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Abstract—We present a comprehensive delay performance
measurement and analysis in an operational large-scale urban
wireless sensor network. We build a light-weight delay measure-
ment system in such a network and present a robust method
to calculate per-packet delay. Through analysis of delay and
system metrics, we seek to answer the following fundamental
questions: what are the spatial and temporal characteristics
of delay performance in a real network? what are the most
important impacting factors and is there any practical model
to capture those factors? what are the implications to protocol
design? In this paper, we explore the important factors from the
data in presence of various metrics and randomness, and show
that the important factors are not necessarily the same with that
in Internet. Further, we propose a delay model to capture those
factors and validate it in the network. We revisit several prevalent
protocol designs such as Collection Tree Protocol, opportunistic
routing and Dynamic Switching based Forwarding, and show the
implications to protocol designs.

I. INTRODUCTION

Recent advances in Wireless Sensor Networks (WSNs) have
fostered a large number of applications, such as structural
and health monitoring WSNs [1] [2] and etc. Those WSN
applications often require Quality of Service (QoS) guarantees
to fulfill the system requirements, e.g., real-time data delivery.
Of the major factors that affect system QoS, delay is an
important one.

There are tremendous research efforts made to delay anal-
ysis and modeling in WSNs. For example, probabilistic delay
bounds are presented in [3] [4] [5] [6] by extending network
calculus. Further, stochastic delay models are proposed by
combining real-time theory and queuing theory [7] [8] [9]
or applying Discrete Markov Process [10]. There are also
some empirical network delay models [11] [12] proposed for
end-to-end delay measurements. Different from end-to-end
delay models, the single hop channel access delay models are
proposed in [13] [14] [15]. Those models and analysis assume
specific network conditions, e.g., heavy traffic and fixed for-
warding path, which are not always satisfied in real WSNs.
Moreover, those studies lack comparison and validation with
a real-world large-scale network.

There are also many research works on delay analysis
and measurement in Internet and data centers. Kompella
et al. [16] present a fine-grained latency measurement method
in presence of packet losses for Internet with a lossy difference
aggregator. This method can measure per-packet delay in In-
ternet while incurring very limited additional traffic overhead.
To measure the per-flow delay, Lee et al. [17] present a
measurement method with reference delay interpolation. This
work extends existing works to efficiently measure per-flow
delay, which is important for QoS in real applications. As the
development of data center technologies, Wilson et al. [18]

present delay analysis results in data centers, providing guide-
lines to practical data center design.

We can see that delay measurement in practical systems has
attracted many research attentions. While there are excellent
research works for WSNs, Internet and data centers, a practical
end-to-end delay performance measurement and analysis in
an operational large-scale WSN, however, is still missing.
On the other hand, considering the emerging demand of
WSN applications, it is important to understand the delay
performance in practical large-scale networks.

Delay performance measurement and analysis, in an op-
erational large-scale WSN, face non-trivial challenges. First,
different from Internet and data centers, there are read-to-
use software components in WSNs supporting per-packet
delay measurement. Delay measurement relies on network
synchronization. Traditional network synchronization intro-
duces additional overhead and may not be reliable considering
packet losses. Thus it is not always affordable to apply
network synchronization to an operational network due to
the limited node resource and large network scale. Second,
analysis of the collected information is challenging. There
are various performance metrics and a single delay change
may be accompanied by variation of multiple metrics. On
the other hand, collecting all required information from the
network incurs high network overhead. Thus the information
is usually incomplete due to resource constraints and packet
losses. Moreover, the delay itself, according to protocol design,
presents intrinsic randomness in its distribution. Efficiently and
automatically extracting useful information from collected data
becomes difficult.

In this work, we build an infrastructure for delay measure-
ment in CitySee, a large-scale WSN consisting of 1200 nodes.
The infrastructure does not rely on network synchronization
and thus not introduce additional overhead. We present basic
statistical characteristics based on the collected data. To sys-
tematically explore important impacting factors from various
parameters, we leverage Rulefit to automatically identify the
most important impacting factors, and show that the identified
important factors are different from those in Internet. Further,
we quantitatively calculate the correlation between different
impacting factors and the delay performance. Based on those
important factors, we present a practical delay model and
validate the model using the collected data. Finally, we revisit
three important protocols and show the implications to the
protocol designs.

