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Abstract—For energy conservation, a wireless sensor network
is usually designed to work in a low-duty-cycle mode, in which
a sensor node keeps active for a small percentage of time during
its working period. In applications where there are multiple
data delivery tasks with high data rates and time constraints,
low-duty-cycle working mode may cause severe transmission
congestion and data loss. In order to alleviate congestion and
reduce data loss, the tasks need to be carefully scheduled to
balance the workloads among the sensor nodes in both spatial and
temporal dimensions. This paper studies the load balancing prob-
lem, and proves it is NP-Complete in general network graphs.
Two efficient scheduling algorithms to achieve load balance are
proposed and analyzed. Furthermore, a task scheduling protocol
is designed relying on the proposed algorithms. To the best of
our knowledge, this paper is the first one to tackle multiple task
scheduling for low-duty-cycled sensor networks. The simulation
results show that the proposed algorithms greatly improve the
network performance in most scenarios.

I. INTRODUCTION

Wireless sensor networks (WSNs) have great potential to be

used in many long-term applications such as environmental

surveillance [17] [21], structure monitoring [13] [9], habitat

research [15], and etc. To bridge the gap between limited

energy supplies of the sensor nodes [6] [8] and the system

lifetime, many research studies suggest the WSNs operated

in low-duty-cycle mode [8] [7] [6]. In low-duty-cycled sensor

networks, a sensor node keeps its radio on for a small percent-

age (e.g., less than 5%) of time during each working period.

As reported in recent literatures [8] and [10], idle listening

is a major source of energy consumption that accounts for

most of the energy cost at sensor nodes. The low-duty-cycle

working mode notably reduces the energy consumption in idle

listening, thus prolonging the lifetime of a WSN. In low-duty-

cycled sensor networks, the working period of a sensor node

is divided into a number of time slots with equal length. A

sensor node chooses one time slot as its active time, and keeps

radio on to receive data only at that time slot.

The low-duty-cycled WSN extensively prolongs the network

lifetime at the expense of extremely shortened available time

period for sensors to receive data. Two inevitable problems,

however, arise with the low-duty-cycle working mode. First,

severe transmission congestion will be introduced when mul-

tiple nodes send data to the same node during its extremely

shortened active time, which causes packet loss and decreases

the network performance [19] [2]. Second, due to the trans-

mission congestion and the increased per-hop transmission

delay, a node may not acquire adequate bandwidth to forward

the data packets it has received in time. Data packets are

prone to get dropped due to buffer overflow in high data rate

applications [9] [24]. The two problems may become even

more severe when multiple tasks of data forwarding exist in

the network. The transmission schedule without careful design

may lead to highly unbalanced use of the forwarding capability

of the network in both spatial and temporal dimensions. The

unbalanced traffic burden may further intensify transmission

congestion and increase transmission delay.

In order to coordinate multiple data forwarding tasks with

time constraints, the tasks need to be carefully scheduled

so that the workloads can be balanced across the sensors

in compliance with their own working schedules. However,

very few works have focused on improving the efficiency of

multiple task scheduling in low-duty-cycled WSNs. To the best

of our knowledge, the problem, which is to find out an optimal

schedule for given data delivery requests with specified time

constraints such that the workloads are evenly distributed over

the sensor nodes, remains unsolved.

In this paper, we thoroughly investigate the multiple task

scheduling problem for low-duty-cycled WSNs, and propose

efficient algorithms to schedule the tasks for balanced use of

sensors. In summary, we (1) formulate the Load Balancing

(LB) problem, and propose a polynomial-time algorithm for

scheduling the tasks in a tree, (2) prove that the LB problem

in general network graphs is NP-Complete, and propose an

approximation algorithm with performance analysis, (3) design

a distributed task scheduling protocol for practical networks,

and (4) conduct extensive simulations to evaluate the perfor-

mances of the algorithms. The results show that the network

performance is notably improved in most scenarios by the

algorithms. As far as we know, this paper is the first one to

tackle multiple task scheduling for low-duty-cycled WSNs.

The rest of this paper is organized as follows. Section II

briefly summarizes related works. Section III introduces the

network model and gives the problem description. Section IV

proposes an algorithm that achieves the optimal schedule for

tasks in a tree. Section V further investigates the hardness

of this problem in general network graphs, and proposes
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Fig. 1. A sample low-duty-cycled network, in which T = 5, P = 2 and
D = 4. The data generated by node v0 are delivered through path v0 →

v1 → v2 → v3 resulting in time delay 4.

a heuristic algorithm. Section VI describes the design of a

distributed protocol for practical networks. In Section VII,

we present the simulation results. Section VIII concludes this

paper and suggests possible future works.

II. RELATED WORK

There are a number of works that focus on scheduling algo-

rithms in WSNs, with the goals to minimize communication

latency [14] [18], avoid collision [3] [2] [26], or achieve energy

efficiency [23] or fairness [19].

In [14], Lu et al. study how to minimize the communication

latency given that each sensor has a duty cycling requirement

of being awake for only 1/k time slots on an average. [18]

proposes a heuristic scheduling algorithm to reduce the time

delay in data aggregation applications. Gandham et al. propose

a distributed edge coloring algorithm to derive a collision-free

schedule [3]. For high data rate sensor network applications,

a novel scheduling technique called Dynamic Conflict-free

Query Scheduling (DCQS) is proposed in [2]. [26] presents

a distributed algorithm to generate a collision-free schedule

for data aggregation in WSNs. Rao et al. propose a practical

distributed algorithm to compute a time-slot based schedule

that provides end-to-end Max-Min fairness to multi-hop wire-

less networks [19]. Recently, Tan et al. explore distributed

opportunistic scheduling (DOS) with delay constraints for

throughput maximization with respect to two different types

of average delay constraints [20].

