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Ultra-WideBand (UWB) localization has shown promising prospects in both academia and industry. However, accurate 
UWB localization for a large number of tags (i.e., targets) is still an open problem. Existing works usually require tedious 
time synchronization and labor-intensive calibrations. We present VULoc, an accurate UWB localization system with high 
scalability for an unlimited number of targets, which significantly reduces synchronization and calibration overhead. The 
key idea of VULoc is an accurate localization method based on passive reception without time synchronization. Specifically, 
we propose a novel virtual-Two Way Ranging (V-TWR) method to enable accurate localization for an unlimited number 
of tags. We theoretically analyze the performance of our method and show its superiority. We leverage redundant ranging 
packets among anchors with known positions to infer a range mapping for auto-calibration, which eliminates the ranging bias 
arising from the hardware and multipath issues. We finally design an anchor scheduling algorithm, which estimates reception 
quality for adaptive anchor selection to minimize the influence of NLOS. We implement VULoc with DW1000 chips and 
extensively evaluate its performance in various environments. The results show that VULoc can achieve accurate localization 
with a median error of 10.5 cm and 90% error of 15.7 cm, reducing the error of ATLAS (an open-source TDOA-based UWB 
localization system) by 57.6% while supporting countless targets with no synchronization and low calibration overhead.

CCS Concepts: • Networks → Location based services.

Additional Key Words and Phrases: UWB localization, High accuracy, Scalable, Auto-calibration, No synchronization

ACM Reference Format:

Jing Yang, BaiShun Dong, and Jiliang Wang. 2022. VULoc: Accurate UWB Localization for Countless Targets without 
Synchronization. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 3, Article 148 (September 2022), 25 pages. https: 
//doi.org/10.1145/3550286

1 INTRODUCTION

The emergence of Ultra-WideBand (UWB) technology has shown great potential to provide high-accuracy 
positioning for the Internet of Things (IoT) thanks to its nanosecond-level time resolution. As a result, UWB 
attracts great attention from both academia [17, 25, 30, 52, 56, 61] and industry [5, 6, 13, 14]. There are plenty 
of UWB localization research works, like concurrent ranging [23, 31], sports analysis [30], etc. Meanwhile, a 
large number of commercial UWB localization systems have been designed and implemented, e.g., Qorvo [7], 
Ubisense [5], and Apple [14].
Existing UWB localization approaches, however, have two limitations. First, existing approaches cannot 

achieve high position accuracy and scalability simultaneously. In practice, a large number of applications require 
both accuracy and scalability, e.g., positioning for large-scale items in shopping mall or stadium, positioning
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Fig. 1. UWB based localization schemes.

network for drone swarms that is sensitive to latency and collisions, and positioning a large group of robots for
warehousing and logistics. Generally, there are mainly three localization schemes for UWB, namely, Two-way
Ranging (TWR), Time Difference of Arrival (TDOA), and Angle of Arrival (AoA). The TWR scheme requires
multiple message exchanges between the tag and anchors to calculate the Time of Flight (ToF) [34], as shown
in Fig. 1a. We can locate the tag with different ToF to multiple anchors. As the number of tags increases, this
leads to severe message collisions that hinder the scalability of the system. For the TDOA scheme in Fig. 1b, by
recording timestamps of messages from anchors, a tag can calculate its position based on the time difference
between different anchors. The scheme can scale to a large number of tags due to passively reception. However,
it requires tight time synchronization between anchors. The clock drift among different anchors also introduces
inevitable localization errors (see analysis in Sec 4.1). Thus, the accuracy of the TDOA scheme highly depends on
the synchronization accuracy and is much lower than the TWR scheme. The AoA scheme, seen in Fig. 1c, is to
estimate the angle between two devices and leverage angles to multiple anchors for localization [67, 69]. Though
the number of message exchanges for a tag is small, it still incurs signal collisions as the number of tags increases.
Furthermore, even a tiny angle error can cause a significant position error at a long distance. Therefore, there is
an urgent demand for a UWB localization method that can simultaneously achieve high accuracy and scalability.

The second limitation is the inherent error for the estimated timestamp and range due to the defective hardware
and environmental factors. We examine three main factors for ranging errors, i.e., the antenna delay, the clock drift
of devices, and the rich multi-path in Sec. 2.2. To address ranging errors, existing UWB localization approaches
usually try to calibrate through tedious manual efforts. For instance, they select multiple known locations in a
specific environment to perform ranging calibration. They combine the estimated range and the actual range at
those localizations for calibration. However, such methods are highly labor-intensive and environment-dependent,
which significantly increases the application overhead. Moreover, the None-Line-Of-Sight (NLOS) effect further
incurs ranging errors and degrades the performance of UWB localization, which cannot be solved simply by
calibration.

We present VULoc, a novel UWB-based localization system to provide high accuracy and scalability simultane-
ously that significantly reduces time synchronization and calibration overhead. Fig. 1d shows the framework of
VULoc. The key of VULoc is a novel virtual-TWR (V-TWR) scheme to enable accurate tag localization by passively
overhearing. In VULoc, an anchor (namely 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 ) initiates data transmissions. We design a message exchange
scheme among the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 and other anchors (𝐴𝑖 𝑖 = 1, 2, . . . , 𝑁 ). A tag only overhears the messages and records
the message timestamps during the entire process for localization. VULoc is composed of the following three
components:
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Virtual two-way ranging. The virtual two-way range (V-TWR) scheme enables accurate tag localization by
passive receptions without time synchronization. Intuitively, we can apply TDOA localization after receiving
packets from different anchors. However, TDOA localization requires accurate time synchronization among
anchors. Instead of directly calculating the time difference between different anchors, VULoc takes advantage
of the message exchange between the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 and anchors. By overhearing those messages, VULoc derives
a “virtual response” from the tag to the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 , forming a virtual TWR process. VULoc infers the accurate
timestamp of the “virtual response” by leveraging the positional geometric relationship of the tag and anchors.
Therefore, VULoc can calculate the tag position based on those timestamps in the virtual TWR process. We
theoretically prove that VULoc can provide accurate localization comparable to the original TWR method, even
with clock drift among different anchors. As a result, VULoc can achieve high localization accuracy and support
countless targets.
Range auto-calibration. There usually exist errors between the estimated range and the actual range due to

the impact of the antenna delay, the clock drift of devices, and the multipath effect. We propose an anchor-assisted
calibration method to resolve the problem instead of resorting to tedious manual calibrations. The insight is
that the positions of anchors in UWB localization are usually known in advance. Meanwhile, thanks to the
framework of VULoc, we can estimate ranges between the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 and other anchors 𝐴𝑖 ( 𝑖 = 1, 2, . . . , 𝑁 ) based
on the exchanging messages among them. Therefore, we can infer the calibration model between the estimated
and actual ranges for calibration. We show the feasibility of the anchor-assisted calibration model in Sec. 2.2. As
a result, VULoc can achieve auto-calibration for various environments without manual efforts.
Anchor scheduling against None-Line-of-Sight (NLOS). Similar to other wireless systems, a major short-

age of UWB localization is the impact of NLOS. For example, when the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 is blocked by obstacles (e.g., the
human body), the performance of the system significantly degrades. A straightforward method to avoid NLOS
is to perform a round-robin scheduling for anchors, i.e., each anchor initiates the ranging process in turn to
play the role of the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 . However, such a method is still impacted by NLOS in some rounds. We propose a
method to estimate reception quality for adaptive anchor selection to minimize the NLOS effect. Specifically, we
first perform the round-robin scheduling for anchors. Then, we extract channel features based on each reception
in each round for quality estimation. A higher quality indicates a more reliable recorded timestamp. We thus
propose a metric to quantify the measurement quality in each round. Therefore, we can select the most reliable
ranging results in each round for localization to minimize the NLOS effect.
Implementation and Evaluation. We implement VULoc on off-the-shelf DW1000 transceivers and conduct

extensive experiments to show the localization and tracking performance of VULoc under various environments.
We also show the performance of VULoc in different areas (80𝑚2 VS 7200𝑚2). We compare the performance of
VULoc with the TWR method (i.e., DS-TWR) and an open-source TDOA-based method (i.e., ATLAS [62]) in a
large-scale deployment of 30 nodes.
Main Results and Contributions.

• We present VULoc, a robust UWB-based localization system that achieves high accuracy and scalability to
support countless tags.

• We propose a novel virtual two-way ranging (V-TWR) scheme to derive accurate tag position by passive
receptions without time synchronization. We theoretically show that V-TWR achieves a high localization
accuracy comparable to the original TWR method.

• We present an auto-calibration method by deriving an anchor-assisted model between estimated ranges
and actual ranges of anchors.

• We implement VULoc on the commercial DW1000 chip and extensively evaluate its performance. The
evaluation results show that VULoc can achieve a median error of 10.5 cm and a 90% error of 15.7 cm
in various environments, improving the accuracy of ATLAS [62] by 57.6%. We also show that VULoc
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performs well even in a large area of 7200𝑚2 and reduces 69.6% error on average compared to DS-TWR in
a large-scale deployment of 30 nodes.

