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Abstract—Channel utilization for wireless sensor networks is
far from efficient, especially for convergecast in which multiple
nodes are sending packets to a receiver. In this paper, we
analyze the channel utilization when multiple nodes contend for
the channel in convergecast and show that channel utilization
can be improved by accumulating packets on each node. How-
ever, the number of accumulated packets should be carefully
determined. Otherwise, the system performance may not be
improved or even be degraded, e.g., incurring additional packet
delay. Based on the analysis result, we present STAGGER to
achieve channel utilization improvement while guarantee the
worst case performance. We implement STAGGER in TinyOS
2.1 and evaluate its performance on TelosB nodes. STAGGER
only uses local information to determine the number of
accumulated packets without incurring additional overhead. It
adopts CSMA at the low level and preserves its nice properties,
e.g., fairness. The experimental results show that the design
can significantly improve the per-hop throughput and reduce
packet loss ratio under high traffic rate.

I. INTRODUCTION

A wireless sensor network (WSN) typically consists of

a number of sensor nodes with limited data transmission

rate (e.g., 250kbps for TelosB [1] motes) contending for

the wireless channel for data delivery. Thus the wireless

communicational channel resource is very limited yet pre-

cious. Unfortunately, the utilization of wireless channel in

WSNs is far from efficient, especially for convergecast in

which multiple nodes are sending packets to a receiver. For

example, the actual achievable data rate in real WSNs is even

less than 50 kbps, which can hardly satisfy requirements in

many applications, e.g., structural monitoring or real-time

surveillance networks [2] [3]. On the other hand, converge-

cast is very common for WSNs. For example, multiple nodes

send packets to the parent node in the data collection tree [4].

Therefore, improving channel utilization in convergecast is

a stringent and important requirement for current WSNs.

The mismatch between demanding application require-

ment and unsatisfactory channel utilization has inspired

many research works. It has been shown that unnecessary

backoff is a major cause of low channel utilization for

convergecast. This is especially important for WSNs since

the backoff time is usually much larger than the in-air time

of packet transmission. Therefore, a key idea to improve

channel utilization is to reduce unnecessary backoffs while

keeping a low level of collisions.

Various protocols have been proposed to address this

issue. For example, [5] proposes a method to mitigate the

backoff to the frequency domain. Instead of choosing ran-

domized backoff time, nodes randomly select a subchannel

for communication. However, this technique is based on

OFDM radios and demand many subchannels to keep a low

collision probability, which is not feasible for the current

sensor hardware. Instead of resorting to the frequency do-

main, there are many works proposed to reduce backoff time

by packet length optimization. For example, AIDA [6] and

DPLC [7] offer the ability to aggregate multiple packets to

a single large packet so that a single backoff time can be

amortized to multiple packets. The improvement, however,

is hindered by the small maximum packet size supported

by current resource-limited sensor nodes (e.g., 128 bytes on

CC2420 radio). There are other works, e.g., 802.11e TXOP,

EDCF [8], FCR [9], which propose to send packets as a

batch to amortize the per packet backoff time. While the first

packet in the batch uses backoff time to mitigate collisions,

backoff time of subsequent packets can be eliminated. Those

works may incur additional delays due to packet accumula-

tion and cannot guarantee the performance improvement.

To address the above mentioned issues for real WSNs, we

propose STAGGER with two key features. First, it intelli-

gently accumulates packets in order to mitigate unnecessary

contention and backoff time. Second, it improves the channel

utilization without introducing additional delays, which is

especially important for real time WSNs. The design and

implementation of such an idea is nontrivial for WSNs. We

address the major challenges through three steps.

First, we revisit the limiting factors that affect channel

utilization in WSNs. We theoretically analyze the channel

utilization under different network parameters. The analysis

provides us foundations for intelligent accumulation. Sec-

ond, we make the design practically functional in a real WS-

N. Each sensor nodes with STAGGER distributedly make

decisions based on its own traffic rate and neighborhood

information. It essentially differs from existing approaches



Figure 1: Sending and receiving a packet in current CSMA

implementation in TinyOS.

by guaranteeing the worst case performance. Third, we

address the resource constraints of individual nodes as

well as unexpected traffic patterns in WSNs. STAGGER

intelligently uses the channel contending time to bootstrap

packets accumulation. When there are many contentions,

packets are accumulated and when there is no contention,

the protocol behaves the same with CSMA.