Our work differs from above existing works in that we

consider the load balancing problem and time schedules for

multiple data delivery tasks rather than the schedules for

individual links that mainly try to avoid collisions. The al-

gorithms are designed specifically for low-duty-cycled WSNs,

especially for data collection applications.

Data delivery and dissemination mechanisms in low-duty-

cycled WSNs are studied in recent works [8] [7] [6]. In [8],

Guo et al. study opportunistic flooding for low-duty-cycled

sensor networks with unreliable links. Gu et al. propose a

method for increasing duty-cycle at individual node, and a

scheme on placement of sink nodes to provide real-time guar-

antee of communication delay [7]. A dynamic data forwarding

(DSF) scheme is presented in [6] with experiments conducted

on low-duty-cycled WSNs. Compared with the works above,

this paper aims to achieve load balance among the sensor

nodes without increased duty cycles and additional sink nodes.

A number of studies have investigated routing tree construc-

tion for data gathering in WSNs [25] [11] [27]. The problem

of constructing a data gathering tree to maximize the network

lifetime is shown to be NP-Complete in [25]. Khan et al.

present a distributed algorithm that constructs an O(log n)-
approximate minimum spanning tree (MST) in a network [11].

Using real-time reinforcement learning strategies, Zhang et al.

propose an adaptive spanning tree routing mechanism [27].

III. NETWORK MODEL AND PROBLEM DESCRIPTION

A. Network Model

In this paper, a sensor network is regarded as an undirected

graph G(V,E), where V refers to the set of sensor nodes,

and E stands for the set of radio links between the nodes in

V . For energy conservation, the nodes work in low-duty-cycle

mode [8] [7] [6], in which the working period T of a node v
is divided into a number of equal-length time slots. In each

working period, v turns on its radio to receive data in only

one time slot, which is called the active time of v, denoted as

Hv . In the rest time slots, v remains dormant unless it sends

data. For simplicity, the length of a time slot is set to 1, which

is considered as the minimum time unit.

A task specifies a data delivery request from a source node

to a destination node through a given path. Consider n tasks

in the network, and each task TASKi (1 ≤ i ≤ n) is represented

by 〈vsi
, vdi

, PATHi, NODEi, Di〉, in which vsi
and vdi

are the

source node and the destination node, resp., PATHi and NODEi

refer to the edges and the nodes on the data delivery path from

vsi
to vdi

, resp., and Di is the time constraint of the task.

The data of a task can be delivered in one hop from node

u to node v at time slot j if the data has been generated by

u or u received the data at time slot i, where i ≤ j ≤ i + P
and P is called the per-hop time constraint.

A time schedule S for the tasks records the times for

the sensor nodes to receive data. Specifically, S(i, j) in the

schedule refers to the time for node vj ∈ NODEi \ {vsi
} to

receive the data of TASKi, and S(i, di) is regarded as the time

delay of TASKi. S is feasible if S(i, p) ≤ S(i, q) ≤ S(i, p)+P
∀vp → vq ∈ PATHi, and S(i, di) ≤ Di. Given a time schedule

S, the workload of node vi at time j, denoted as w(i, j),
is the total number of data received by vi at time j. For

convenience, the time schedule of TASKi can also be expressed

by vsi
→ vk1

(tk1
) → . . . → vdi

(tdi
), where tj in the brackets

is the time when vj receives data from the precedent node

along the data delivery path. Clearly, tdi
= S(i, di).

We assume that the sensor nodes are synchronized [16] and

have the same working period T , and each node knows the

active times of its neighbors in advance.

Figure 1 illustrates a low-duty-cycled sensor network with

a line topology, and a task for delivering v0’s data to v3. The

data are generated at time 1, and sent to v1, v2 and v3 at time

2, 2, 4, resp. Note that when any other data received by v0 at

time 3, they cannot be delivered to v3 in time no more than

T since there is no valid non-descending order of time within

[3, D] for the nodes in path v0 → v1 → v2 → v3.
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Fig. 2. An instance of the LB problem and an optimal schedule. (a) The
network topology and the tasks. (b) The active and dormant states of the nodes
with T = 5 and D = P = 8. (c) An optimal time schedule with maximum
workload W (S) = 2, which appears at v3 at time 3, and v6 at time 5.