2 BACKGROUND

2.1 UWB Basics

Upon receiving a UWB message, a UWB receiver can estimate a nanosecond channel impulse response (CIR)
thanks to its high bandwidth. CIR is a good description of the attenuation and delay of the received signal through
the wireless channel. Given the transmitting signal𝑇 (𝑡), the receiving signal 𝑅(𝑡) and the CIR 𝐻 (𝑡), we have [64]:

𝑇 (𝑡) = 𝑅(𝑡) ∗ 𝐻 (𝑡) (1)

where𝐻 (𝑡) =
∑𝐿

𝑖=1 𝛼𝑖𝑒
−𝑗2𝜋 𝑓𝑐𝜏𝑖𝛿 (𝑡 −𝜏𝑖 ). 𝐿 is the number of paths, 𝜏𝑖 and 𝛼𝑖 are the delay and amplitude attenuation

of the signal from path 𝑖 , and 𝛿 (𝑡 − 𝜏𝑖 ) is the Dirac’s delta function [9].
A typical CIR is shown in Fig. 5a. Each peak in the figure indicates a dominating transmission path. Actually,

every point in the CIR is the superposition of the signals of several transmission paths. The UWB receiver
estimates the first path of the CIR and adopts the corresponding time as the receiving timestamp. Fig. 5a shows
an example first path (𝐹𝑃 ) estimated by the DW1000 chip [2]. In this way, we can obtain the timestamp of the
receiving packet based on the timestamp of 𝐹𝑃 , and then use the timestamp for ranging.
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Fig. 5. Quality of receptions under the condition of LOS, multipath and NLOS. We adopt the 𝑁𝑜𝑖𝑠𝑒 and 𝑃𝑊 metrics to show

the reception quality.

2.2 Factors to Ranging Accuracy
Double-Sided Two Way Ranging (DS-TWR) is a widely used ranging method in UWB, which involves three
packet exchanges, as illustrated in Fig. 2. With recorded timestamps, we can calculate the ToF between two
devices:

𝑇𝑓 =
(𝑡4 − 𝑡1) × (𝑡6 − 𝑡3) − (𝑡5 − 𝑡4) × (𝑡3 − 𝑡2)

(𝑡5 − 𝑡1) + (𝑡6 − 𝑡2)

=
𝑇1 ×𝑇4 −𝑇3 ×𝑇2
𝑇1 +𝑇3 +𝑇2 +𝑇4

(2)

Based on 𝑇𝑓 , the range can be calculated as 𝑇𝑓 × 𝑐 .
Though the DS-TWR method can achieve high-ranging accuracy localization, the estimated range is subject to

many factors. We introduce three main factors, i.e., the antenna delay, the clock drift, and the multipath.

2.2.1 Antenna Delay. As shown in Fig. 3, when a UWB device receives a packet, it will record a timestamp (𝑡𝑟 )
including the antenna delay (𝑅𝑥 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑑𝑒𝑙𝑎𝑦). As a result, the estimated range is equal to the sum of the actual
range and an extra range due to antenna delays.
Without loss of generality, we assume the 𝑇𝑥 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑑𝑒𝑙𝑎𝑦 is 𝑡𝑎 and the 𝑅𝑥 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑑𝑒𝑙𝑎𝑦 is 𝑡𝑏 . Given a Tx

timestamp 𝑡𝑡 , we can calculate the actual Tx timestamp as �̂�𝑡 = 𝑡𝑡 + 𝑡𝑎 . Similarly, we can calculate the actual Rx
timestamp as �̂�𝑟 = 𝑡𝑟 − 𝑡𝑏 , where 𝑡𝑟 is the Rx timestamp. Thus we can calculate the time interval in Fig. 2 as:

𝑇1 = 𝑇1 − 𝑡𝑎 − 𝑡𝑏 ; 𝑇3 = 𝑇3 + 𝑡𝑎 + 𝑡𝑏 ; 𝑇2 = 𝑇2 + 𝑡𝑎 + 𝑡𝑏 ; 𝑇4 = 𝑇4 − 𝑡𝑎 − 𝑡𝑏 ; (3)
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Substituting the equation into the Equ. (2), we have:

𝑇𝑓 =
(𝑇1 − 𝑡𝑎 − 𝑡𝑏) × (𝑇4 − 𝑡𝑎 − 𝑡𝑏) − (𝑇3 + 𝑡𝑎 + 𝑡𝑏) × (𝑇2 + 𝑡𝑎 + 𝑡𝑏)

(𝑇1 − 𝑡𝑎 − 𝑡𝑏) + (𝑇3 + 𝑡𝑎 + 𝑡𝑏) + (𝑇2 + 𝑡𝑎 + 𝑡𝑏) + (𝑇4 − 𝑡𝑎 − 𝑡𝑏)

=
𝑇1 ×𝑇4 −𝑇3 ×𝑇2
𝑇1 +𝑇3 +𝑇2 +𝑇4

− (𝑡𝑎 + 𝑡𝑏)

=𝑇𝑓 − (𝑡𝑎 + 𝑡𝑏)

(4)

We can see that the antenna delay brings a constant deviation (i.e., 𝑡𝑎 + 𝑡𝑏 ) to the range estimation.

2.2.2 Clock Drift. We now show the impact of the clock drift of devices on the ranging result. We assume the
clock drift of device A as 𝑒𝐴 and that of device B as 𝑒𝐵 . We can model the time in Fig. 2 as:

�̂�𝑖 = (1 + 𝑒𝐴)𝑡𝑖 (𝑖 = 1, 4, 5); �̂� 𝑗 = (1 + 𝑒𝐵)𝑡 𝑗 ( 𝑗 = 2, 3, 6); (5)

And the time interval can be rewritten as:

𝑇1 = (1 + 𝑒𝐴)𝑇1; 𝑇3 = (1 + 𝑒𝐴)𝑇3; 𝑇2 = (1 + 𝑒𝐵)𝑇2; 𝑇4 = (1 + 𝑒𝐵)𝑇4; (6)

As 𝑇1 +𝑇3 = 𝑇2 +𝑇4 ([66] [54]), the estimated range is:

𝑇𝑓 =
(1 + 𝑒𝐴)𝑇1 × (1 + 𝑒𝐵)𝑇4 − (1 + 𝑒𝐵)𝑇2 × (1 + 𝑒𝐴)𝑇3

2 × ((1 + 𝑒𝐴)𝑇1 + (1 + 𝑒𝐴)𝑇3)

=(1 + 𝑒𝐵)𝑇𝑓

(7)

2.2.3 Multipath. Based on the above derivation results, we know the estimated range and the actual range
should show a roughly linear relationship. Thus, we conduct ranging experiments in various environments to
verify the claim. We use a pair of UWB nodes and adopt the DS-TWR method for ranging, and we collect data for
about 30 seconds and calculate the average result as the estimated range for each position. Fig. 4 shows the result.

We show the results in various environments, including a parking lot, a laboratory, and a corridor. We fit those
points and can see a linear relationship between the estimated ranges and the actual ranges within 20 meters. We
also notice that the relationship varies in different environments. For instance, there is around a 0.3m deviation
between the parking lot and the corridor. We think this phenomenon is caused by multipath. The multipath effect
can lead to biased timestamps and thus range errors. As a result, the ranging result can vary significantly in
different environments.

2.3 Quality of Reception

UWB offers rich and fine-grained information about the communication channel that can be used to estimate the
quality of receptions. The higher reception quality indicates a more reliable recorded timestamp. To estimate the
quality of receptions, we adopt two metrics, namely 𝑁𝑜𝑖𝑠𝑒 and 𝑃𝑊 [4]. 𝑁𝑜𝑖𝑠𝑒 is the standard deviation of CIR
Noise values. 𝑃𝑊 is the difference between 𝑅𝑋_𝑃𝑂𝑊𝐸𝑅 and 𝐹𝑃_𝑃𝑂𝑊𝐸𝑅, where 𝑅𝑋_𝑃𝑂𝑊𝐸𝑅 is the total power
of the receiving signal and 𝐹𝑃_𝑃𝑂𝑊𝐸𝑅 is only the power of the first path signal. Intuitively, 𝑃𝑊 indicates the
ratio of the energy of the first path to that of all paths. Both 𝑁𝑜𝑖𝑠𝑒 and 𝑃𝑊 metrics can be calculated from the
CIR.
We compare UWB receptions in three conditions, i.e., LOS, rich multipath, and NLOS, to investigate the

variation of the reception quality. Fig. 5e to Fig. 5g show the deployment in the three environments, with
the corresponding CIR shown in Fig. 5a to Fig. 5c. We can see that the first path is sharp and can be easily
differentiated from other paths in the LOS and multipath conditions. Besides, the accumulated power for the
first path is typically the major part of the entire CIR [4]. In NLOS conditions, however, the first path amplitude
becomes much weaker, and the accumulated power of the first path drops sharply. We then calculate the 𝑁𝑜𝑖𝑠𝑒
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and 𝑃𝑊 metrics in these conditions and show the comparison in Fig. 5d and Fig. 5h. We see that the NLOS values
are larger than LOS and multipath values no matter the 𝑁𝑜𝑖𝑠𝑒 or 𝑃𝑊 metric. Meanwhile, the LOS values and
the multipath values are nearly the same. We can draw two conclusions from the experiment, 1) the 𝑁𝑜𝑖𝑠𝑒 and
𝑃𝑊 metrics can effectively distinguish the reception quality in LOS and NLOS conditions. The high values of
two metrics indicate a poor reception quality, and 2) we show UWB is resistant to multipath as indicators in
multipath and LOS conditions are basically consistent.

