in Fig.7. We find that for over 95% traces, the

prediction error is less that 20%. Accordingly, the threshold

γ = 0.8 is proper to adapt Q-offload to different conditions.
3) The robustness of deadline guarantee mechanism: A

key requirement of Q-offload is guaranteeing the deadline

requirement. To analyze the robustness of deadline guarantee

mechanism in Q-offload, we make trace-driven analysis by

varying the offloading pressure from 0.1 to 0.5 of the total

capacity within the deadline. In addition, for each size,

we vary its deadline from 20 to 500 seconds to obtain a

comprehensive analysis. We plot the results in Fig.8 and

find that the largest unsuccessful rate is only 2%. The

results demonstrate that Q-offload is robust in guaranteeing

deadlines for various offloading pressure under different

conditions.

C. Trace-driven analysis

1) Throughput comparison: For throughput compari-

son, we observe that Q-offload significantly improves the

throughput in data offloading on all datasets, compared with

Wiffler and eTime. In average, the throughput in transmitting

the same amount of data increases by 2.6x (0.38 to 6.5x)

compared with Wiffler, while 1.7x (0.25-2.1x) compared

with eTime, which are shown in Fig.9a, Fig.9b and Fig.9c.

Further investigation shows that this is mainly because Q-

offload can efficiently exploit good link quality within the

corresponding deadlines. By scheduling the transmission

of D to those slots with good link quality, Q-offload can

decrease the time in transmitting D, and thus improve

the overall throughput. Since the deadline is fixed in our

scenario, we also notice that eTime tends to transmit D
until the deadline is near. Accordingly, lots of slots with

good link quality are wasted, which explains why there

is a gap between Q-offload and itself. Furthermore, we

also notice that the approximation ratio between Q-offload

and the oracle scheme is not significant, i.e. 0.775 (0.51

to 0.91). Accordingly, this observation demonstrates our

heuristic scheme is efficient in achieving energy efficient

offloading performance.

2) Energy efficiency comparison: Following the through-
put analysis, we also examine the improvement of energy

efficiency Eb after using Q-offload on trace-driven analysis.
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Figure 11: Deadline violation ratio analysis in real-world

experiments

We plot the results in Fig.9d. In consistence with the former

results, we also find that Q-offload decreases the average Eb

55.7%(23.4%∼88.7%) in average. Compared with Wiffler,
Q-offload decreases Eb by 52.5% while for eTime, Q-offload

saves 58.8% Eb in transmitting the same D. The results
show that Q-offload can spare significant portion of energy in

WiFi offloading by exploiting good in-deadline link quality.

D. Real-world experiments

In real-world experiments, we also compare the perfor-

mance Q-offload with the selected benchmarks under differ-

ent data sizes and deadline lengths. Basically, we evaluate

their performance in three aspects: throughput, deadline

violation ratio and energy efficiency.

1) Throughput comparison: For throughput comparison,
we first analyze their performance under different data sizes.

We choose the data sizes varying from 50KB to 10MB

for testing and associate feasible deadlines for them, i.e.

30 seconds for the data under 500KB, 1min for data size

between 1MB and 2MB and 3min for data size over 5MB.

We plot the results in Fig.10a and find that compared with

eTime and Wiffler, Q-offload improves the throughput in

transmitting the same amount of data from 7.8% to 49%

under different data sizes. Then, for a given data size

2MB, we also analyze the performance of different schemes

under different deadline lengths in Fig.10b. We find that

the convergence to the highest throughput of Q-offload is

also the fastest among all benchmarks. On the other hand,

we also notice that the throughput improve of Q-offload

is not obvious compared with QATO. This is because in

a mobile environment, link quality variation is significant,

which has been discussed in Section.II. When meeting poor

link quality, reusing cellular network (HSPA+) would be a

better choice. However, in the following subsection, we will

point out that the switch operation in QATO is not energy

efficient in the current communication system.

2) Deadline analysis: An important requirement of the
offloading schemes is guaranteeing the deadline constraints.

In Fig.11, we plot the deadline violation ratios for all tested

schemes. First, we analyze the ratio when the offloading

pressure increases from 0.1 to 0.5. We observe that for QA-

TO, Wiffler and Q-offload, the deadline is well guaranteed

for almost 100 percent. However, for eTime, we find the
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Figure 12: Energy efficiency analysis in real-world experiments

ratio is high. This is because when the deadline is fixed, it

tends to enable the data transmission when the deadline is

near. In some cases, the remaining capacity is insufficient

to offload D which leads relatively higher violation ratio. In

addition, we also examine the deadline violation ratio for a

fixed data size, i.e. 2MB, under different deadline lengths in

Fig.11b. As shown in the figure, when the deadline increases

from 15s and 30s, Q-offload can also efficiently decrease

the violation ratio to near zero as the real-time offloading

scheme Wiffler, owing to its deadline guarantee mechanism.