B. Problem Description

The Load Balancing (LB) Problem can be described as:

given a sensor network with working period T , per-hop time

constraint P , active time Hv ∀v ∈ V , and n tasks 〈vsi
, vdi

,
PATHi, NODEi, Di〉 for 1 ≤ i ≤ n, to derive a schedule S so as to

minimize W (S), the max workload of the nodes in each time

slot. Formally, let x(i, j, k) be a 1-0 integer variable indicating

whether the data of TASKi are received by node vj at time k,

S(i, j) = k means x(i, j, k) = 1, and we have

Di
∑

k=1

x(i, j, k) = 0,∀vj 6∈ NODEi \ {vsi
} (1)

x(i, j, k) = 0,∀k ≤ D∗, (k − 1)|T + 1 6= Hvj
(2)

Di
∑

k=1

x(i, j, k) = 1,∀vj ∈ NODEi \ {vsi
} (3)

x(i, p, k) ≤
k+P
∑

l=k

x(i, q, l),∀vp → vq ∈ PATHi (4)

Let D∗ = max{Di} and w(j, k) =
∑n

i=1
x(i, j, k) for 1 ≤

i ≤ n, the goal is to minimize

W (S) = max

{

D∗

∑

k=1

w(j, k)

}

,∀vj ∈ V (5)

Equation (1) ensures that the data for each task are delivered

only by the nodes involved in the task. Equation (2) restricts

the ability of each node to receive data when it is in dormant

state. Equation (3) guarantees that the data for each task

can be sent to their destination along the path in Di time,

while Inequality (4) limits that the data for each task are

forwarded hop-by-hop with a delay no more than P . w(j, k)
in Equation (5) refers to the workload of node vj at time k.

Figure 2 depicts an instance of the LB problem, in which

part of the sensor nodes have only one time to receive data,

va vb vc

vs

(a) (b)

vb
vc

va
vc
va
vb

va

vb
va
vc

5 time slots 

10

tasks

Fig. 3. Compute W (S) for the tasks in a tree. (a) The tasks induce a tree
topology rooted at vs. (b) A task table of vs, in which the time slots available
for scheduling are shadowed. The cycles refer to the selected time slots in
an infeasible schedule (since the 8-th task cannot be selected) with threshold
k = 2 when the greedy algorithm ends. This implies that no feasible schedule
exists for W (S) ≤ 2. In fact, we can see that W (S) = 3 for this instance.

e.g., v1 and v4, while the other sensor nodes have two time

slots available for receiving data, e.g., v3 and v5. An optimal

schedule with maximum workload 2 is shown in Figure 2(c),

which can be represented as v1 → v3(3) → v5(3), v2 →
v3(8) → v5(8), v0 → v3(3) → v6(5), and v4 → v6(5).

Different time schedules result in variant maximum work-

loads. For example, if the time schedule of TASK2 changes

to v2 → v3(3) → v5(3) from the above schedule, then the

maximum workload increases to 3. Another related problem

is “whether a feasible time schedule exists such that all the

tasks can be done within their time delay constraints?”. This

problem is easy to solve by constructing a schedule in which

a node always forwards data to its next-hop neighbor in a task

as soon as possible. The answer to this question is “no” iff

such a construction fails due to no time slot available during

the construction. In the rest of the paper, we only consider the

scenarios where a feasible time schedule exists.

IV. SCHEDULING ALGORITHM FOR TASKS IN A TREE

We begin with a special case of the LB problem, in which

all the tasks have a common destination vs, and the paths

induce a directed tree rooted at vs (see Figure 3(a)), i.e., once

two paths intersect at some node v, the rest parts of the two

paths starting from v are identical. This special case is often

in accordance with real applications, e.g., data collection of all

the sensor nodes via a routing tree. We assume that P = D∗

for simplicity in this section. However, the algorithms apply

to the problem without this restriction as well.

Lemma 1. In any optimal time schedule S, the workload of

vs at some time is equal to W (S).

Proof: For contradiction, suppose that the workload of

vs at any time t (1 ≤ t ≤ D∗) is less than W (S), then there

must be a node vj and time k such that w(j, k) = W (S).
Since vs is the only destination of the tasks, the data received

by vj at time k will finally arrive at vs in p (p ≥ 1) time

slots t1, t2, . . ., tp, ti < tj∀1 ≤ i < j ≤ p. Because part of

the data received by vj at time k arrive at vs at time t1, there

is a non-descending order of active time of the nodes along

the path, varying from k to t1. Accordingly, there is a non-
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Fig. 4. Postpone the data transmissions from other nodes to node vj at time
k in a tree topology, so that the altered workload w′(j, k) is no greater than
w(s, t1), while the workloads on vs remains unchanged.

descending order of active time varying from kq to tq where

kq = k + (tq − t1) for 2 ≤ q ≤ p. This implies that any data

received by vj at time kq can be delivered to vs at time tq.

Thus, for the w(s, tq) data that will be received by vs at time

tq (2 ≤ q ≤ p), we can postpone the time for vj to receive

them from k to kq. As shown in Figure 4, this operation results

in a feasible schedule without alternating w(s, t), 1 ≤ t ≤ D∗.

Let the workload of vj be w′(j, k) after the operation, we

have w′(j, k) ≤ w(s, t1) since vs may receive data from the

nodes other than vj . Furthermore, w′(j, k) < W (S) due to

w(s, t1) < W (S). For k = 1 to D∗, we conduct the operation

if w(j, k) = W (S), and when all the operations are done, the

maximum workload of vj is less than W (S).
Next, the operations are carried out for all the nodes in a

topological order, i.e., the workload of a node u can be re-

balanced only when the workloads of all its children have

already been re-balanced. Since the topology is a tree, this

order guarantees that u’s workload cannot be alternated by the

operations for its ancestors. Hence, when this process finishes,

all the nodes except vs have a maximum workload less than

W (S), which is contradict to the assumption.