In summary, the contributions of this paper are as follows.
• We first build a measurement infrastructure in an op-

erational large-scale wireless sensor network with lit-
tle network overhead. Based on the data collected, we



 

 

 

  Fig. 1: Deployment and sensor nodes in CitySee.

present the spatial and temporal characteristics of delay
performance.

• We present a robust method to extract per-packet delay
information. We present an automatic method based on
Rulefit [19] to identify important impacting factors to
delay from the data with randomness.

• We propose a practical model and validate it with the
collected data. We revisit three important protocols and
show the implications to those protocol designs.

The rest of the paper is organized as follows. Section II
presents the system overview and delay measurement infras-
tructure. Section III presents the data processing and distribu-
tion overview of delay. Section IV introduces the method of
identifying important factors from the data, presents a delay
model and validates it. Section VI shows the implications of
the analysis. Section VII introduces the related work. Finally,
Section VIII concludes this work.

II. SYSTEM OVERVIEW

In this section, we briefly introduce the overview of CitySee,
including the sensor nodes, network structure and network
protocols. Based on the system, we describe the delay mea-
surement infrastructure and collected data.

A. The Network
The primary goal of CitySee is to precisely measure CO2

emissions in a city-wide area. We started the project since
July, 2011. The network employs a tiered architecture with
three kinds of nodes, i.e., normal telosB nodes, CO2 nodes
and mesh nodes.

In the network, each normal sensor node reads the sensing
data, records system status, and then delivers those information
to the sink. For CO2 nodes, besides the functionalities of
normal nodes, CO2 nodes can also read the CO2 concentration.
The normal nodes and CO2 nodes are deployed in an area to
form a network and deliver their data to a sink node (normal
node) in the network.

The mesh nodes have a high bandwidth of several MB/s
and comprise the network backbone. Sink nodes of different
subnets are connected to the network backbone in order to
transfer packets from different subnets to the base station.

In CitySee, we incrementally deployed the network since
July, 2011. The network covers an area of approximately
1,000,000 square meters in the Wuxi city, China. We have
deployed about 1200 sensor nodes in total, with 1100 normal
nodes and 100 CO2 nodes. Figure 1 shows the deployment of
the network.
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Fig. 2: Measuring delay in the network.

B. Protocols

1) Low Power Listening: At MAC level, we adopt the
Low Power Listening (LPL) to save energy. In LPL, each
node periodically samples the channel for a short duration
(11ms) in each cycle. If energy is detected, the node stays
awake for another short duration (30ms) to receive packets.
Otherwise, the node turns off the radio and in the next cycle
(e.g., 500ms later) resamples the channel. To transmit a packet,
the sender continues sending packets as preambles until the
receiver wakes up. For broadcast, the preamble lasts for the
cycle duration, in order to ensure that all neighboring nodes
will wake up during the preamble time. For unicast with link
layer ACK, the sender can stop the preambles until an ACK
is received or the end of a cycle. Since a sender may begin to
send packets at any time, the time the sender needs to wait for
the receiver to wake up is randomly distributed in the cycle.
This introduces randomness to packet delay in LPL.

2) Collection Tree Protocol: Collection Tree Protocol (CT-
P) [20] is used to build the routing tree in the network to
collect data. CTP adopts the ETX metric [21], the expected
transmission count, as the path quality metric. Each node
selects a path with minimum ETX. The ETX of a link is
calculated as 1/q, where q is the packet reception ratio. The
path ETX is calculated as the sum of all link ETXs along
the path. In practice, the ETX is estimated by combining both
the control plane and the data plane traffic. To reduce control
traffic, CTP uses the Trickle timer [22] to control the beacon
rate. When a node reboots or detects a loop, the timer interval
decreases to its minimum (i.e., highest beaconing rate) in
order to quickly find a good path. The timer interval increases
exponentially to its maximum (about 8 minutes) in order to
reduce unnecessary control plane traffic when the network is
relatively stable.

C. Measurement Infrastructure

A naive approach to measuring delay in the network is to
use network synchronization. For a synchronized network, all
nodes in the network have agreed on a global time. Then
we can record the global time of packet transmission at the
source node and the global time of packet reception at the sink
node, and thus calculate the delay of the packet as the time
difference. However, commonly used network synchronization
protocols in WSNs, such as FTSP [23], incurs additional traffic
overhead into the network in order to frequently resynchronize
and update the time stamps. Recently, more efficient synchro-
nization protocols are proposed in [24] [25]. However, those
protocols have special requirements on the network scale and
network connectivity structure.