We implement STAGGER in TinyOS 2.1 [10] [11] and

evaluate it on TelosB motes with CC2420 [12] radio chip.

STAGGER can be seamlessly integrated with the CSMA

design at the underlying layer. By using the provided easy-

to-use interfaces, users can easily port their upper layer ap-

plications to STAGGER scheme. The evaluation results show

that STAGGER increases the average per-hop throughput by

more than 50% while reducing the packet loss rate by more

than 30% with heavy traffic loads.

The contribution of this work is two-fold. First, we

theoretically analyze the channel utilization under different

network parameters. Second, according to the theoretical

analysis, we propose a distributed design which improves

the channel utilization with delay performance guarantee.

We implement the protocol and validate its effectiveness on

real sensor nodes.

The rest of this paper is organized as follows. Section II

presents the background of this work. Section III presents

the design details. Section IV describes the implementation

details of STAGGER and presents the experimental results.

Section V introduces related works and Section VI concludes

this work.

II. BACKGROUND

We first briefly describe the main work flow of the CSMA

MAC. We show that the design of CSMA is inefficient

especially for the case multiple nodes are contending for the

channel. This is especially exacerbated for wireless sensor

networks with a small packet size. In CSMA, a node first

senses the channel before transmitting the packet. If the

channel is busy, the node performs backoffs until the channel

becomes clear. Otherwise, the node sends the packet.
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Figure 2: Throughput for different number of senders in

CSMA. x-axis denotes the number of received packets at

the receiver.

There are a variety of CSMA implementations sharing the

same design principle. Figure 1 shows an example of CSMA

implementation in TinyOS. To send a packet, a sender first

prepares the packet, i.e., loads the packet to the on-chip

buffer (TXFIFO). Then the sender performs an initial back-

off. The time for initital backoff is randomly selected from

the time window [0, CWinit). After the initial backoff, the

sender begins to check the channel condition. If the channel

is clear, the sender issues a command strobe (STXON)

to transform the packet to radio signal and then emit the

signal. Otherwise the sender repeatedly performs congestion

backoffs until the channel is clear. The congestion backoff

time is selected randomly from [0, CWcon). It can be seen

that the major transmission overhead of CSMA is due to the

backoff time. For example, transmitting a single packet of

35 bytes consumes only 1.1 ms while the expected initial

backoff time is up to 1.5 ms in current implementation

of TinyOS. The backoff time is comparable to the packet

transmission time. Even without the initial backoff time, the

efficiency is 1.1
1.1+0.78 = 58.5% with a single congestion

backoff time of 0.78 ms. The CSMA scheme in TinyOS

does not have exactly the same parameter settings with the

standard. It is, however, a good representative protocol of

the CSMA mechanism. It can be seen that the backoff time

can significantly degrade the performance especially WSNs

with a small packet size.

We further conduct a simple experiment to demonstrate

that data transmission in CSMA can be very inefficient

for high data rate applications. In this experiment, we let

one node transmit packets of 35 bytes (including header)

at its maximum sending rate to the receiver (send a packet

immediately at the sendDone event in TinyOS). We measure

the received data rate at the receiver. Figure 2 shows that the

actual data rate at the receiver is only about 28 kbps, i.e.,

only 10.9% provided that the maximum PHY rate is 250

kbps for the CC2420 radio. With more senders, the data

rate increases to about 50 kbps, which is still much less

than the maximum data rate.



III. PROTOCOL DESIGN

In this section, we present the design of STAGGER to

improve channel efficiency. The basic idea of STAGGER is

to accumulate packets on each node and then send them in a

batch. We first show the analysis of STAGGER to guarantee

performance improvement. Then we show how to address

practical issues in STAGGER for practical networks.