Lemma 1 suggests that if we can find a feasible schedule

that minimizes the maximum workload of vs, then this feasible

schedule is overall optimal. We design a polynomial-time

algorithm SAT (Scheduling Algorithm for Tree topology),

which (1) computes a task table of vs recording the time range

of each task available for scheduling in the data preparation

step, (2) computes an optimal redistribution of the workloads

of vs under which the maximum workload of vs is minimized

in the workload minimization step, and (3) derive a feasible

schedule for all the nodes in the schedule generation step.

The data preparation step. ∀vp → vq ∈PATHi in TASKi

(1 ≤ i ≤ n), the earliest time for vq to receive the data is

te(i, q) = min{t|t ≥ te(i, p), vq is active at time t}. For

consistency, let te(i, si) = 0, and te(i, s) can be computed.

On the other hand, the latest time for vs to receive the data is

defined as tl(i, s) = max{t|t ≤ Di, vs is active at time t}.

Suppose there are m time slots when vs is active in D∗,

indexed by 1, 2, . . . ,m, denote the indices of time te(i, s) and

tl(i, s) of TASKi as TASKi.e and TASKi.l, resp. The schedule for

TASKi at vs can be expressed as an 1×m 1-0 vector, in which

the entry in column k indicates whether the data of TASKi are

received by vs at the k-th active time of vs. TASKi has a higher

priority than TASKj if (1) TASKi.e < TASKj .e, or (2) TASKi.l <

Algorithm 1 The Greedy Algorithm

INPUT: The task table organized as a priority queue Q, and a
threshold k (1 ≤ k ≤ n).
OUTPUT: Whether a feasible schedule A exists with a maximum
workload no more than k.

1: num=0; /* the number of unscheduled tasks */
2: while Q is not empty do
3: count=0;
4: i=top(Q).e;
5: while Q is not empty, and top(Q).e==i do
6: if count< k then
7: A(top(Q).r, i)=1; /* schedule the task at time i */
8: extract top(Q) from Q;
9: count++;

10: else if i < top(Q).l then
11: top(Q).e=i + 1; /* update Q */
12: else
13: extract top(Q) from Q; /* an unscheduled task*/
14: num++;
15: if num==0 then
16: return true;
17: else
18: return false;

TASKj .l otherwise, or (3) ID(vi) < ID(vj) otherwise, where

ID(vk) means the ID of the node forwarding data to vs in

TASKk, or (4) i < j otherwise. The n vectors are sorted by the

priority in descending order, and combined into an n×m task

table. A feasible schedule must set one entry between column

TASKi.e and TASKi.l to 1, and remain the other entries as 0 for

each row i. An example is shown in Figure 3(b).

The workload minimization step. Given the task table of

vs, for row i (1 ≤ i ≤ n), the workload minimization step

needs to set one entry between column TASKi.e and TASKi.l to

1, so that the maximum sum of each column is minimized.

The key idea is a greedy algorithm that derives a feasible

schedule with a given threshold k on the sum of each column.

Given the task table organized as a priority queue Q, the

algorithm schedules no more than k tasks at time i for i = 1 to

m. Specifically, if there are no more than k tasks with earliest

time i in Q, it schedules all the tasks at i, and extract them

from Q. Otherwise, only the first k tasks are scheduled at i
and extracted, while the earliest times of the rest tasks are

altered to i + 1. If some tasks are not scheduled at the end of

the procedure, the algorithm returns false, otherwise it returns

true and a feasible schedule A at vs, in which A(i, j) = 1
records that the i-th task is scheduled at the j-th active time

of vs. The pesudo code is shown in Algorithm 1.

Algorithm 1 schedules at most n tasks, and each scheduling

requires O(n) extract and update operations of Q, each of

which consumes O(log n) time. Hence, the time complexity

of the greedy algorithm is O(n2 log n). Furthermore, this

upper bound is tight. In a worst case, TASKi.e = 1 and

TASKi.e = m (m ≥ n) for 1 ≤ i ≤ n, and k|n = 0. The

algorithm conducts n− (i−1)k extract and update operations

to schedule k tasks at the i-th time, hence the running time is
∑n/k

i=1
(n − (i − 1)k) log n = 1

2k (n2 + kn) log n.

Lemma 2. The greedy algorithm returns true if and only if

there is a feasible schedule with threshold k.
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Proof: The reason is two-fold. First, if it returns true, all

the tasks are scheduled in the derived schedule, and the sum

of each column is no more than k. Second, if it returns false,

suppose there is a feasible schedule, denoted as B, we perform

the following transformations on B.

Let us consider the first column of the task table, and
∑n

i=1
B(i, 1) ≤

∑n
i=1

A(i, 1) since the latter is the maximum

possible sum of this column in any feasible schedule. If
∑n

i=1
B(i, 1) <

∑n
i=1

A(i, 1), we can find
∑n

i=1
A(i, 1) −

∑n
i=1

B(i, 1) tasks not scheduled at time 1 in B, then alter

all their schedules to 1, so as to make the two sums equal.

If ∃p such that B(p, 1) = 1 and A(p, 1) = 0, then ∃q such

that B(q, 1) = 0 and A(q, 1) = 1, and ∃c > 1 such that

B(q, c) = 1. According to condition (2), schedule A always

chooses the first x ≤ k tasks sorted by the latest time in non-

descending order, and the latest time of task p is no less than

that of task q, hence we can set B(q, c) = 0 and B(p, c) = 1.

For load balance, we also set B(p, 1) = 0 and B(q, 1) = 1.