3 SYSTEM DESIGN

Fig. 1d shows the framework of VULocwith five anchors. An anchor (namely 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 ) initiates data transmissions.
The corresponding data flow of VULoc is shown in Fig. 6. VULoc exchanges messages between the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟
and other anchors and lets the tag keep passively receiving. For each pair of the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 and an anchor, VULoc
records a total of six timestamps, forming the TWR process shown in Fig. 2. As a result, we can calculate the
range between the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 and other anchors by Equ. (2). Meanwhile, the tag passively overhears six packets.
Upon receiving a packet, we can estimate the corresponding timestamp and calculate two channel metrics, i.e.,
𝑁𝑜𝑖𝑠𝑒 and 𝑃𝑊 , which indicate the reception quality. We show how VULoc can achieve high accuracy and
scalability with the following three components, i.e., the virtual two-way ranging (V-TWR) scheme, the range
auto-calibration method, and the anchor scheduling algorithm.

3.1 Virtual Two-way Ranging (V-TWR) Scheme

In VULoc, each pair of the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 and an anchor forms a 𝑃𝑜𝑙𝑙 − 𝑅𝑒𝑠𝑝 − 𝐹𝑖𝑛𝑎𝑙 data exchange as stated by the
DS-TWR method. We denote 𝑡𝐼𝑃 and 𝑡𝐼𝐹 as the sending time for the 𝑃𝑜𝑙𝑙 and 𝐹𝑖𝑛𝑎𝑙 packet, 𝑡𝐼𝑅𝑖 as the receiving
time for the 𝑅𝑒𝑠𝑝 packet from the 𝑖th anchor. Similarly, we denote 𝑡𝑇𝑃 and 𝑡𝑇𝐹 as the receiving time of the 𝑃𝑜𝑙𝑙
and 𝐹𝑖𝑛𝑎𝑙 packet, 𝑡𝑇𝑅𝑖 as the receiving time for the 𝑅𝑒𝑠𝑝 packet of 𝑖th anchor, 𝑖 = 1, . . . , 𝑁 where 𝑁 is the number
of anchors. Fig. 6 shows an example of marked timestamps with the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 and the other four anchors. Note
that in the 𝐹𝑖𝑛𝑎𝑙 packet, the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 adds all recorded timestamps in the packet payload. Therefore, the tag can
obtain 12 timestamps in total for each round. The target of V-TWR is designed to use those 12 timestamps for tag
localization.

With those timestamps, the classic approach is the so-called TDOA [43, 62]. However, such a method requires
tight time synchronization among anchors to achieve satisfactory positioning accuracy. Time synchronization is
still an open issue without a perfect solution, causing much lower accuracy than that of the TWR method. We
theoretically show in Sec. 4.1 that the TDOA method can lead to more localization errors, an order of magnitude
larger than VULoc, due to clock drift among different anchors.

3.1.1 Virtual Response Generation. Instead of using the classic TDOA method, VULoc takes advantage of the
redundant data exchanged between the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 and other anchors. The intuitive idea is to leverage the message
exchange to derive the range.

The novel idea of VULoc is to generate a virtual response from the tag for the 𝑃𝑜𝑙𝑙 packet of the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 . Then
the tag and the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 can form the 𝑃𝑜𝑙𝑙 − 𝑅𝑒𝑠𝑝 − 𝐹𝑖𝑛𝑎𝑙 packet exchanges as that in the DS-TWR method. We
take one anchor as an example and illustrate the process in Fig. 7. We generate a virtual 𝑅𝑒𝑠𝑝 packet from the
tag (transmitting at time 𝑡 ′𝑇𝑅1) to the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 , and assume the 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑅𝑒𝑠𝑝 packet is received by the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 at
exact time 𝑡𝐼𝑅1. Thus we can form a virtual TWR process between them and calculate the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 -tag range by
the Equ. (2):

𝑇𝑓 =
(𝑡𝐼𝑅1 − 𝑡𝐼𝑃 ) × (𝑡𝑇𝐹 − 𝑡 ′𝑇𝑅1) − (𝑡 ′𝑇𝑅1 − 𝑡𝑇𝑃 ) × (𝑡𝐼𝐹 − 𝑡𝐼𝑅1)

𝑡𝐼𝐹 − 𝑡𝐼𝑃 + 𝑡𝑇𝐹 − 𝑡𝑇𝑃
(8)
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with an anchor.

𝑇𝑓 cannot be directly calculated due to the unknown 𝑡 ′𝑇𝑅1, and thus we call it the 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 range. In order to
calculate the range, we should derive the transmitting time 𝑡 ′𝑇𝑅1 for the 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑅𝑒𝑠𝑝 packet. We leverage the
position relationship between the three UWB devices to resolve the problem. Denote the range between the tag
and the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 as 𝑑𝑇→𝐼 , the range between the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 and the anchor 𝐴1 as 𝑑𝐼→𝐴1 , and the range between
the tag and the anchor as 𝑑𝑇→𝐴1, we can calculate the time 𝑡𝐼𝑅1, 𝑡𝑇𝑅1 and 𝑡 ′𝑇𝑅1 as:

𝑡𝑇𝑅1 = 𝑡𝐴1𝑅 +
𝑑𝑇→𝐴

𝑐
(9a)

𝑡𝐼𝑅1 = 𝑡𝐴1𝑅 +
𝑑𝐼→𝐴

𝑐
(9b)

𝑡𝐼𝑅1 = 𝑡 ′𝑇𝑅1 +
𝑑𝑇→𝐼

𝑐
(9c)

where 𝑐 is the light speed. Based on the above equations, we can derive 𝑡 ′𝑇𝑅1 as:

𝑡 ′𝑇𝑅1 = 𝑡𝑇𝑅1 −
𝑑𝑇→𝐴

𝑐
−
𝑑𝑇→𝐼

𝑐
+
𝑑𝐼→𝐴

𝑐
(10)

Combine Equ. (10) and Equ. (8), we can eliminate 𝑡 ′𝑇𝑅1 and obtain the following equation:

𝑑𝑇→𝐼

𝑐
×𝐶𝑇 =

𝑑𝑇→𝐴 + 𝑑𝑇→𝐼 − 𝑑𝐼→𝐴

𝑐
× (𝑡𝐼𝐹 − 𝑡𝐼𝑃 ) +𝐶𝑥1 (11)

where 𝐶𝑇 and 𝐶𝑥1 are calculated as follows:

𝐶𝑇 = (𝑡𝐼𝐹 − 𝑡𝐼𝑃 ) + (𝑡𝑇𝐹 − 𝑡𝑇𝑃 )

𝐶𝑥1 = (𝑡𝐼𝑅1 − 𝑡𝐼𝑃 ) × (𝑡𝑇𝐹 − 𝑡𝑇𝑅1)

− (𝑡𝑇𝑅1 − 𝑡𝑇𝑃 ) × (𝑡𝐼𝐹 − 𝑡𝐼𝑅1)

(12)

We observe that 𝐶𝑇 is a constant for the same pair of the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 and the tag (Fig. 6), while 𝐶𝑥1 is specific
for each anchor (e.g., 𝐶𝑥1 for 𝐴1). Due to two unknown parameters 𝑑𝑇→𝐼 and 𝑑𝑇→𝐴 in the above equations, we
cannot calculate the tag's position. However, we obtain a relationship between the 𝑑𝑇→𝐼 and 𝑑𝑇→𝐴. In the next
section, we show how VULoc resolves the tag position with the relationship.
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3.1.2 Virtual Time Recovery. VULoc proposes a novel insight that the distance 𝑑𝑇→𝐼 (tag-𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 ) remains
the same concerning different anchors since the whole process in Fig. 6 is very fast (on the order of several
milliseconds). We thus can assume that the distance between the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 and the tag has not changed. Hence,
VULoc uses the collaboration of multi-anchors to resolve the problem.

For anchors 1 to 4, we can re-organize Equ. (11) and (12) as follows (𝑖 = 1 . . . 4):

𝑑𝑇→𝐼

𝑐
×𝐶𝑇 =

𝑑𝑇→𝐴𝑖 + 𝑑𝑇→𝐼 − 𝑑𝐼→𝐴𝑖

𝑐
× (𝑡𝐼𝐹 − 𝑡𝐼𝑃 ) +𝐶𝑥𝑖 (13)

where 𝐶𝑇 is a constant as shown in the above equations, and 𝐶𝑥𝑖 is calculated as:

𝐶𝑥𝑖 = (𝑡𝐼𝑅𝑖 − 𝑡𝐼𝑃 ) × (𝑡𝑇𝐹 − 𝑡𝑇𝑅𝑖 )

− (𝑡𝑇𝑅𝑖 − 𝑡𝑇𝑃 ) × (𝑡𝐼𝐹 − 𝑡𝐼𝑅𝑖 )
(14)

By subtracting the equations of anchor 𝐴2 and 𝐴1, we can infer the following equation:

𝑑𝑇→𝐴2 − 𝑑𝑇→𝐴1

𝑐
=

(𝐶𝑥1 −𝐶𝑥2)

𝑡𝐼𝐹 − 𝑡𝐼𝑃
+
𝑑𝐼→𝐴2 − 𝑑𝐼→𝐴1

𝑐
(15)

Note that 𝑑𝑇→𝐴2−𝑑𝑇→𝐴1
𝑐 in the left part of the Equ. (15) is the time difference from the tag to anchor 𝐴2 and 𝐴1. As

all parameters in the right part of the equation are known, we can calculate the time difference from tag to 𝐴2
and 𝐴1 based on the recorded timestamps and known ranges between anchors.