In our network, we use a light-weight approach to measure
the end-to-end packet delay without incurring synchronization
traffic. Our approach is based on the MAC layer time stamping
technique (MLT) [23]. The MAC layer time stamp can precise-
ly record the time when the packet is transmitted and received.
A packet is time stamped, when it is being transmitted (with
respect to sender’s clock), and when the packet is received
(with respect to the receiver’s clock).

Our approach measures the end-to-end delay as follows.
Figure 2 shows an example of 3 nodes from node 1 to node
3. Assume an event happens at node 1’s local time t1, we first
measure the event time to node 2’s and node 3’s local clock.
Suppose node 1 transmits a packet at t2, with the event time
t1 contained in the packet. Then the packet is received at node
2 and time stamped at t3 by MLT. Assume the propagation
time is negligible, the receiver node 2 can calculate the event
time with respect to its local clock, by substracting the time
difference t2− t1 from time t3, i.e., t3− (t2− t1). Intuitively,
it seems that the event happens at time t3 − (t2 − t1) to node
2’s clock. Similarly, node 3 can calculate the event time after
receiving a packet from node 2. Therefore, suppose a packet
is transmitted (event) at time t1 on the source node of a path.
The sink node, e.g., node 3 in Figure 2, can calculate the
transmitted time of the packet as t5 − (t4 − (t3 − (t2 − t1))),
and the receiving time as t5, both are with respect to node
3’s clock. Then the delay of the packet is calculated as t4 −
(t3 − (t2 − t1)). Hereafter, we denote the packet transmission
time to source’s clock (t1) as SourceTime of the packet, the
receiving time of the packet at the sink node (t5) as SinkTime
of the packet and the packet transmitted time translated to the
sink’s clock (t5−(t4−(t3−(t2− t1)))) as SourceTimeAtSink.
Consequently, the delay can be calculated as

delay = SinkT ime− SourceT imeAtSink. (1)

Meanwhile, the source node can be synchronized to the sink’s
clock. Assume a widely used linear clock model [23] for
sensor nodes, we have

SourceT imeAtSink = α1SourceT ime+ offset1 (2)

where α1 and offset1 are the relative drift and offset. At
time instant Tsource in the source’s clock, the corresponding
SourceTimeAtSink Tsink is calculated by

Tsink = α1Tsource + offset1. (3)

According to Eq. 2, the time different between the Source-
TimeAtSink and SourceTime is

offset2 = SourceT imeAtSink − SourceT ime
= α2SourceT ime+ β

(4)

where α2 and β are the relative drift and offset for the
SourceTimeAtSink and SourceTime.

D. Collected Data
The network collects four types of packets, denoted as C1,

C2, C3 and C4 respectively. Each node sends each type of
packet in every 10 minutes. There is a common header with
four fields for those four types, which records a common
sequence number, the SourceTime, SourceTimeAtSink and

−2

0

2

4
x 108

de
la

y 
(m

s)

0

5

10

15
x 107

de
la

y 
(m

s)

0

500

1000

1500

2000

de
la

y 
(m

s)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

1000

2000

3000

de
la

y 
(m

s)

index

Fig. 3: Delay processing.

SinkTime of the packet, respectively. The content of payload
for those four packets is as follows. C1: sensing data, including
temperature, humidity and illumination; IDs of nodes on the
path from the source to the destination. C2: IDs of neighbor-
ing nodes; RSSI, link quality and ETX to those neighbors;
path ETX values to the sink through those neighbors. C3:
accumulated counters of different events: MAC layer initial
backoffs and congestion backoffs, radio on time and etc. C4:
retransmission count and queue length at each hop along the
path. In this paper, we analyze the one week data starting from
Jul. 19, 2011.

III. DELAY OVERVIEW

In this section, we show the delay distribution overview for
all nodes in the network.

A. Data Processing

We first present a robust delay processing method for the
data. In a practical network, there are different types of errors.
We need to cope with the errors in order to calculate the
correct delay. To conquer those problems, the processing of
delay consists of four steps.