A. Protocol Analysis
In this section, we present some basic analysis of our

design. Basically, STAGGER accumulates packets and sends

a certain number of packets n in a batch to improve channel

efficiency. By sending a batch of packets instead of sending

those packets individually, a node can reduce the number

of contentions for the channel. Thus the backoff time can

be reduced and the channel efficiency can be improved.

However, the number of accumulated packets should be

carefully determined. It may also introduce additional delay

for packets due to waiting time for accumulating packets.

Here we analyze the impact for the number n of accumulated

packet. First, we introduce two design goals of STAGGER.

G1: STAGGER should not incur additional delays to each

packet. This is important as many realtime applications

need packet delivery to be timeliness. More specifically,

STAGGER requires that the finish time for a batch of

packets is no later than that of sending those packets

in the original CSMA.

G2: While G1 is satisfied, STAGGER should minimize the

time used for each packet transmission in the batch so

as to maximize the channel utilization.

Before present analysis results for the above two goals, we

first define the following notations.

• N : We assume there are N nodes contending for a

common communication channel.

• T : We assume the in-air time of a packet is T .

• λ: We assume the packet interval from the network

layer to the MAC layer is λ.

• ti: We denote the expected initial backoff time as ti.
• tc: We assume a single congestion backoff incurs an

expected delay of tc.

CSMA can be considered as a special case when the batch

size n is equal to 1. Based on the notations, we first calculate

the collision probability. We define p(n) as the collision

probability given the batch size of n. According to [6], p(n)
can be approximated as

p(n) = 1− (1− τ)
N
nλ−1 N ≥ nλ (1)

where τ is the sending probability for each node. Based on

the collision probability, we calculate the expected number

of congestion backoffs. Denote the number of congestion

backoffs as b(n), we have

b(n) =

∞∑

k=0

k(p(n))k(1− p(n)) = p(n)/(1− p(n)). (2)

Hence the total delay due to congestion backoff is tc×b(n).
We define D(n) the largest delay experienced by those n
packets. We have

D(n) = (n− 1)λ+ ti + b(n)tc + nT. (3)

Accordingly, when n = 1, we have D(1) as the packet delay

in CSMA.

We notice that STAGGER may impact channel utilization

in two different ways. First, it needs time to accumulate

packets. In the worst case after accumulating n packets, a

packet needs to wait for time of length (n− 1)× λ before

being transmitted. The waiting time for the first packet in

the batch is increased due to the time to accumulate packets.

Second, the time used for initial backoff and congestion

backoff is reduced because only a single backoff is required.

Such a backoff is amortized to multiple packets.

In order to satisfy G1, we require that the waiting time for

the first packet in the queue should not be larger than the

time without accumulation. Thus we have D(n) ≤ D(1),
i.e,

(n− 1)×λ+ ti+ tc× b(n)+nT ≤ ti+ tc× b(1)+T. (4)

This means, in the worst case, STAGGER should not intro-

duce additional delays compared to the original CSMA.

In order to satisfy G2, we require that the time spent on

each packet is minimized. In STAGGER, D(n) is also the

completion time of n packets. The average used time for

each packet is calculated as

D(n) = D(n)/n. (5)

Therefore, our goal is to minimize D(n) given D(n) ≤
D(1).

Here we omit the details of finding the optimal n. We

only show the intuitions here. There are basically two cases

to choose the optimal n.

• λ ≤ ti: In this case, the packet coming rate from the

upper layer is smaller than the minimal require time

for each packet transmission. In such a case the sending

rate is smaller than the coming rate. Accumulating more

will reduce the average time per packet as long as

D(n) ≤ D(1) holds.

• λ > ti: This means that if time interval λ is larger

than ti, we should calculate the optimal number of

accumulated packets according to equation 5. It is also

possible that n = 0 is optimal, which means accumu-

lating packets is not beneficial. This is reasonable when

the packet coming rate is very low. In such a scenario,

accumulating packets will incur a large delay.