Similarly, we can derive 𝑑𝑇→𝐴3−𝑑𝑇→𝐴1
𝑐 and 𝑑𝑇→𝐴4−𝑑𝑇→𝐴1

𝑐 for the anchor 𝐴3 and 𝐴4:

𝑑𝑇→𝐴3 − 𝑑𝑇→𝐴1

𝑐
=

(𝐶𝑥1 −𝐶𝑥3)

𝑡𝐼𝐹 − 𝑡𝐼𝑃
+
𝑑𝐼→𝐴3 − 𝑑𝐼→𝐴1

𝑐
(16)

𝑑𝑇→𝐴4 − 𝑑𝑇→𝐴1

𝑐
=

(𝐶𝑥1 −𝐶𝑥4)

𝑡𝐼𝐹 − 𝑡𝐼𝑃
+
𝑑𝐼→𝐴4 − 𝑑𝐼→𝐴1

𝑐
(17)

We now can use the time differences (i.e., Equ. (15) (16) (17)) from the tag to different anchors to locate the tag.

3.1.3 Localization with Virtual Timestamps. We investigate two widely used algorithms to resolve the tag position,
i.e., the hyperbola-based algorithm and the search-based non-linear least square algorithm.

The hyperbola-based algorithm tries to derive the position directly based on hyperbolic equations. Theoretically,
the tag is on a hyperbola with those fixed anchors as the focal points. Thus, we can calculate the position as the
intersection point of different hyperbolas. Specifically, in VULoc, we adopt the widely used Chan algorithm [20].
The Chan algorithm assumes Gaussian noise with zero mean and solves the hyperbolic equations non-recursively.
Thus, it has the advantage of requiring less computation.

Another widely used algorithm is the search-based non-linear least squares algorithm. Specifically, given a
candidate position 𝑝1 from solution space and anchors’ positions 𝑝𝑎𝑖 (𝑖 = 1, 2, 3 . . . , 𝑁 where 𝑁 is the number of
anchors), we can estimate the time difference of two anchors:

Δ𝑑𝑖, 𝑗 = | |𝑝1 − 𝑝𝑎𝑖 | | −
����𝑝1 − 𝑝𝑎𝑗

���� , 𝑖 ≠ 𝑗 (18)

Since we have measured Δ𝑑𝑖, 𝑗 , we can calculate the tag position by minimizing the difference between the
estimated and measured values:

𝑝1 = argmin
𝑝

∑𝑁−1
𝑖=1 (Δ𝑑𝑖, 𝑗 − Δ𝑑𝑖, 𝑗 )

2
(19)

The algorithm usually searches in the entire space and thus is time-consuming yet very accurate.
The hyperbola-based algorithm provides a coarse position estimation with a low overhead. The search-based

non-linear least square algorithm can provide a fine-grained result but with a high overhead incurred from space
search. Thus, VULoc combines those two algorithms to trade off the accuracy and the time overhead. Specifically,
VULoc first leverages the hyperbola-based algorithm to derive a coarse location by solving the intersection of
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hyperbolas. Then, VULoc search in the vicinity of the coarse location with search-based non-linear least squares
algorithm to obtain the fine-grained result.

3.2 Range Auto-calibration

As shown in Sec. 2.2, we investigate three main factors that lead to a large deviation between the estimated range
and actual range, including the antenna delay, clock drift, and multipath. As a result, we need to calibrate the
range to reduce the influence of those factors in order to achieve accurate positioning.
The traditional calibration method is applied through tedious manual calibration in advance, which is very

labor-intensive. For instance, to calibrate the antenna delay of UWB devices, we should place three UWB devices
at fixed positions and use an optimized method to calculate the constant deviation between the estimated ranges
and the actual ranges [55]. However, the multipath effect of different environments will lead to different deviation
patterns on the ranging result, as shown in Sec 2.2. As a result, we need to recalibrate the results in different
environments to achieve a satisfactory ranging result.

We show the linear relationship between the estimated range and the actual range under the impact of those
factors. In this way, we can use the linear relationship to simplify the calibration process. However, it still requires
labor-intensive calibration in advance to obtain the relationship. Thus, we propose an anchor-assisted calibration
model to obtain the range mapping at a low cost.
Specifically, we observe that the positions of anchors are accurately preset and known in UWB localization

systems. Thus, we can obtain the position of these anchors (the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 is also an anchor of a particular role)
and figure out the actual ranges between them. Meanwhile, VULoc can calculate the ranges between the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟
and other anchors by adopting the ranging algorithm. Then, we can fit those pairs of the estimated range and the
actual range to derive a linear mapping, as shown in Fig. 4. Assume the calibrated parameters are 𝐾 and 𝐵, and

given the estimated range 𝑑 , we can infer the actual range 𝑑 as:

𝑑 = (𝑑 − 𝐵)/𝐾 (20)

The equation reveals the mapping between the estimated range and the actual range, and we can use the mapping
to calibrate ranging results. To cope with different environments, we can use online exchanging messages for
specific anchors in that environment for calibration. Therefore, we can apply an auto-calibration method to
adapt to various environments. Note that other UWB localization systems can also leverage our method for
auto-calibration at the cost of an extra ranging process for anchors.
We now show how VULoc uses Equ (20) for calibration. Due to the deviation, we can rewrite the Equ. (9) as:

𝑡𝑇𝑅1 =𝑡𝐴1𝑅 + (
𝑑𝑇→𝐴

𝑐
× 𝐾 + 𝐵)

𝑡𝐼𝑅1 =𝑡𝐴1𝑅 + (
𝑑𝐼→𝐴

𝑐
× 𝐾 + 𝐵)

𝑡𝐼𝑅1 =𝑡
′
𝑇𝑅1 + (

𝑑𝑇→𝐼

𝑐
× 𝐾 + 𝐵)

(21)

We then repeat the derivation process from Equ. (8) to Equ. (13) and have:

(
𝑑𝑇→𝐼

𝑐
× 𝐾 + 𝐵) ×𝐶𝑇 =

(𝑑𝑇→𝐴𝑖 × 𝐾 + 𝐵) + (𝑑𝑇→𝐼 × 𝐾 + 𝐵) − (𝑑𝐼→𝐴𝑖 × 𝐾 + 𝐵)

𝑐
× (𝑡𝐼𝐹 − 𝑡𝐼𝑃 ) +𝐶𝑥𝑖 (22)
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After combining multiple anchors, we finally derive the calibrated results as:

𝑑𝑇→𝐴2 − 𝑑𝑇→𝐴1

𝑐
=

(𝐶𝑥1 −𝐶𝑥2)

(𝑡𝐼𝐹 − 𝑡𝐼𝑃 )𝐾
+
𝑑𝐼→𝐴2 − 𝑑𝐼→𝐴1

𝑐

𝑑𝑇→𝐴3 − 𝑑𝑇→𝐴1

𝑐
=

(𝐶𝑥1 −𝐶𝑥3)

(𝑡𝐼𝐹 − 𝑡𝐼𝑃 )𝐾
+
𝑑𝐼→𝐴3 − 𝑑𝐼→𝐴1

𝑐

𝑑𝑇→𝐴4 − 𝑑𝑇→𝐴1

𝑐
=

(𝐶𝑥1 −𝐶𝑥4)

(𝑡𝐼𝐹 − 𝑡𝐼𝑃 )𝐾
+
𝑑𝐼→𝐴4 − 𝑑𝐼→𝐴1

𝑐

(23)

Then we can use the localization method in Sec. 3.1.3 to locate the tag with the calibrated results.

3.3 Anchor Scheduling Algorithm

Similar to other wireless localization systems, major errors can occur in the localization results of NLOS. Specially,
we notice that VULoc is very sensitive to the selection of the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 as the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 needs to exchange data
with other anchors. To minimize the NLOS effect, a straightforward round-robin scheduling method for anchors
can be used to eliminate dependence on a specific anchor. Instead of applying a fixed anchor as the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 , each
anchor takes turns to be the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 . Assuming there are five anchors, we let each anchor initiate transmissions
in turns, e.g., based on their addresses. As shown in Fig. 8, we assume one of the links is blocked, e.g., by a person
standing in the upper right corner. At the beginning of round 1, anchor 𝐴1 becomes the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 and performs
the TWR process (Fig. 2) with the other four anchors. The two devices exchange three packets, i.e., 𝑃𝑜𝑙𝑙 , 𝑅𝑒𝑠𝑝 ,
and 𝐹𝑖𝑛𝑎𝑙 . The 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 embeds its address in each packet. After the 𝐹𝑖𝑛𝑎𝑙 packet, all anchors should parse the
packet’s source address (𝑠𝑟𝑐_𝑎𝑑𝑑𝑟 ) and determine the next anchor to initiate the transmission. Based on the rule,
𝐴2 will take turns to be the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 and initiate the transmission. When round 5 is finished, VULoc will repeat
the process. Furthermore, each anchor can back off with a time period proportional to its address upon receiving
the 𝐹𝑖𝑛𝑎𝑙 packet. In such a way, even when one anchor does not work, its neighboring anchor can continue the
scheduling process when its timer expires.
During the processing of the above scheduling, VULoc manages to estimate reception quality by extracting

features of wireless channels for adaptive anchor selection to minimize the NLOS effect. For example, in round
2, three links are blocked by the human body, and we should avoid using those three links in localization. The
idea is to estimate the quality of timestamps of each packet before using it for localization. Therefore, VULoc
can select the appropriate links and timestamps for positioning. Specifically, we leverage two channel features,
namely 𝑁𝑜𝑖𝑠𝑒 and 𝑃𝑊 , to estimate the quality of receptions. As shown in Sec. 2.2, the value of both 𝑁𝑜𝑖𝑠𝑒 and
𝑃𝑊 increases when links are blocked by obstacles like human beings. Thus, a higher value of 𝑁𝑜𝑖𝑠𝑒 and 𝑃𝑊
indicates a lower quality of the message. However, the data flow of VULoc is more complicated, and we cannot
directly use this to select the anchor. As shown in Fig. 7, the quality of receptions (Equ. 13) involves three devices,
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the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 , an anchor, and the tag. The tag has three receptions: the 𝑃𝑜𝑙𝑙 and 𝐹𝑖𝑛𝑎𝑙 packets from the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟
and the 𝑅𝑒𝑠𝑝 packets from the anchor. Thus, we should consider both the quality of reception from the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟
and from the anchor. To infer the quality of the measurement, we propose a confidence parameter 𝑐𝑝 that is
calculated as:

𝑐𝑝 =
𝑁𝑜𝑖𝑠𝑒𝑝𝑜𝑙𝑙

𝑁𝑜𝑖𝑠𝑒𝑚𝑎𝑥
×

𝑁𝑜𝑖𝑠𝑒𝐹𝑖𝑛𝑎𝑙
𝑁𝑜𝑖𝑠𝑒𝑚𝑎𝑥

×
𝑁𝑜𝑖𝑠𝑒𝑅𝑒𝑠𝑝

𝑁𝑜𝑖𝑠𝑒𝑚𝑎𝑥
× 0.5 +

𝑃𝑊𝑝𝑜𝑙𝑙

𝑃𝑊𝑚𝑎𝑥
×
𝑃𝑊𝐹𝑖𝑛𝑎𝑙

𝑃𝑊𝑚𝑎𝑥
×
𝑃𝑊𝑅𝑒𝑠𝑝

𝑃𝑊𝑚𝑎𝑥
× 0.5 (24)

where 𝑁𝑜𝑖𝑠𝑒𝑚𝑎𝑥 and 𝑃𝑊𝑚𝑎𝑥 are empirical thresholds. The equation considers the reception quality of all three
packets and normalizes the data by the maximum value of both metrics. We then assign the same weight (i.e., 0.5)
to both metrics as we think they are equally important. We can adjust the weights according to the characteristics
of the data. Based on the confidence parameter 𝑐𝑝 , we can select high quality message exchanges for localization.
For example, we can filter out round 2 in Fig. 8 and discard the occluded links in every selected round, i.e., links
that are blocked by human beings.

4 PERFORMANCE ANALYSIS

4.1 Localization Accuracy Comparison

We present a theoretical error analysis of our V-TWR scheme and show its superiority. For ease of understanding,
we consider the uncalibrated case and start with the error analysis under the premise that the specific timestamp of
the 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 is known. As shown in Fig. 7, with the 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (𝑡 ′𝑇𝑅1), the tag and the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 form
the 𝑃𝑜𝑙𝑙 −𝑅𝑒𝑠𝑝 − 𝐹𝑖𝑛𝑎𝑙 packets exchange. We denote𝑇1 = 𝑡𝐼𝑅1 − 𝑡𝐼𝑃 ,𝑇2 = 𝑡 ′𝑇𝑅1 − 𝑡𝑇𝑃 ,𝑇3 = 𝑡𝐼𝐹 − 𝑡𝐼𝑅1,𝑇4 = 𝑡𝑇𝐹 − 𝑡 ′𝑇𝑅1,
the ToF between devices is calculated by Equ. (2):

𝑇𝑓 =
𝑇1 ×𝑇4 −𝑇2 ×𝑇3
2 × (𝑇1 +𝑇3)

(25)

Denoting 𝑒𝑇 and 𝑒𝐼 as the clock drift of the tag and the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 , we can model the time as:

𝑇1 = (1 + 𝑒𝐼 )𝑇1 𝑇2 = (1 + 𝑒𝑇 )𝑇2 (26a)

𝑇3 = (1 + 𝑒𝐼 )𝑇3 𝑇4 = (1 + 𝑒𝑇 )𝑇4 (26b)

Taking the clock drift into consideration, the estimated ToF 𝑇𝑓 can be calculated as [54] [66]:

𝑇𝑓 =
𝑇1 ×𝑇4 −𝑇2 ×𝑇3

2 × (𝑇1 +𝑇3)

= (1 + 𝑒𝐼 )𝑇𝑓

(27)

Therefore, the error is:
𝑒𝑟𝑟𝑜𝑟 = 𝑇𝑓 −𝑇𝑓 = 𝑒𝐼𝑇𝑓 (28)

Given the propagation time of 100 𝑛𝑠 and a crystal clock of ±20 𝑝𝑝𝑚 [4], we can calculate the value of error as
20𝑒−6 ∗ 100𝑒−9 = 2𝑝𝑠 .
For VULoc, however, we cannot directly calculate the error following the above steps since the exact time of

the 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 is unknown. Without loss of generality, we focus on the estimated time difference from the
tag to the anchor 𝐴2 and 𝐴1 (i.e.,

𝑑𝑇→𝐴2−𝑑𝑇→𝐴1
𝑐 ) calculated by Equ. (15). We denote 𝑒𝐼 , 𝑒𝐴 and 𝑒𝑇 as the clock drift

of the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 , the anchors, and the tag, respectively. Considering the clock drift, we can model the timestamps
of devices (Fig. 6) as:

�̂�𝐼𝑥 = (1 + 𝑒𝐼 )𝑡𝐼𝑥 (29a)

�̂�𝐴𝑥 = (1 + 𝑒𝐴)𝑡𝐴𝑥 (29b)
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�̂�𝑇𝑥 = (1 + 𝑒𝑇 )𝑡𝑇𝑥 (29c)

where 𝑥 = 𝑃, 𝑅, 𝐹 .
Meanwhile, the difference between �̂�𝑇𝑅1 and �̂�𝐴1𝑅 is no longer a simple value 𝑑𝑇→𝐴

𝑐 but the value multiplied by
a coefficient (1 + 𝑒𝑇 ) due to clock drift, i.e.,

�̂�𝑇𝑅1 = �̂�𝐴1𝑅 +
𝑑𝑇→𝐴

𝑐
(1 + 𝑒𝑇 ) (30)

Similarly, we can rewrite the other two equations of Equ. (9) as:

�̂�𝐼𝑅1 = �̂�𝐴1𝑅 +
𝑑𝐼→𝐴

𝑐
(1 + 𝑒𝐼 ) (31a)

�̂�𝐼𝑅1 = �̂� ′𝑇𝑅1 +
𝑑𝑇→𝐼

𝑐
(1 + 𝑒𝐼 ) (31b)

Combining these equations and eliminating the parameter �̂�𝐴1𝑅 , we have:

�̂� ′𝑇𝑅1 = �̂�𝑇𝑅1 −
𝑑𝑇→𝐴

𝑐
(1 + 𝑒𝑇 ) +

𝑑𝐼→𝐴

𝑐
(1 + 𝑒𝐼 ) −

𝑑𝑇→𝐼

𝑐
(1 + 𝑒𝐼 ) (32)

With this equation, we again calculate 𝑑𝑇→𝐴2−𝑑𝑇→𝐴1
𝑐 following the process from Equ. (8)→ (15) and have:

𝑑𝑇→𝐴2 − 𝑑𝑇→𝐴1

𝑐
=

1

1 + 𝑒𝑇
(
𝐶𝑥1 −𝐶𝑥2

�̂�𝐼𝐹 − �̂�𝐼𝑃
+
𝑑𝐼→𝐴2 − 𝑑𝐼→𝐴1

𝑐
(1 + 𝑒𝐼 )) (33)

where 𝐶𝑥𝑖 (𝑖 = 1, 2) is calculated as follows:

𝐶𝑥𝑖 = (̂𝑡𝐼𝑅𝑖 − �̂�𝐼𝑃 ) × (̂𝑡𝑇𝐹 − �̂�𝑇𝑅𝑖 ) − (̂𝑡𝑇𝑅𝑖 − �̂�𝑇𝑃 ) × (̂𝑡𝐼𝐹 − �̂�𝐼𝑅𝑖 ) (34)

We can infer that 𝐶𝑥1−𝐶𝑥2

�̂�𝐼𝐹−�̂�𝐼𝑃
= (1+𝑒𝐼 ) (1+𝑒𝑇 ) (𝐶𝑥1−𝐶𝑥2)

(1+𝑒𝐼 ) (𝑡𝐼𝐹−𝑡𝐼𝑃 )
= (1 + 𝑒𝑇 ) (

𝐶𝑥1−𝐶𝑥2
𝑡𝐼𝐹−𝑡𝐼𝑃

). Meanwhile, the estimated result of
𝑑𝑇→𝐴2−𝑑𝑇→𝐴1

𝑐 without considering clock drift is expressed in Equ. (15). Thus, the error due to the clock drift
is calculated by the difference between Equ. (34) and Equ. (15):

𝑒𝑟𝑟𝑜𝑟 =
𝑑𝐼→𝐴2 − 𝑑𝐼→𝐴1

𝑐
×
𝑒𝐼 − 𝑒𝑇
1 + 𝑒𝑇

(35)