1) Calculate Delay by Eq. 1. The calculated delay is
shown in the top most figure in Figure 3. The delay
is distributed in a very large range.

2) The first type of error of delay comes from the error of
MLT. Due to packet overflow in the limited receiving
buffer and packet losses, the MLT cannot guarantee to
provide correct stamps. To address this problem, we
validate the delay values and exclude the incorrect time
stamps by the offset constraint. As in Eq. 4, we calcu-
late the offset by offset2 = SourceT imeAtSink −
SourceT ime. Assume offset2(t1) and offset2(t2)
are two offsets calculated at time t1 and t2 where t1 <
t2. For a maximum clock drift αmax, according to Eq. 4,
the offsets should satisfy |offset2(t2)−offset2(t1)| ≤
(t2 − t1)αmax. Based on this constraint, we group the
delays satisfying the offset constraint into the same
group. Since incorrect delays are randomly distributed,
we omit those groups with much less elements than other
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groups. The result is shown as the second subfigure in
Figure 3.

3) The second type of error comes from the overflow of the
time stamps. The SouceTimeAtSink provided by MLT
is a 4-byte time stamp based on a 32KHz timer. Hence
the maximum time for 0xFFFFFFFF/32 ms, i.e., about
1.5 days. To recover those delays, we investigate Eq. 1
and find the time stamp overflow causes some groups
of delay with exceptionally large values. Therefore, we
recover those delay values by subtracting the maximum
time stamp from the delay. Note that this processing
assumes most normal delays are less than the maximum
overflow time (i.e., about 1.5 days). The result is shown
in the third subfigure of Figure 3.

4) Till now, we have identified the delays for the correct
time stamps. However, there still exist many incor-
rect delays. At this step, we recover those incorrect
delays. First, for correct delays, we can obtain the
linear model of SourceT imeAtSink by calculating
α1 and offset1 according to Eq. 2. Then, for an
incorrect delay at SourceTime t2, we can first calculate
the SourceTimeAtSink by Eq. 2 and then the delay
by Eq. 1. The rationale for this method is using the
correct delays to synchronize the source and sink node,
and then calculating the delay for two synchronized
nodes. Similar to [23], the introduced error is at most
error = α(t2 − t1), where α is the relative clock drift
and t1 is the latest SourceTime for the correct delay. If
we require error ≤ δ, we only conservatively recover
delays of packets at t2 with t2 ≤ t1 + δ/α.

The final result is shown in Figure 3. From the result, we can
also find that the delay presents randomness in its distribution
due to the LPL mechanism.

B. Delay Distribution

After calculating the delay values, we extract information
from the data with randomness. First, we show the basic
characteristics of delay distribution.

1) Overall Distribution: Normally, without other impacting
factors, the maximum single hop delay is L according to the
mechanism of LPL, where L is the cycle length of LPL, e.g.,
L = 500ms in our network. For a packet of k hops, the
delay should be distributed between 0 and kL without other
impacting factors. The expected delay for such a path should
be kT/2. Figure 4 shows the overall delay distribution in one
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subnet. The x-axis is the node ID and y-axis is the delay. For
each node, We show the statistics of the delays by box plot
with the median, 25th percentile, 75th percentile, k× 500 and
the lowest delay, where k is the average hop count for this
node. We sort all the nodes with respect to the median delay.
The red dots in the figure represent delays of packets larger
than k×500. We denote those delays as large delays. Overall,
this figure presents several kinds of information. (1) The delay
distribution exhibits randomness. (2) Though the delay range
of different nodes varies, the median of the delay is relative
stable. (3) There exist many large delays for most nodes. Later
we will explain the reasons for those large delays.

2) Spatial Distribution: We further look at the spatial
distribution of delays in the network. In Figure 5, each circle
represents a sensor node and is plotted according to the
physical location of the node. In the middle area, there is
a building. The radius of each circle represents the average
delay over the measurement period and the depth of the color
represents the delay variation. The darker the color is, the
larger variation the delay has. The red node (60002) is the
sink node. We can see that nodes far away from the sink node
have larger average delays as well as delay variations. Nodes
in the right bottom area are farthest from the sink node and
have the largest delays and delay variations.