B. Design Challenges

Based on the analysis results, we introduce the distributed

design of STAGGER to improve the channel utilization. We

first show the design challenges in practical WSNs. Then



we introduce the detailed design of STAGGER to conquer

those challenges.

According to the analysis, each node only needs to

calculate the optimal number of packets and accumulate

the corresponding number of packets. However, there are

several design challenges for practical networks. (1) How

to distributedly approach the optimal number of packets for

each node? According to the analysis in Section III-A, an

intuitive method is that each sender calculates the optimal

n by collecting information from other nodes. However,

collecting such information incurs heavy traffic overhead,

e.g., each node needs to keep updating with the number of

nodes that are sending to the same receiver. Considering

the scenario in presence of hidden terminals, each node

even needs to acquire such information from nodes outside

the neighborhood. (2) How to guarantee the performance

gain for different data rates? For different data rates, the

average waiting time experienced by accumulated packets

becomes different. The throughput may even be reduced if

the sending time is not carefully chosen. (3) How to schedule

the transmissions and guarantee the fairness. Different nodes

may have different number of packets to send. To guarantee

the fairness, it is desirable that each node has the same

opportunity to access the channel. (4) How to send the

accumulated packets as quickly as possible and how to

choose the sending speed since sending too fast may exceed

the receiving speed and thus result in packet losses?

C. Design Overview

The design of our approach mainly consists of two

components. The first component is for accumulating pack-

ets on different nodes. With the first component, different

nodes distributedly make decisions on accumulating packets

(Section III-D). We address challenges (1) and (2) in this

component. The second component is to send multiple

packets efficiently and effectively, considering constraints on

wireless sensor nodes (Section III-E). We address challenges

(3) and (4) in this component.

D. Accumulating Packets

In this section, we introduce the distributed protocol for

accumulating packets. Each node can use its local informa-

tion to determine whether or not to increase n. Meanwhile,

during the accumulating process, the protocol should not

increase the total waiting time comparing to the original

CSMA. In order to fulfill those requirements, the component

mainly consists of following steps.

1) Distributed bootstrap: At the beginning, nodes need to

accumulate packets in order to reduce the congestion time.

To bootstrap, during the backoff time of the first packet,

the sender accumulates packets. Then the sender uses the

number of accumulated packets as the initial value of n to

bootstrap.

2) Increase n for different nodes distributedly: It is

difficult to increase n on different nodes. Different nodes

accumulate different number of packets. As the number of

accumulated packets changes on some node, the optimal

number of n on other nodes may also change. Here we first

show a nice property of increasing n on different nodes.

Suppose there are N nodes contending the channel and

each node only has the local information, we say the value n
is feasible for node i if n satisfies inequality D(n) ≤ D(1)
on node i. A value of n is feasible means that sending n
packets will not degrade system performance. We have the

following lemma.

Lemma 3.1: If ni is feasible for node i, after increasing

n on any other N − 1 nodes, ni is still feasible for node i.
Proof: After increasing of n on any other N−1 nodes,

the average congestion backoff b(n) experienced by node i
will decrease. According to equation 3, D(n) also decreases.

Since D(1) does not change, D(n) ≤ D(1) still holds and

hence ni is still feasible for node i.
Lemma 3.1 shows that a node can locally increase n. In-

creasing n on one node does not degrade the performance of

other nodes. This is reasonable since accumulating packets

on one node will reduce the backoff time on other nodes.

Thus a node does not need to consider whether or not

other nodes are increasing their values of n. This forms the

foundation of our distributed protocol, in which each node

can distributedly increase the value of n while not degrading

other nodes’ performance. This property also holds for nodes

with different packet coming rate λ.

Basically, there are two conditions to stop increasing n,

according to our analysis in the previous section. First,

whenever reaching the optimal value of D(n), the protocol

should stop increasing n. Second, the increasing process

should also guarantee that the performance does not degrade

comparing to when n = 1. Therefore, the protocol should

stop increasing n when D(n) ≤ D(1) cannot be guaranteed.