Repeat this procedure until no such p and q can be found, and

it is clear that A and B are identical in the first column.

Suppose
∑n

i=1
B(i, j) ≤

∑n
i=1

A(i, j) after the transfor-

mations performed on column 1 to j, the transformation is

also conducted on column j + 1. The only difference is that

B(q, j + 1) = 0 if A(q, j + 1) = 0 and A(s, j + 1) = 1 for

some s < q. Hence,
∑n

i=1
B(i, j + 1) ≤

∑n
i=1

A(i, j + 1).
We conduct this transformation for column 1 to m to obtain

a schedule C. On one hand, C is feasible since no more than k
entries are selected in each column in C, and all the tasks are

scheduled in C. On the other hand, the sum of each column

in C is no more than that in A, thus C is infeasible since

A is infeasible. Therefore, no feasible schedule exists unless

Algorithm 1 returns true.

According to Lemma 2, W (S) is the minimum threshold

k that makes the greedy algorithm return true. Hence W (S)
can be determined by executing a binary search on k in

the range from 1 to n. The workload minimization step

requires O(n log n) time to build the priority queue, and calls

Algorithm 1 in each step of the binary search, so the time

complexity of this step is O(n2 log2 n).
The schedule generation step. According to the computed

schedule of vs, this step schedules the tasks on the rest nodes.

Recall that ∀vp → vq ∈PATHi in TASKi (1 ≤ i ≤ n), the earliest

time for vq to receive the data is te(i, q) = min{t|t ≥ te(i, p)
and vq is active at time t}. Let vq (vq 6= vs) be scheduled

at time te(i, q) to receive the data of TASKi, while vs receives

the data of TASKi at its j-th active time, which is no less than

te(i, s). By this approach, we can obtain an optimal schedule.

A better approach can be employed to balance the work-

loads of v (v 6= vs). Specifically, if the times for vq to receive

the data from vp for the tasks passing vp are all determined, we

can employ an algorithm similar to the workload minimization

step to compute the schedule on vp. The two differences only

lie in the input of the greedy algorithm. First, the priority

queue Qp consists of np < n tasks, and vp → vq ∈ PATHi, ∀
TASKi ∈ Qp. Second, the latest time for vp to receive the data

of TASKi, tl(i, p), is defined as tl(i, p) = max{t|t ≤ tl(i, q)
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Fig. 5. The construction from an instance of the G3C problem to an instance
of the LBS problem. We can see the restriction components enforce the tasks
starting from a node in V1 must be scheduled at the same time slot whenever
the instance of G3C is 3-colorable.

and vp is active at time t}, and the definition of TASKi.l is

changed accordingly.

It is easy to see that ∀vp → vq ∈ PATHi, ∀ TASKi ∈ Qp, the

scheduled time of vp to receive the data of TASKi is no more

than that of vq, hence the schedule generation step outputs a

feasible optimal schedule that also balances the workloads of

the intermediate sensor nodes.

Theorem 1. Given n tasks and the induced tree with m
nodes, the SAT algorithm computes an optimal schedule in

O(mn2 log2 n) time.

Proof: According to Lemma 1 and Lemma 2, the SAT

algorithm computes an optimal schedule S with W (S) =
w(vs, t) for some 1 ≤ t ≤ D∗. As discussed above, the data

preparation step and the workload minimization step require

O(mn + n log n), and O(n2 log2 n) time, resp. Since the

schedule generation step calls Algorithm 1 once for each node

in the tree, its time complexity O(mn2 log2 n) dominates the

running time of the SAT algorithm.

V. SCHEDULING ALGORITHM FOR GENERAL CASE

In general case of the LB problem, the graph induced by

the paths of the tasks is not necessarily a tree. This section

proves that the LB problem is NP-Complete, and then provides

a heuristic algorithm with the analysis for its performance.

A. Hardness of the LB Problem

Consider a special case of the LB problem (denoted as the

LBS problem) with additional restrictions: (1) T1 = T2 =
. . . T|V | = T = 1, (2) P = 0, which implies that the nodes

in NODEi must be scheduled to receive the data of TASKi at the

same time, and (3) D1 = . . . = Dn = 3, which means that

each task needs to be scheduled within delay no more than 3.

A restriction component involves a 12-node graph and 6

tasks, as shown in Figure 5. The nodes are labeled from A to

K, and the paths of the 6 tasks are PATHA = A → G → I → L,

PATHB = B → G → J , PATHC = C → G → K, PATHD =
D → H → K, PATHE = E → H → I , and PATHF = F →



6

H → J → L. The scheduled time of the tasks are denoted

as tA, tB , tC , tD, tE , tF , resp. The restriction component is

used to enforce that the assigned time of TASKC and TASKF are

equal in a schedule with W (S) = 1, as Lemma 3 indicates.

Lemma 3. A schedule S for the six tasks exists with W (S) =
1 if and only if tA = tD, tB = tE , and tC = tF .

Proof: A schedule S exists with W (S) = 1 indicates that

(1) tA 6= tB 6= tC since NODEA ∩ NODEB ∩ NODEC = {G},

(2) tB 6= tF since NODEB ∩ NODEF = {J}, and (3) tA 6= tF
since NODEA ∩ NODEF = {L}. From the above three facts

and tA, . . . , tF ∈ {1, 2, 3}, tC = tF . Furthermore, tA 6= tE
because NODEA ∩ NODEE = {I}, hence tA = tD and tB = tE .