Example. Given a distance difference of 30𝑚 (𝑑𝐼→𝐴2 − 𝑑𝐼→𝐴1) and a clock drift of ±20 𝑝𝑝𝑚, we can calculate

the error as 𝑒𝑟𝑟𝑜𝑟 = 30
3𝑒8 ×

40𝑒−6

(1+20𝑒−6) = 4 𝑝𝑠 , which is comparable to that of the original TWR method (2𝑝𝑠). The

incurred range error is about 4𝑒−12 × 3 × 108𝑚/𝑠 = 0.12 𝑐𝑚.
Error analysis for existing UWB localization approaches. Based on the recorded six timestamps from

different anchors shown in Fig. 6, we can also perform the TDOA method for localization. We now analyze the
error of TDOA-based methods and explain why VULoc is more accurate.
We assume that the error of the method is mainly induced by the clock drift of anchors, which is further

proportional to the time interval 𝑡𝐴𝑖𝑅 − 𝑡𝐴𝑖𝑃 (𝑖 = 1, 2, 3, 4) (see Fig. 6). Given the clock drift of anchor 𝐴𝑖 as 𝑒𝑖 , the
error of the TDOA method can be roughly estimated as:

𝑒𝑟𝑟𝑜𝑟 = (𝑡𝐴𝑖𝑅 − 𝑡𝐴𝑖𝑃 ) × 𝑒𝑖 − (𝑡𝐴1𝑅 − 𝑡𝐴1𝑃 ) × 𝑒1 𝑖 > 1 (36)

Typically, the value of 𝑡𝐴𝑖2 − 𝑡𝐴𝑖1 (𝑖 = 1, 2, 3, 4) is in the magnitude of thousands of microseconds [54, 66].
Given the clock drift of ±20 ppm of UWB devices and 100 𝜇s time interval between two adjacent anchors (i.e.,
(𝑡𝐴𝑖𝑅 − 𝑡𝐴𝑖𝑃 ) − (𝑡𝐴1𝑅 − 𝑡𝐴1𝑃 )), the error can be calculated as 100𝑒−6 × 20𝑒−6 = 2𝑛𝑠 , which translates into the
distance error of 0.6𝑚. This is much larger than that of VULoc.
Note that this error analysis is a rough result of the TDOA method. As we all know, the positioning result is

also highly dependent on the effect of time synchronization. As a result, the TDOA method can achieve a much
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(a) Hardware of UWB devices. (b) UI for online localization system.

Fig. 9. Hardware platform and our online localization system.
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Fig. 10. Measuring instruments for

ground-truth.

lower positioning accuracy than the TWR method. However, as inferred from the above analysis, VULoc can
achieve a high positioning accuracy even compared to the TWR method and require no time synchronization.

4.2 Power Consumption Comparison

At first glance, VULoc may consume more power than the DS-TWR method as it requires more receptions, and
packet reception causes more power than transmitting in UWB. However, after careful examination, we find that
VULoc can consume less power than the DS-TWR method. According to the Decawave DW1000 datasheet [2]
and Decawave user manual [4], the power consumed by a single packet is typically 31 𝜇𝐽 for transmissions and 56
𝜇𝐽 for receptions [69]. Given 𝑁 anchors 1, a tag in VULoc may receive a total (𝑁 + 1) packets (Fig. 6) while the tag
in DS-TWR would transmit 2 packets and receive 𝑁 packets. As a result, the power consumption of VULoc can
be calculated as (𝑁 + 1) × 56𝜇𝐽 , and the power consumption of DS-TWR can be calculated as (𝑁 × 56 + 2× 31)𝜇𝐽 .
For a typical scenario with 𝑁 = 4, the power consumption of VULoc is 280 𝜇𝐽 , which is even slightly smaller
than that of the DS-TWR, i.e., 286 𝜇𝐽 . Meanwhile, VULoc can conduct more reasonable power management due
to two-fold:

• All tags can require positioning on demand because of the passive reception mode in VULoc, while the
DS-TWR method requires careful scheduling design that brings additional power consumptions, e.g.,
conflict avoidance and dynamic topology changes.

• VULoc can also save much more power when there are large amounts of tags positioning simultaneously
since it can significantly reduce collisions. DS-TWR method requires much more retransmissions due to
collisions to achieve satisfactory performance and causes much more power overhead.

However, it is noteworthy that the energy of pure UWB systems is inefficient in the face of mobile tags since
tag discovery can consume lots of energy due to the unbalanced energy budget between the transmission and
reception of packets in UWB. For example, the UWB radio can consume 24× more power than the BLE radio in
the period of listening [17]. It inspires us that we can integrate our solution with low power techniques, e.g., BLE,
to design a wiser and more efficient positioning solution in the future.

5 IMPLEMENTATION

5.1 Hardware Platform

As shown in Fig. 9a, we implement VULoc on UWB devices with the commercial DW1000 chip, an STM32F103T8
MCU, and a five dBi antenna. The node uses an LNA on the Rx path to improve ranges as described in APS004 [3].

1Note that the initiator is also a special anchor
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The DW1000 is configured to use channel 2 (a bandwidth of 499.2 MHz and a carrier frequency of 3993.6 MHz), a
data rate of 110 kbps, and the pulse repetition frequency (PRF) of 16 MHz.
There are three different roles in VULoc, i.e., the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 , the anchor, and the tag. They are all based on the

same hardware platform. In our experiments, the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 along with other anchors are installed on tripods so
that we can move them to different positions, as shown in the left part of Fig. 9a. A portable battery is attached to
each device for power supply. At present, we connect the tag to a Raspberry Pi 4b through USB, as shown in the
right part of Fig. 9a. The Raspberry Pi is used for out-of-band control, including collecting data, dealing with the
timestamps, and transmitting data to the server through TCP/IP.

5.2 Software Implementation

For brevity, we introduce the basic algorithm implementation. We adopt the Chan algorithm to calculate a
candidate position based on distance difference estimations. We treat the Chan algorithm’s output as a coarse
result and use it as the start location for the non-linear least squares solver to reduce the overhead. We use the
Levenberg-Marquardt algorithm [50] [53] for the non-linear least squares solver.

Furthermore, we develop an online localization system based on the design of VULoc. To ensure prompt and
efficient processing, the whole system is divided into two layers, i.e., the edge layer and the cloud layer. At the
edge layer, we connect each tag to a Raspberry Pi 4b. The Raspberry Pi has a 4-core 64-bit Cortex-A72 processor
and 2GB RAM. It is responsible for streaming the data to the cloud. We also implement a Python program on
the Raspberry Pi to continuously read the data from the UWB device through USB and extract the required
timestamps. Then, the Raspberry Pi estimates the final position based on the timestamps and our localization
method. Finally, the Raspberry Pi uploads the result into the cloud database. To visualize the result, we develop a
website to show real-time position information based on data from the database. As shown in Fig. 9b, the website
also supports rich functions, such as uploading the floor plans, storing and reshowing historical data, map zoom
in/out, etc.

6 EVALUATION

6.1 Methodology

We first evaluate the localization error of VULoc in terms of different indoor environments. For each environment
hereinafter, we use a total of five anchors with the anchor 𝐴0 as the first 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 .
𝑖) Hall. We set up VULoc in a hall as shown in Fig. 11a. The size of the hall is about 10𝑚 × 6𝑚 with almost no

obstacles.
𝑖𝑖) Classroom. As shown in Fig. 11b, the size of the room is about 12𝑚 × 8𝑚. There are many reflectors and

obstacles in the room, such as tables and chairs.
𝑖𝑖𝑖) Laboratory. This lab is about 12𝑚 × 7𝑚 as shown in Fig. 11c. The lab contains many tables, chairs, and

computers. Furthermore, people walk around the lab frequently during the experiment.
We then investigate the scalability of VULoc by locating 30 tags simultaneously and show the performance in

terms of a different number of tags. Meanwhile, we compare VULoc with the state-of-the-arts:

• DS-TWR [34]: the widely used two-way ranging method for accurate UWB-based localization.
• ATLAS [62]: an open-source TDOA-based UWB localization method. A reference tag is required to syn-
chronize the time between anchors.

In the next experiment, we choose an outdoor parking lot of 80𝑚×90𝑚 = 7200𝑚2 to compare the performance
of VULoc in areas of different sizes. Specifically, we choose a small area of 10𝑚 × 8𝑚 = 80𝑚2 and a large area of
80𝑚 × 90𝑚 = 7200𝑚2 for evaluation, as shown in Fig. 15a and 15b.
We finally show the tracking performance of VULoc in three indoor environments and demonstrate the

efficiency of the anchor scheduling algorithm in NLOS settings.
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Fig. 11. Various indoor environments for evaluation.
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Fig. 13. Localization in the laboratory.

6.1.1 UWB Configuration. We set UWB devices to work in channel 2 with a central frequency of 3993.6 MHz, a
bandwidth of 499.2 MHz, a data rate of 110 kbps, and a PRF of 16 MHz. The 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 sends a 𝑃𝑜𝑙𝑙 message every
50 ms in VULoc. A ranging process (see Fig. 6) lasts about 20 ms for position measurement.

6.1.2 Ground-truth. As shown in Fig. 10, we leverage two measuring instruments for ground-truth measurement.
We adopt the GLM 250 VF laser to measure the distance and position for short-range measurement and indoor
environments. The ranging error of the device is under 1 mm. For long-range measurement and outdoor environ-
ments, we use the Topcon GTS-102N construction total station shown in the left part of Fig. 10 for ground-truth
measurement. The device is widely used in building construction, surveying, and mapping. The device’s position
error is 3 mm, and the angle error is 2′′.