For the first condition, we simplify the protocol design

by stop increasing n at the local minimum, i.e., when

D(n) > D(n − 1). Thus, according to equation 3, each

node needs to maintain b(n). Once a node can use the

channel with n accumulated packets after k backoffs, the

node will update b(n) as k. If no backoff counter b(n′) for

n′ is recorded, we use the value of b(n) for the maximal n
less than n′ as a conservative approximation. For the second

condition, each node checks the condition D(n) ≤ D(1).
Each node should maintain the value for D(1). Each node

can record the time needed for sending the first packet and

use it as D(1) for the next batch.

To summarize, the protocol works as follows. First, each

node accumulates packets during the backoff time of the first

accumulated packets to bootstrap. Afterwards, according to

lemma 3.1, each node individually increases the value of

n. During the accumulation process, each node maintain

D(1). Each node also maintains a deadline after which



Begin to send 
the queue

Queue

New 
Packet

Deadline counter

First packet
/Queue full

�������

MAC

Begin to 
send packet 

in CSMA

Send 
now

Figure 3: Integrating STAGGER with CSMA.

D(n) > D(1). Upon reaching the deadline, the node will

stop accumulating more packets and send the accumulated

packets. Meanwhile, when D(n) > D(n−1), the node also

stops increasing n and sends the accumulated packets.

E. Sending Multiple Packets

STAGGER needs to send accumulated packet while ful-

filling the following requirements. R1: Packets are sent

consecutively as quickly as possible, while not exceeding

the the maximum receiving speed. R2: Transmission of the

consecutive packets is not interrupted by other nodes. R3:

fairness property should be preserved.

Before introducing the details of how to send the accu-

mulated packets, we first study timing factors of different

operations. Typically, the time for sending a packet on a

sensor node under CSMA mainly consists of 3 parts: (1)

tprepare, which denotes the time for preparing the packet,

e.g., loading a packet to buffer on the radio chip (e.g.,

TXFIFO in CC2420), (2) tbackoff , which denotes the time

for initial backoff and congestion backoffs, and (3) ttransmit,

which denotes the time from starting transmitting the data

to finishing. The channel is only occupied by the signal

for the time of ttransmit. The time tprepare and tbackoff
comprise the inter-packet idle time. The time for receiving

a packet mainly consists of two parts: (1) tdemodulate, which

is the time to demodulate the signal, and (2) tprocess, which

denotes the time for receiving the data, e.g., reading data

from radio to the MCU.

In our design, we disable backoffs for packets in the

batch except the first one. With such an approach, the sender

can achieve the maximal sending rate. Since ttransmit and

tdemodulate are almost equal, by disabling the backoff, the

sending rate approaches the maximum receiving rate at the

receiver, which satisfies the requirement R1.

For the first packet in the batch, we use the CSMA

mechanism for different nodes to contend for the channel.

This has two merits. First, basic properties of CSMA, e.g.,

fairness, is preserved. When a node needs to send packets, it

can contend for the channel with other nodes using CSMA.

Thus requirement R3 is satisfied. Second, batch interleaving

can be avoided. Due to inter-packet idle time, a node may

begin to send packets at the inter-packet idle time, resulting

in packet collisions and losses. We use CSMA mechanism

for the first packet in the batch. Since the inter-packet idle

time is determined by packet length, each node observes the

idle channel for a time period larger than the inter-packet idle

time before starting a transmission. While the channel is not

clear, some other node is sending and the node postpones

its transmission. Thus requirement R2 is satisfied.

Considering the impact of noise and link losses, the

STAGGER design supports link layer retransmission with

acknowledgement and uses a bitmap to record packet recep-

tions. STAGGER sends acknowledgment as in CSMA with-

out any modification. To support reliable data transmission,

STAGGER also provides a LinkRetrans interface to up-

per layer for link layer retransmission. LinkRetrans uses

the a bitmap to record unsuccessful packet transmissions and

then retransmits those packets.

Example: Assume an example with two senders S1 and

S2. S1 and S2 begin to contend for the channel once they

have packets to send in the queue. During the initial backoff

time, both S1 and S2 can accumulate packets to bootstrap.