Conversely, if tA = tD, tB = tE , and tC = tF , let tA =
tD = 1, tB = tE = 1, and tC = tF = 3, and it is easy to see

that in each time slot, a node receives data from at most one

other node, thus the derived schedule S has W (S) = 1.

Theorem 2. The LBS problem is NP-Complete.

Proof: Given a schedule S for a LBS instance composed

of n tasks, the claim that W (S) > 1 can be verified in

polynomial time in n. Hence LBS ∈ NP. Next, we construct

a polynomial-time reduction from the Graph 3-Colorability

(G3C) problem [4] to LBS, as shown in Figure 5. G3C can

be described as: given an undirected graph G(V,E), whether

G(V,E) is 3-colorable, that is, does there exist a function

f : V → {1, 2, 3} such that f(u) 6= f(v) whenever uv ∈ E.

Let G(V,E) be an arbitrary instance of G3C, the con-

struction of the instance of LBS consists of two steps: the

construction of the graph G′(V ′, E′), and that of the tasks.

First, ∀vi ∈ V , a node also labeled as vi is added in V ′.

The set of the |V | nodes in V ′ is denoted as V1. After that,

∀vivj ∈ E, a node labeled as eij is added in V ′. The set of

the |E| nodes in V ′ is denoted as V2. ∀eij ∈ V2, two edges

vieij and vjeij vi, vj ∈ V1 are added in E′. Note that eij

and eji refers to the same node. Next, a set of nodes Vi are

added in V ′ ∀vi ∈ V and |Nvi
| > 1, where Nvi

refers to the

neighbors of vi in G. Let p = Nvi
, for vi and vi1 , vi2 , . . .,

vip
∈ Nvi

, there are p−1 nodes in Vi, denoted as ni1i2 , ni1i3 ,

. . ., ni1ip
, resp. Then in G′, ni1i2 is connected to eii1 and

eii2 , and ni1ij
is connected to ni1ij−1

and eiij
in G′ for j = 3

to p. Define the union of such Vi as V3. Finally, each node

ni1ij
∈ Vi is replaced by a restriction component Ri1ij

. The

edge that connects ni1ij−1
/eii1 and ni1ij

now connects K in

Ri1ij−1
/Rii1 and C in Ri1ij

. Similarly, the edge that connects

eiij
and ni1ij

now connects eiij
and F in Ri1ij

.

Second, let |Nvi
| tasks start from ∀vi ∈ V1. The first task

has a path vi → eii1 → (C → G → K)Ri1i2 → . . . →
(C → G → K)Ri1ip

, where (C → G → K)Ri1ij
refers to a

path inside Ri1ij
. The j-th (2 ≤ j ≤ |Nvi

|) task has a path

vi → eiij
→ (F → H → J → L)Ri1ij

. TASKA, TASKB , TASKD

and TASKE for each restriction component are reserved.

Suppose G is 3-colorable, we set the time of the tasks

starting from vi ∈ V1 as the color of vi ∈ V . As a result,

eij ∈ V2 receives the data from vi and vj in different time

slots since the colors of vi and vj are different in G. Besides,

node C and F in each restriction component receive data at

the same time. By Lemma 3, the four tasks starting from A,

B, D, E can be scheduled at a time so that each node in the

component receives data from at most one other node per time

slot. Hence a schedule S with W (S) = 1 can be obtained.

Conversely, if ∃S with W (S) = 1, by Lemma 3, the

assigned time of the tasks that starting from vi ∈ V1 must be

the same. Thus we can set the color of vi ∈ V as the assigned

time of the tasks. Since W (S) = 1, eij ∈ V2 receives the data

from vi and vj (vi, vj ∈ V1) in different time slots, hence the

colors of vi and vj in G must be different if vivj ∈ E, which

implies that G is 3-colorable.

It is easy to see that the construction takes polynomial

time in the input size of G. Because G3C is known as NP-

Complete [4], the LBS problem is NP-Complete.

B. A Heuristic Algorithm

Since the problem is NP-Hard, we present a heuristic

algorithm, named SAG (Scheduling Algorithm for General

case). The basic idea is to compute an initial schedule in which

a node always forwards data to its next-hop neighbor in each

task as soon as possible, and then postpone the time of a task

at some nodes in order to reduce current maximum workload.

As shown in Algorithm 2, the output of SAG is a time

schedule S, represented by I(i, j) for each TASKi and node

vj ∈NODEi, which indicates that the data of TASKi is received

by vj in its I(i, j)-th active time. Recall that S(i, j) refers to

the time when vj receive the data, the conversion from I(i, j)
to S(i, j) is denoted as S(i, j) = time(I(i, j)).

At first, SAG computes the minimum index I(i, j) of node

vj’s active time to receive the data of TASKi. Then the initial

workload of vj in its t-th active time is set to the number of

tasks scheduled in its t-th active time. Next, SAG continues

to find out a node vj whose workload at time k is equal to

current maximum workload, and then tries to find out TASKi

and delay δ so that the time for vj to receive the data can be

postponed to its (I(i, j) + δ)-th active time, by which w(i, j)
and W (S) may be reduced. Here two types of operations are

employed: (1) all the times of TASKi on vj and vj’s successors

in PATHi are postponed by δ. (2) all the times of TASKi on vj’s

predecessors in PATHi are postponed by δ.