6.2 Localization Performance in Different Indoor Environments

As shown in Fig.11, we choose three environments, i.e., the hall, the classroom, and the laboratory for indoor
evaluation. We divide each space into grids and collect data from at least 10 different points on the grids. For
each point, we collect data three times, and each time lasts for about 30 seconds.

6.2.1 Overall Performance. Fig. 12 shows the CDF of localization error under three different environments. We
see that the median localization error is 8.4 cm in the hall, 10.5 cm in the classroom, and 13.2 cm in the laboratory.
The localization accuracy in the hall is higher than those in the other two environments. The accuracy in the
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Fig. 14. Comparison of different methods with 30 tags deployment in the classroom.

laboratory is the lowest among those three environments. This is because the laboratory environment is more
complicated than the other two environments. There are more crowded furniture and people in the laboratory,
posing more obstacles and multi-path effects. The result shows that VULoc can adapt to different environments
and achieve centimeter-level localization results.

6.2.2 Detailed Performance in the Laboratory. In order to better illustrate the indoor localization performance,
we show a detailed evaluation of VULoc in the laboratory environment with crowded reflectors. We divide the
space into grids and choose 20 different tag positions in the laboratory, as shown in Fig. 13a. As we can see, these
positions are marked with circled IDs. The four anchors are marked as red circles, while the initiator is marked as
a green circle. Fig. 13b shows the error distribution. We can see that the localization error is below 20 cm for most
points. There are two tags with errors slightly higher than 30 cm. We then carefully examine these points with
large errors. We find that those points are around the border (e.g., positions 1 and 20) of the entire area and thus
tend to have larger errors. We think it may be due to the poor convergence of the positioning algorithm on the
boundary points. We thus can expand the anchors’ coverage area or deploy more anchors to reduce localization
errors in practice.

6.3 Localization Performance with Large-scale Deployment

In this experiment, we investigate the scalability of VULoc with 30 tags. At the same time, we compare its
performance with two novel methods, i.e., the DS-TWR method and an open-source TDOA method (ATLAS [62]).
In DS-TWR, the tag works with two round-trip exchanges to measure the distance to each anchor. With the

measured distance, we run a sphere intersection algorithm to calculate the position. In ATLAS, we leverage a
reference tag to transmit sync data and measure TDOA information for the target. Then, we adopt the TDOA
algorithm used by VULoc to calculate the localization result. Note we use the same parameter for range calibration
for all three methods in order to fairly compare the localization algorithm.
We compare their performance with a different number of tags working simultaneously in the classroom,

as shown in Fig 14a. For ease of data collection, tags are connected to a USB hub and then are connected to
processing computers through USB. For VULoc and ATLAS, there is no need to design scheduling protocols
since tags in those two methods are passively listening. For DS-TWR, we adopt a pure ALOHA protocol and
add a random delay of 300 ms for tags to avoid collisions. We run the experiment for 5 minutes for each method
adopted.
Fig. 14b shows the localization error with a different number of tags. Fig. 14c shows the packet reception

rate (PRR) of different methods. We see that VULoc and ATLAS achieve a localization error of 10.2 cm and 24.1
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Fig. 15. Performance of VULoc in normal area and large area.
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(b) Tracking in the classroom.
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(c) Tracking in the laboratory.

Fig. 16. Tracking with VULoc. The blue dots are the localization results and the redline is the ground-truth.

cm, respectively, regardless of the number of tags. On the contrary, the localization error of DS-TWR increases
significantly with the increased number of tags. We can see that there are many incorrect timestamps with large
errors for DS-TWR due to severe packet collisions, which further leads to large localization errors. The PRR of
VULoc and ATLAS keep nearly 100% due to passive reception mode, while the PRR of the DS-TWR method drops
significantly when the number of tags ≥ 10. As the localization cannot be calculated for a collided packet, we
assume the positioning error of collided packets as 0.5 m and re-calculate the error of DS-TWR as DS-TWR′′. We
also plot the result of DS-TWR′′ in Fig. 14b. We can see that the error of DS-TWR′′ is closer to 0.5 m with the
increasing number of tags due to the increased number of collided packets.

We see that VULoc achieves about 57.6% less localization error than ATLAS even without any synchronization.
DS-TWR will achieve slightly better accuracy than our work when the number of tags is very small. However,
DS-TWR degrades quickly when the number of tags increases. As a result, VULoc reduces 69.6% errors on average
compared to DS-TWR. To conclude, VULoc maintains satisfactory performance in large-scale deployment, which
is very important in actual applications. The other two methods cannot achieve high accuracy and scalability
simultaneously.
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6.4 Localization Performance in Different Areas.
For practical applications, the coverage of the positioning system is also essential. For this reason, we explore the
performance of VULoc in different sizes of deployment areas. We evaluate VULoc in an outdoor parking lot with
an area of 7200𝑚2. For comprehensive assessments, we conduct experiments in the following two scenarios.
𝑖) A normal area of the parking lot. First, we choose a part of the parking lot as shown in Fig. 15a. The area is

about 10𝑚 × 8𝑚, which is close to the normal size of most indoor rooms. The initiator and anchors are marked
in the figure as well.
𝑖𝑖) A large area of the parking lot. To evaluate the performance of VULoc in a large area, we thus choose the

entire parking lot, whose size is about 80𝑚 × 90𝑚. Fig. 15b shows the satellite map of the parking lot and the
detailed deployment.

In each scenario, we randomly choose 10 positions for evaluation. As the area size becomes large, we leverage
the Topcon GTS-102N construction total station to measure the ground truth. The result is shown in Fig. 15c.
We see that the median localization error of the normal area is 6.3 cm, while the median localization error

of the large area is about 48 cm. The error becomes larger in the large area being two-fold. First, UWB devices
incur a large time measurement error in wide areas. Second, we observe that the anchors in the large area are
surrounded by trees and vehicles, which may block and reflect the UWB signal, resulting in an increase in error.
However, we think such accuracy is still acceptable considering such a large area.

6.5 Tracking with VULoc

We finally investigate the performance of VULoc for tracking in three indoor environments shown in Fig. 11. We
ask volunteers to hold the tag and move along the predefined traces at their usual walking speed.

The tracking result is shown in Fig. 16. The green marks show the positions of anchors. The red line shows the
ground truth with arrows indicating the moving direction. The blue dots show the tracking result. Note that
those tracking points are raw results with no filtering and other data processing method.

We can see from the results that the tracking points are close to the actual trajectory in all three environments.
It indicates that VULoc can achieve a good performance in tracking. We also observe some offset between the
practical trajectory and the actual one, especially at the turning point. We think the noise may be introduced
by volunteers as it is not easy to follow the predefined trajectory holding the UWB device just in hands at the
turning points. It is not easy for people to follow a predefined long straight line since the tracked points deviate
more from the actual path, especially for a long tracking distance (e.g., vertical lines in Fig. 16a). We also see that
the tracked points can be dense or sparse as the speed of persons’ movement varies.

We finally summarize the median and 90% tracking error in these environments in Tab. 17. The result is slightly
larger than that of static points shown in Fig. 12 due to unavoidable human mistakes as discussed above. However,
we think such results are enough to demonstrate the feasibility and effectiveness of our method.

6.6 Evaluation of Anchor Scheduling Algorithm

We now show the NLOS elimination effects by our anchor scheduling algorithm. As VULoc involves both anchor
links and tag links for localization, we let volunteers block both links separately and evaluate the performance of
the anchor scheduling algorithm. Specifically, we first examine the performance under static blocks by blocking
anchor and tag link #1 or #2. Then we let the volunteer move around to build a dynamic NLOS environment. We
finally demonstrate the performance of VULoc under two blocked links.

The result is shown in Fig. 18. Without any link blockages, the localization error is very small, i.e., about 0.12
m. When one link is blocked, the localization error increases significantly no matter of static or dynamic blocks
without the anchor scheduling algorithm. This is because such a blocked link can lead to large ranging errors
and further lead to large localization errors. Meanwhile, we see that the increase of error is unpredictable and
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Environments Median Error (m) 90% Error (m)
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Fig. 18. Performance of anchor scheduling algorithm

under different blocked links.

varies with different blocked links, e.g., about 0.28 m when blocking anchor link #1 and about 0.41 m when
blocking anchor link #2. With the anchor scheduling algorithm, we can achieve a stable and highly-accurate
result comparable to the case without blocks since we can choose the best-link anchors for localization by the
algorithm.

When two links are blocked, the localization error increases rapidly, even with the anchor scheduling algorithm.
The scheduling algorithm is based on link estimation and anchor selection. When two links are blocked, the
remaining links are not enough to achieve accurate localization. Thus, our work also fails to work when most
of the anchors are blocked. Nevertheless, the anchor scheduling algorithm can always find the best links for
localization, thus achieving a better result than that without the algorithm.