After the initial backoff and congestion backoffs, assume

node S1 (S2) senses the idle channel, if S1 (S2) cannot

accumulate more packets according to Section III-D, node

S1(S2) sends the accumulated packets as in Section III-E

and hence the other node S2(S1) will perform backoffs.

Otherwise, node S1 and S2 continue to accumulate packets.

As long as S1 or S2 has accumulated packets, the channel

contention time will be reduced, resulting in more opportu-

nities for both nodes to accumulate packets.

IV. IMPLEMENTATION AND EVALUATION

In this section, we present the implementation and eval-

uation details of STAGGER. We implement the protocol

based on TinyOS 2.1 [10] [11]. The hardware platform

is TelosB [1] motes with MSP430F1611 MCU and C-

C2420 [12] radio chip. First, we show the implementation

details, including the interaction of STAGGER with other

layers, programming interfaces, and overhead.

A. Implementation

1) Integrating with TinyOS MAC: The implementation

of STAGGER resides between the network layer and the

MAC layer. It works transparently to the upper layer. By

using the interface provided by STAGGER, upper layer can

send packets to STAGGER without additional operations. To

interact with MAC layer, the implementation of STAGGER

uses interfaces exposed by MAC layer to control the MAC

layer behavior, e.g., control the backoff and fetch channel

assessment value. The implementation does not need to

modify the MAC layer in current CSMA.

The detailed diagram of integrating CSMA with

STAGGER is shown in Figure 3. When a packet comes to the

queue, STAGGER calculates the deadline according to the

queue length and measures congestion backoff information
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Figure 4: Performance of STAGGER comparing with CSMA for different number of senders. (a) Throughput comparison.

(b) Reliability comparison.

provided by MAC layer. If it is profitable to wait, STAGGER

will wait for another packet according to adjustment process.

Otherwise, it will disable backoff and begin to send packets

in the queue. The deadline counter is used to check whether

it is profitable to wait another packet to avoid a long waiting

time.

2) Programming interface: One of our design goals

is to provide easy to use interfaces for application.

We design two components for the implementation,

i.e., STAGGERSenderC and STAGGERReceiverC
respectively. The STAGGERSenderC provides the

interface STAGGERSend. Similar to AMSenderC,

STAGGERSenderC also provides AMPacket, Packet
and PacketAcknowledgements interfaces. The

STAGGERReceiverC provides similar interfaces

as that provided by AMReceiverC, which are

STAGGERReceive, Packet and AMPacket interfaces.

3) Overhead: We evaluate the overhead of STAGGER

method in terms of memory overhead and communication

overhead.

• Memory overhead. The STAGGER method needs a

queue to buffer the packets. For a queue of maximal

size 10, the memory used is 10×100=1000 bytes.

Considering the 10 KB RAM space for MSP430, it

is acceptable to use the memory space.

• Communication overhead. STAGGER does not requires

message exchanging among different nodes and thus

does not introduce extra communication overhead.

4) Fairness: STAGGER uses the CSMA MAC provid-

ed by TinyOS. Therefore, as in CSMA, STAGGER can

guarantee each node has the same opportunity to access

the channel. Similar to CSMA, each node has an equal

opportunity to access the channel does not necessarily mean

that they use the channel equally. Nodes may use the channel

for different time lengths. For example, in CSMA, a node

may send a larger packet than others upon obtaining the

channel. Currently, we use the same competition mechanism

as in CSMA. The evaluation result shows that the probability

for different nodes to use the channel is similar.

B. Evaluation

In this subsection, we evaluate the performance of

STAGGER in terms of throughput and reliability. Then

we test the effectiveness of STAGGER for different traffic

rates and traffic patterns, e.g., random traffic, traffic with

burstiness and saturated traffic. Further, we evaluate the

fairness of STAGGER.

1) Throughput and reliability: We first evaluate

STAGGER approach in terms of throughput and reliability.

In this experiment, we use different number of senders to

send packets to a receiver. We vary the number of senders

to measure the throughput and packet loss ratio.