The algorithm checks whether (1) time(I(i, di) + δ) ≤ Di,

i.e., the postponed time on vdi
is no more than Di, and (2)

time(I(i, j)+ δ)− time(I(i, p)) ≤ P , where vp → vj ∈ PATHi.

If so, and operation (1) is beneficial, i.e., the altered schedule

by operation (1) has a less maximum workload, then SAG

performs operation (1). Besides, if operation (1) is performed

and operation (2) is beneficial, SAG performs operation (2).

SAG terminates if no operation can be performed to reduce

W (S). Because it requires O(|V |2D∗n) time to check whether

part of a task can be postponed by δ, and an operation makes

at least one I(i, j) increased by δ ≥ 1 (1 ≤ I(i, j) ≤ D∗ for

each TASKi and vj ∈ V ), it terminates in O(|V |3D∗2n2) time.

VI. PROTOCOL DESIGN AND ANALYSIS

Based on the proposed algorithms, we design a task schedul-

ing protocol TSP for low-duty-cycled WSNs.
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Algorithm 2 The Heuristic Algorithm SAG

INPUT: n tasks TASKi (1 ≤ n) and the induced graph G(V, E).
OUTPUT: I(i, j) for each TASKi, vj ∈ V .

1: for all vj ∈ V do
2: for all TASKi do
3: I(i, j)=the earliest time for vj to receive the data;
4: compute w(j, t) at each time t;
5: while end==false do
6: compute W (S) = max{w(j, k)} ∀vj ∈ V and ∀k ≤ D∗;
7: select a node vj such that w(j, t) = W (S) for some t;
8: let k =argmin{w(j, k) = W (S)}, end=true;
9: if ∃ TASKi and δ ≥ 0 such that time(I(i, di) + δ) ≤ Di then

10: if time(I(i, j) + δ)− time(I(i, p)) ≤ P , where vp → vj ∈
PATHi then

11: if w(x, I(i, x) + δ) < W (S) − 1 for all vp’s successor
vx in PATHi then

12: end=false;
13: for all vp’s successor vx in PATHi do
14: Update(i, x, δ);
15: if w(x, I(i, x) + δ) < W (S) − 1 for all vj’s prede-

cessor vx in PATHi then
16: for all vj’s predecessor vx in PATHi do
17: Update(i, x, δ);

/* update the schedule for TASKi at node vx */
Procedure Update(i, x, δ):

1: w(x, I(i, x) + δ) + +;
2: w(x, I(i, x)) −−;
3: I(i, x)+ = δ;

A. Protocol Description

The TSP protocol consists of the following two phases: the

setup phase and the working phase.

The setup phase derives a task schedule list L for each

node u, in which the value of the i-th entry L(i) = S(i, v)
records the time when the node should forward the data of

TASKi to node v. A coordinator node (e.g., the sink) is required

to execute the proposed algorithms to compute the schedule

lists. If the coordinator has all the information of the tasks

initially, it just disseminates the derived schedule lists to the

nodes, otherwise the information of the tasks needs to be sent

to the coordinator before the computations. However, we note

that in a common case in which the sink collects the data of

the sensor nodes via a routing tree as discussed in Section IV,

the computation for the task schedule lists can be executed in

a distributed manner, and a node only needs to send its own

schedule list rather than the schedule lists of the predecessors,

so the communication cost can be reduced.

When all the nodes involved in the tasks obtain their time

schedule lists, they begin to forward data according to the

schedule lists. The behavior of a node u in the working phase

is regulated as follows. At the beginning of each time slot, by

looking up its task schedule list, u checks whether there are

data of some TASKi in its buffer which should be forwarded to

the next-hop node in PATHi at or before this time slot. If yes,

u turns its radio on and sends the data to the next-hop node.

If this transmission is successful, u removes the data from its

buffer. After that, u determines whether to keep its radio on

during this time period according to its own time schedule. If

yes, it can receive data in this time slot. When u receives the

data of TASKi, it checks whether the data should be forwarded

in the same time slot by looking up the list. If yes, u forwards

the data immediately, otherwise it stores the data in its buffer.

u drops the data if the buffer is full.

B. Practical Issues

To make the TSP protocol available for various applications,

two related practical issues must be addressed including local

time synchronization, and computation and storage overhead

of the sensors on which the protocol runs.

Local time synchronization. In Section III, we assume that

the sensor nodes work in a synchronized mode. In fact, it

is sufficient for a node to know the active time slot of its

predecessors and successors, hence global synchronization is

not a necessary requirement. To know those active time slots,

simple and low-cost local synchronization techniques [16] can

achieve an accuracy of 2.24µs with the cost of exchanging

a few bytes of packets among neighboring nodes every 15

minutes. Since a time slot is typically longer than 2000µs [7]

and the data can be transmitted at any time in the time period,

the accuracy of 2.24µs is far more than sufficient.

Computation and storage overhead. By Theorem 1, when

the task schedules are computed in a distributed manner, a

node requires O(n2 log2 n) time to compute the schedule list

on it. Besides, a node requires O(n) space to store the task

table, and the size of the schedule list is linear to the number

of tasks that pass the node. Since the memory and the internal

flash of a node is limited (e.g., 10k + 48k bytes on a TelosB

mote [1]), and the time can be represented by a 4-byte integer,

the TSP protocol can support thousands of tasks. If a node

cannot afford the space for a packet-level scheduling, k tasks

can be combined as one task, as long as the schedule list can

be stored on the node.