7 DISCUSSION

Through extensive evaluations, we show the performance of VULoc in a wide area of 7200𝑚2, a large-scale
deployment with 30 nodes and various indoor environments across static positions and mobile trajectories. The
results, along with the theoretical analysis (Sec. 4.1), show that VULoc can achieve a very high positioning
accuracy and support a large number of targets without synchronization overhead. However, there are some
issues that we need to discuss in detail and clarity.
The influence of the target’s speed. The basic principle of VULoc assumes that the range between the

target and the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 should keep constant in one measurement. Therefore, when the target moves very fast,
the positioning result of VULoc may be significantly affected. It is a common issue for localization techniques
and systems that combine multiple anchors for localization, like the TDOA method. We thus left it for future
work. Nevertheless, we think VULoc can meet most applications with a moderate speed localization target. For
instance, suppose that the system can tolerate 10 𝑐𝑚 displacements of the target during one measurement (20

𝑚𝑠), VULoc thus can satisfy applications with a speed of 10×10−2

20×10−3 ×
3600
103 = 18𝑘𝑚/ℎ.

None-line-of-sight (NLOS) problem. Though UWB is resistant to multi-path thanks to its high bandwidth,
its performance may degrade significantly in NLOS environments [16, 44, 68]. We also verify the problem in
our preliminary study. To address the problem, we design an anchor scheduling algorithm that lets each anchor
takes turns to be the 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 and adopt two metrics inferred from the channel to judge the quality of receptions.
However, such a method can only select three estimates with the best reception quality and fails to work when
most anchors are affected by NLOS. There is a large amount of work that identifies and mitigates the NLOS
effect [12, 19, 24, 35, 47, 51] in the literature. We can leverage those designs to minimize the NLOS effect in the
future for actual applications.
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Table 1. Comparison of UWB localization techniques.

Localization Tech-

nique

Representative

Work

Accuracy Scalability Update

rate

Calibration

Overhead

Synchronization

Two-way Ranging
(TWR) [33] [10] [42] [41]

★★★★★ ★★★ ★★★ High Not required

Time Difference of Ar-
rival (TDOA) [43] [63] [48]

★★★ ★★★★★ ★★★★ High Required

Angle of Arrival (AoA)
[69] [67] [26]

★★ ★★★★ ★★★★ High Not required

Concurrent TDOA
[31] [23] [22]

★★★ ★★★★★ ★★★★★ High Required

Concurrent AoA
[37]

★★ ★★★★★ ★★★★★ High Required

Virtual-TWR (V-TWR) VULoc ★★★★ ★★★★★ ★★★★ Low Not required

The general validity of our V-TWRmethod. In this paper, we implement the idea and system in DW1000,
one of the most widely used UWB transceivers available off-the-shelf today. Nevertheless, the fundamental
concept of the V-TWR method can also be used in other timestamp-based ranging techniques, e.g., WiFi FTM
protocol [40, 58]. We believe VULoc can bring gains and benefits to those ranging and positioning techniques.

8 RELATED WORKS

We summarize the current localization techniques for UWB in Tab. 1. As we see from the table, we divide the
state-of-art UWB localization techniques into four categories, namely Two-way Ranging (TWR), Time Different
of Arrival (TDOA), Angle of Arrival (AoA), and the recent concurrent UWB localization techniques including
concurrent TDOA and concurrent AoA. We compare those techniques from five aspects, i.e., accuracy, scalability,
the update rate of positions, calibration overhead, and the requirement for time synchronization.
Two-way Ranging (TWR).Most existing UWB based localization systems adopt the TWR method, which

requires multi-packet exchange between two UWB devices for ranging, as the method provides a high positioning
accuracy without time synchronization [11, 18, 27, 28, 33, 36, 41, 45, 46, 59, 70]. The two widely used TWRmethods
are single-sided two-way ranging (SS-TWR) and double-sided two-way ranging (DS-TWR), as recommended by
the IEEE 802.15.4 standard [34]. The SS-TWR method requires one trip of request-reply exchange between two
devices to calculate their range, while the DS-TWR method adds one more transmission based on the SS-TWR to
increase the ranging accuracy, yet causing message and delay overhead. SurePoint [41] further improves the
ranging accuracy by exploiting the channel diversity and requires 30 packet exchanges for one measurement.
Intuitively, the more data are exchanged, the more accurate the positioning results tend to be. Nevertheless, those
approaches requiring multiple-message exchange between the devices may incur a high communication overhead
and hinder the system’s scale. As the number of UWB devices increases, the possibility of packet conflict also
greatly increases, making it hard to locate many devices and thus causing poor scalability for localization targets.
Otherwise, it will significantly increase the latency to estimate a single location. The update rate of the TWR
method may also be undesirable due to poor scalability.
Time Difference of Arrival (TDOA). The TDOA-based UWB localization systems [43, 48, 60, 62, 63] de-

termine the position of a tag by the time difference of arrival (TDOA) between anchors. The tag only needs
to passively receive packets from anchors. The scalability and the update rate of the method are very high.
However, due to the asynchrony of the device clock, those TDOA-based UWB localization systems require a
tight time synchronization to achieve satisfactory positioning accuracy. For instance, Harmonium [43] achieves
time synchronization via wired technology to maintain good performance. The clock synchronization problem is
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still an open issue, and there is no perfect solution. Thus, the positioning accuracy of TDOA is usually lower than
that of the TWR method. We also show that the clock drift of devices can also cause a significant error in the
TDOA method, as discussed in Sec. 4.1.

Angle of Arrival (AoA). There are works [15, 29, 39, 49, 57] that try to measure the AoA of two UWB devices
and use it for localization. Yet, most those approaches are limited to simulations [29, 39, 49]. Recently, some
commercially available UWB-kits [8, 26] which can support AoA estimation have emerged. [26] proposes to
use the phase difference of arrival (PDOA) to test the AoA estimation of the DW1000 [2] kit, while ULoc [69]
further advances the technology by offering a 3D AoA estimation. Since the AoA estimation requires only one
packet from the target and needs no time synchronization, it can provide high scalability and high update rates
for localization. However, the positioning accuracy of the AoA technique is far from satisfactory for two reasons.
First, the AoA resolution is highly limited by the antennas’ number, size, and craftsmanship. Second, even a tiny
angle deviation can cause a significant error, especially for a long range. For instance, assuming the target is
in the 45◦ direction of the anchor, a deviation of 3◦ can leads to an error of 1.106𝑚 at a distance of 10 meters
(10 × tan(45◦ + 3◦) − 10 × tan(45◦)). As a result, the AoA technique is usually combined with other localization
techniques for robust applications.
Concurrent techniques. There have been recent advances in concurrent techniques [21–23, 31, 32, 37, 38, 65].

Concurrent ranging [21, 38] is built on the TDOA method but significantly shortens the time interval of packets
between anchors, and thus significantly reduces the delay of localization. Typically, concurrent ranging systems
exploit synchronous transmissions to perform ranging and extract TDOA information through the channel
impulse response (CIR) of the concurrent received messages by the tag. For example, Chorus [23] and SnapLoc [31]
present a GPS-like passive localization scheme based on concurrent ranging that supports a limitless number of
tags. Recently, Anguloc[37] proposes a concurrent-AoA scheme that estimates the AoA of concurrent packets
through the CIR. Therefore, concurrent techniques can offer a very fast update rate and high scalability of
localization targets. Yet, as we see, it comes at the expense of packet reception rate (PRR) since only one packet
may be received in one measurement. Besides, it requires a tight time synchronization for anchors and accurate
scheduling transmissions need to be designed for concurrent ranging.
In summary, as shown in Tab 1, the TWR method is superior in accuracy yet is inferior in scalability; the

TDOA method achieves extensive scalability yet an inferior accuracy requiring tight time synchronization among
anchors; the AoA method can provide the angle information and is usually combined with other techniques to
achieve better results; the concurrent techniques reduce the positioning delay significantly yet at the expense of
packet reception rate and require a tight time synchronization and accurate scheduling. In contrast with those
existing UWB localization techniques, VULoc is one of its kind to achieve both high accuracy and large scalability
with no synchronization overhead. Furthermore, to the best of our knowledge, VULoc is the first work that
proposes to leverage the anchor ranging for auto-calibration while incurring no data exchange overhead.

9 CONCLUSION AND FUTURE WORK

Though the UWB technology is a promising technique to achieve accurate localization, we find existing works are
hard to provide high accuracy for a large number of targets due to tedious synchronization and labor-intensive
calibration overhead. We thus present VULoc, a UWB-based localization system that simultaneously achieves
high accuracy and scalability with no synchronization and low calibration overhead. We implement VULoc on
commercial DW1000 hardware, and extensive experiments show that VULoc can achieve accurate localization
with a median error of 10.5 cm and 90% error of 15.7 cm, reducing the error of ATLAS (an open-source TDOA-based
work) by 57.6% while supporting an unlimited number of tags with no synchronization and no manual calibration
overhead.
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We think VULoc can be a solid step towards UWB localization for the ubiquitous Internet of Things. Yet, there
are many future works to improve VULoc’s performance. First of all, though VULoc is capable of achieving high
accuracy and supporting unlimited tags, its energy consumption is still a concern compared to other low power
techniques. We can integrate our solution with low power techniques to design. For example, we can adopt a low
power consumption approach similar to [17] for our approach. Second, VULoc designs an anchor scheduling
algorithm and estimates link status to choose anchors to minimize the NLOS effect. However, such a method fails
to work in severe NLOS environments, e.g., most anchors are blocked. We can adopt effective NLOS mitigation
techniques to further increase system robustness. Last but not least, the auto-calibration method in our solution
can also be improved, and the accuracy of UWB can further be enhanced. Yet, as we point out, the goal can only
be achieved through tedious calibration operations at present [1, 55]. We think the advance in machine learning
can give new inspirations to address this problem.
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