Figure 4 (a) shows achieved throughput and packet loss

ratio with respect to the number of senders ranging from 1

to 4. We can see that for 1-sender case, STAGGER achieves

a much higher throughput than original CSMA by reducing

the unnecessary backoff time. For the case with multiple

senders, senders in STAGGER still achieve a throughput

gain by about 40%-60%. The throughput gain for multiple

senders is because that STAGGER sends packet batches

more efficiently and reduces the channel contention.

Figure 4 (b) shows the packet loss ratio for different

approaches. In Figure 4 (b), we can see that for 1 or 2

senders, both STAGGER and CSMA achieve high reliability

with a low packet loss ratio. As the number of senders

increases, packet loss ratio for CSMA becomes higher while

STAGGER still has a very low packet loss ratio. STAGGER
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Figure 5: Performance for senders with the different traffic pressures. 1h/2h/1l/2l denotes node ID and traffic pressure (h

means high traffic pressure and l means low traffic pressure). (a) One node with high traffic and one node with low traffic

pressure. (b) Both with high traffic pressure.

reduces the packet loss ratio by up to 90% for multiple

senders. The improvement of reliability is because that

STAGGER accumulates packets and reduces the probability

of collision.

2) Impact of data rate: In this experiment, we examine

the impact of data rate to the performance of STAGGER. We

use two senders to send packets to a receiver with different

data rates and then measure the achieved throughput for

those two senders. Figure 5 (a) shows the result for two

senders. One of the senders is with a high data rate and

the other is with a low data rate. It can be seen that the

node with a high data rate achieves a high throughput with

STAGGER. The total achieved throughput at the receiver is

much higher than that in CSMA.

In average, the STAGGER improves the throughput by

about 15% compared to CSMA. The improvement comes

from that STAGGER accumulates packets to send them

together. Sending more packets together reduces the time

for channel contention as well as the probability of collision.

For the sender with a high data rate, the accumulated packets

is more than that of the node with a low data rate, thus the

throughput for the node with a high data rate is higher.

We also test the case that both two senders are with a

high data rate. High data rate means a high probability of

increasing the packet batch size, resulting in a throughput

proportional to the data rate. As shown in Figure 5 (b), the

throughput of those two senders fluctuates. This is because

those two senders compete the channel using CSMA and

once a node obtains the channel, it will send a batch of

packets, resulting in a high throughput at that time period.

For high data rate, the STAGGER improves the throughput

by about 30%.

3) Impact of traffic pattern: In this subsection, we e-

valuate the impact of traffic pattern to the performance of

STAGGER. To generate different traffic patterns, we adjust

the inter-packet interval for generating packets. We generate

three different traffic patterns in our evaluation: (1) normal

traffic pattern, where the inter-packet interval is randomly

selected from 4ms-8ms, (2) normal traffic with burstiness,

where node generate bursty traffic with a probability p
(p=1/8), and (3) saturated traffic, where nodes send packets

as fast as they can.

Figure 6 shows the result for different traffic patterns. It

can be seen that for the first two traffic patterns, STAGGER

achieves a throughput gain of 50%-90%. For random traffic,

the throughput gain is about 50%. The improvement of

throughput mainly comes from sending multiple packet-

s together. The throughput of saturated traffic by using

STAGGER is almost two times as high as the original

CSMA in TinyOS since there is a high probability that

packets are batched. The throughput for bursty traffic by

using STAGGER is about 90% higher than CSMA. This

experiment reveals that STAGGER can be used in different

traffic patterns and it is more efficient if the traffic pressure

is high.

4) Fairness: In this experiment, we test the fairness

property of the STAGGER. We test the fairness in two cases

with 4 senders and 3 senders respectively.

Results in Figure 7 shows the Jain index values for

different cases. As seen from Figure 7, each node obtains a

fair channel share since the Jain Index [13] is near to 1 (A

larger Jain Index indicates a higher fairness). The fairness

achieved by STAGGER is because that the senders have the

same probability to send a batch of packets. Therefore, the

senders preserves the fairness as in CSMA.
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Figure 6: Performance comparison of STAGGER with

CSMA under random traffic, bursty traffic and saturated

traffic, respectively.