VII. SIMULATION EVALUATION

In order to evaluate the performance of the proposed algo-

rithms, we conduct extensive simulations on the TOSSIM [12]

simulator under variant network settings. We use network

yield [22] as the primary measure, which is calculated by

Yield =
# of data pkts received by the sink during D∗

# of data pkts sent by all nodes during D∗
(6)

Besides, the simulations record the time delays of the tasks,

the storage overflows on the sensor nodes, and the transmis-

sion losses between any two sensors. For comparison, the

simulations also use the best-effort strategy (denoted BST)

in forwarding the data of the tasks. The simulation results

reveal that there is indeed an urgent need to deploy efficient

schedules for multiple tasks with high data rates, and our

proposed algorithms improve network performance notably.

A. Simulation Setup

In the simulations, 30∼100 sensor nodes are randomly

deployed in a 100m ×100m square field with default transmis-

sion power. A time slot is set to 2 seconds, and the working

period T of each node is 20 time slots, resulting in a 5% duty-

cycled network. Initially, each node randomly selects a time

slot in [1, T ] as its active time in each working period.
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The simulations mainly focus on the case in which the tasks

induce a tree, as discussed in Section IV. The paths of the tasks

derive from a routing tree constructed by routing protocols

such as CTP [5]. For the tasks in general case, the paths are

constructed by a random walk of a probe message on the graph

with a given length. The considered parameters include (1) the

network scale N , (2) the time constraint D∗ of the tasks, (3)

the data rate R, measured by the number of packets per task,

and (4) the buffer size B on a node.

B. Impact of Network Scale

In this simulation, the number of the sensor nodes is set

to 30, 50, and 100, and each sensor except the sink has

a task of 100 packets. The time constraint of each task is

set to 100, and the buffer size on each sensor is set to 100

packets. As the network size increases, the results are shown

in Figure 6∼Figure 9. In Figure 6, we can see that the network

yield under SAT is much higher than that under BST.

The average time delay of the tasks under SAT are larger

than that under BST (Figure 7), however, both the two strate-

gies result in low delays compared with the time constraint

D∗ = 100. It turns out that SAT improves network yield at

the expense of time delay. To further investigate the cause of

network yield degrading, the simulation counts the times of

buffer overflows and transmission losses. As Figure 8 depicts,

both the buffer overflow and transmission loss increase as the

network scale increases. The white bars in Figure 8 refers to

transmission losses, and we can see that the number of packet

overflows under BST is less than that under SAT when N = 30
and N = 100, while the number of packet loss under BST is

larger than that under SAT, resulting in a worse performance.

As the network becomes larger, the average buffer usage

increases under both the two strategies (Figure 9), and there

are only marginal differences between the two strategies.

C. Impact of Data Rate

The data rate can be adjusted by altering the number of

packets per task. As the data rate increases, the network yield

inevitably decreases since the both the congestion and storage

burden increase. As illustrated in Figure 10, SAT achieves a

network yield almost as twice as BST. Figure 11 shows that

the average delay of the tasks under SAT is always larger

than that under BST. As the data rate increases from 10 to

200, both the packet loss and buffer overflow increase. BST
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has a much higher packet loss than SAT, while the buffer

overflow under SAT is slightly higher than that under BST

(Figure 12). These results suggests SAT significantly alleviates

transmission congestion in a time slot with a lower buffer

occupancy (Figure 13) with N = 30.

D. Impact of User-Assigned Parameters

In real applications, user may want to vary the size of

the buffer provided for the tasks, as well as the time delay

constraint. To investigate the impact of the two user-assigned

parameters, the simulation examines the network yield with

variant setups. The result shown in Figure 14 reveals that SAT

is more sensitive to the time delay constraint, while the time

delay has little impact on the network yield under BST. As

available buffer size increases, the network yield under SAT

improves slightly, while that under BST remains stable, and

even decreased when B = 200 (Figure 15).

E. The Performance of SAG

Finally, we test the performance of the proposed SAG

algorithm. It can be seen that the network yield is improved

by nearly 20% under SAG (Figure 16) when the size of

the network varies. Furthermore, SAG always has a better

performance than BST as the data rate varies (Figure 17).

Compared with the results shown in Figure 6, the network

yields decrease more slowly. The reason lies in the inherence

of the tasks, i.e., the data flows of the tasks are more evenly

distributed in the general case than in the tree topology,

resulting in less transmission congestions and buffer overflows.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we thoroughly investigate the multiple task

scheduling problem for low-duty-cycled sensor networks. We

accordingly formulate the Load Balancing (LB) problem,

prove its NP-Completeness, and propose corresponding al-

gorithms in achieving maximized efficiency. Based on the

proposed algorithms we design a distributed task scheduling

protocol TSP for practical networks. Extensive simulations on

TOSSIM simulator validate our protocol design. Compared

with a best-effort strategy, the TSP protocol achieves notably

improved performance in most scenarios.

The algorithms proposed in this paper mainly apply to

application scenarios with static routing and foreseeable data

rates of the tasks. We plan to extend our work to consider

more adaptive strategies applicable to dynamic routing and

data rates, as well as topological changes, such as node/link

failures. Furthermore, we will seek for better analytical results

for the general case of the problem.
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