3) Energy efficiency comparison: Then we investigate

the energy efficiency of different schemes. In Fig.12a, we

plot the per KB energy consumption Eb for all schemes

with data size 500KB, 2MB and 10MB. Compared with

the benchmarks, Q-offload improves the Eb for the same

amount of data from 15% to 52.1%. In addition, we also

analyze Eb evolution of all schemes for a fixed data size,

i.e., 2MB under different deadlines. As shown in Fig.12b,

we observe that for each deadline, the Eb of Q-offload

is smaller than other schemes, which demonstrates the

benefit of exploiting good link quality in WiFi offloading.

Interestingly, we also observe that the Eb of QATO is the

highest among four schemes, which does not match with

its throughput performance. By further analysis, we find

this is due to the extra energy cost of data transmission in

the transmission unrelated power states of cellular network,

e.g., RRC PROMOTION and RRC Tail. This is because in
QATO, it has to switch frequently between WiFi and cellular

based on link quality variation. For each switch from WiFi to

cellular, the radio has to be promoted from sleep to DCH for

data transmission. When the data transmission completes, a

tail will also occur and waste significant portion of energy.

For each switch, lots of energy will be wasted in power

state transitions, e.g., RRC PROMOTION and RRC IDLE,

and RRC tail. By decomposing the extra energy cost of

transmitting 2MB data in Fig.12c, we find ΔEb is over

0.5mJ/KB, which is significant compared with the Eb of Q-

offload. Although some solutions have been proposed, they

all require fundamental modifications in Android system or

transmitting protocol stack, which limits their applications

[12]. In conclusion, Q-offload can achieve more energy

efficient WiFi offloading compared with state-of-the-arts.

VII. RELATED WORK

Optimizing the energy efficiency of data transmission on

smartphones has been a hot spot in recent years. In this

section, we group the existing works related to Q-offload

design into the following three categories.

Measurement The works in [2], [10], [14], [29]–[31]
conduct extensive experiments to analyze network usage on

smartphones. Huang et al. [2] collect 118GB user traces to

examine the performance of different network types that can

be used on smartphones. The results illustrate that modern

cellular network, e.g., 3G/4G is less energy efficient than

WiFi in data transmission. Balasubramanian et al. [31] find

that 3G incurs a high tail energy overhead for lingering in

the high-power state after the completion of a transfer. Some

fine-grained measurements are also made to analyze the

factors that affect network energy efficiency [14], [27], [30].

The results from those measurements imply that there exists

a great potential in optimizing network energy consumption.

Cellular network optimization To optimize the energy
consumption of cellular networks, researchers have pro-

posed various approaches [7], [12], [27], [28], [30], [32].

Athivarapu et al. [12] utilizes a decision tree based method to

reduce energy cost in radio tail of cellular data transmission.

Schulman et al. [30] predict the signal strength variation

for achieving energy-aware cellular data scheduling. Those

works can be recognized as supplements to our Q-offload

scheme when WiFi is unavailable.

Data offloading through WiFi Offloading traffic to WiFi
is recognized as a viable solution in many existing works

[3]–[5] and also implemented as the default setting on

modern smartphones. Ding et al. [3] propose a collaborative

offloading scheme among cellular operators, WiFi service

providers and end-users. Balasubramanian et al. [5] design

a real-time WiFi offloading strategy, i.e. Wiffler, by pre-

dicting WiFi access availability. Shu et al. [22] propose an

offloading method eTime based on Lyapunov stability. By

determining the tradeoff between delay cost and offloading

opportunities, they can guarantee a feasible strategy on t →
∞. However, in their framework, the deadline constraint is
hard to be guaranteed due to the difficulty in determining
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proper tradeoff function. In a word, most existing works

ignore the fact that WiFi link quality varies significantly

under different scenarios [10], [14]. The variation of link

quality may significantly affect the energy efficiency of WiFi

offloading. Our work aims to address this fundamental issue

for achieving energy efficient WiFi offloading.

VIII. CONCLUSION

WiFi offloading provides great potential in satisfying

ubiquitous applications on smartphones. However, existing

WiFi offloading approaches, presumed to be energy efficient,

ignore the impact of link dynamics and may even increase

the energy consumption. To address such a problem, we

propose Q-offload, a quality aware scheme to achieve energy

efficient WiFi offloading that can work with link dynamics.

Compared with existing works, the main advantage of Q-

offload is reducing offloading energy consumption while not

affecting user experience. We have implemented Q-offload

on the Android platform and conducted extensive evaluations

in both trace-driven analysis and real-world experiments.

The evaluation results show that Q-offload can reduce in-

average energy consumption by 55.7% in trace-driven anal-

ysis while 33.5% in real-world experiments, compared with

state-of-the-arts.
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