V. RELATED WORK

The inefficiency of DCF, e.g., CSMA, has been noticed in

wireless domain for a long time and attracted many research

interests. There are a large collection of works to address this

issue.

The first category is to amortize the time overhead to more

sub channels. In [14], Tan. et al propose a fine grain channel

access method in WLAN. Their method divides the channel

to more sub-channels, each with a lower data rate. Therefore,

the channel can be used in a higher granularity and the

time overhead can be alleviated in each channel. However,

this kind of work requires manipulation on subchannels and

hence is not applicable to WSNs.

The second category is to amortize the time overhead to

more nodes. Works in this category include GAMA-PS [15],

CHAIN [16] and etc. Those approaches can coordinate

different senders and introduce a binding relationship among

different senders. In those approaches, a single backoff

can incur transmissions from different senders and thus

the channel efficiency is improved. Those works require

cooperation between different nodes.

The third category is to amortize the time overhead to

more packets. Methods in this category can further be

divided into two groups. The first group aims at aggregating

more packets into one to improve the channel efficiency. For

example, AIDA [6] presents a method to aggregate multiple

packets into a single one to reduce the average channel

contention for each packet and thus can improve the through-

put. Vuran et al. [17] propose a cross-layer packet length

optimization method in which they consider the multihop

routing and broadcast nature. DPLC [7] dynamically adapts

the packet size to channel condition and finds an optimal

packet size for current bit error rate. However, large packets

take extra risk of collisions and suffer a higher recovery cost

after collisions. Besides, the improvement for those methods

is not optimized and often constrained by currently used

hardware for sensor networks (128 bytes). Even for large

buffer size (e.g., 1500 bytes in WLAN), the efficiency can
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Figure 7: Fairness index for STAGGER. We test STAGGER

for different senders. The Jain index values for different

senders with STAGGER are nearly 1.

still be improved due to high hardware speed [14]. The worst

case performance of those protocols, e.g., the additional

introduced delay, is not considered in those works. The

second group is to send more packets in a batch to improve

the channel efficiency. There are many research works in

this group, such as 802.11e TXOP, EDCF [8], FCR [9],

OAR [18] and CM [19]. Those approaches amortize the

backoff overhead to more packets thus can improve the

channel efficiency. Our work is different from those since

existing approaches may increase the delay for accumu-

lated packets [16] [20] and cannot guarantee worst case

performance. Our approach calculates the optimal number

of batch size and also the delay experienced by each packet

to guarantee the performance improvement.

There are also many approaches aiming at improving

end-to-end throughput, such as PIP [21], [22] and etc.

By incorporating multi-channel technique and so on, those

approaches can achieve a significant throughput improve-

ment. Those approaches work well for particular traffic

patterns, e.g., bulk data transfer with a single flow, by

mitigating the setting up overhead. We design STAGGER to

work as a extension to the widely used CSMA protocol and

can be orthogonal to those existing protocols. Batch-and-

send technique has also been used in various applications.

For example, the technique has been used in different

applications, e.g., volcano monitoring [23] and structure

monitoring [24] [25]. STAGGER works between the MAC

and NET layer and finds the optimal number of batch size

to achieve improvement.

VI. CONCLUSION

Wireless communication for WSNs is far from efficient,

especially for convergecast in which multiple nodes are con-

tending for the channel. In this work, we first theoretically

analyze the channel utilization for different network param-

eters, providing guidelines to improve channel efficiency.

Based on the analysis results, we present a distributed pro-

tocol named STAGGER. STAGGER is essentially different

from existing protocols by improving channel efficiency



while guaranteeing the delay performance. Each node with

STAGGER can distributedly make decision on channel using

time, while leading to channel utilization improvement. The

distributed feature enables STAGGER be easily applied in

WSNs. STAGGER is implemented based on TinyOS 2.1 and

evaluated on TelosB motes. The evaluation results show that

the design is effective in real WSNs.
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