3) Overall Clock Drift: Before examining the delay details,
we also look at the clock drift of sensor nodes. To calculate
the relative clock drift, as in [23], we first calculate the offset
by Eq. 4 from the collected data. We apply robust linear fitting
for the offsets and then calculate the slope as the relative clock
drift for all nodes to sink node. Figure 6 shows the CDF of
the relative clock drift. The x-axis is the drift and y-axis is the
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CDF of nodes. More than 90% nodes have a clock drift less
than 40 ppm. This coincides with the result from [26]. The
result shows that the clock drift in the outdoor environment is
relative stable and has a limited impact on the delay.

IV. ANALYSIS OF DIFFERENT FACTORS

We have collected various parameters from the network.
There are several challenges to identify the important im-
pacting parameters to the delay performance. A single delay
change may be accompanied by variations of different param-
eters. Moreover, the randomness introduced in LPL makes it
even difficult to extract those important factors. To address
those issues, in this section, we leverage an automatic tool to
identify important impacting factors and then investigate those
important factors.

A. Important Factors

We use Rulefit [19] to find the important factors. Rulefit
is a supervised learning approach to train predictors based
on rule ensembles. Rulefit has two properties: (1) it can rank
features by their relative importance to the prediction goal,
and (2) it can provide easy-to-interpret rules (combinations
of features) for user understanding. Rulefit has been adopted
in recent works, e.g., [27], to understand different impacting
factors.

In Rulefit, each rule is a combination of one or more feature
tests, i.e., combining one or more features into simple ‘and’
tests. Let x be the feature vector and sf be a subset of the
features. Then a rule takes the form of

r(x) =
∏
f

I(xf ∈ sf ) (5)

where I(·) is an indicator function. A rule takes value one if
all the feature tests in the rule take value one. To train the
predictor, Rulefit first generates a large set of rules based on
the decision tree. Then it trains the predictor by solving the
optimization problem that minimizes the Huber loss. Finally,
Rulefit provides the relative importance of the rules and
features. The importance of the features is calculated based
on the importance of rules containing the feature. Here we
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present an overview of Rulefit approach. Interested readers
can refer to [19] for more details.

We apply Rulefit to the collected parameters and corre-
sponding delays. The ranking result of all parameters by
Rulefit is shown in Figure 7. The top five most important
factors are retransmission, hop count, queue length, congestion
backoff and temperature. By applying Rulefit, we can filter
those less important factors and then only focus on important
factors for a real network. Later, we explain the result of
Rulefit.

B. Detailed Correlation
We now investigate those important factors and examine the

relationship of those factors to the delay performance.
1) Hop Count: Figure 8 shows the delay distribution with

respect to different hop counts. Overall, packets with larger
hop count to the sink node have larger delays. More specifi-
cally, this figure shows two kinds of information. First, for hop
count k, most delays (more than 80%) are less than k × 500
ms, which coincides with the settings of LPL in our network.
Second, this figure also shows that, for each hop count, there
exist many large delays indicating other impacting factors to
the delay performance.

2) Retransmission: Analysis in hop count shows that be-
sides hop count, there exist other impacting factors to delay,
which result in large delays. Figure 9 (a) shows the average
retransmissions at each hop. We can see that retransmissions
per packet at different hops are almost equal. Though there
is more traffic for nodes near the sink, the corresponding
retransmission count for those nodes is not much higher than
other nodes. We investigate the data and find the collisions
near the sink are not severe. Note that since the sink is always
on, the retransmission count for nodes at hop 1 is much lower
than other nodes.

Figure 9 (b) shows that the delay with different retransmis-
sion counts. It can be seen that retransmission count and delay
have a similar trend. The delay increases as the retransmission
count becomes larger. Further, we quantitatively calculate the
Pearson correlation for the retransmission and delay. The Pear-
son correlation between two variables X and Y is calculated
as the covariance of the two variables divided by the product
of their standard deviations, i.e.,

pX,Y =
cov(X,Y )

σXσY
. (6)

Pearson correlation is usually used as a measure of dependence
between two variables.
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Fig. 9: Impact of retransmission to delay. (a) hop count to average retransmissions. (b) retransmission with respect to delay
distribution. (c) CDF of correlation between retransmission and delay for all nodes. (d) accuracy and balanced accuracy of
using retransmission to predict large delay.

For each node, we calculate the Pearson correlation for re-
transmission and delay. Then we show the CDF of correlations
for all nodes. As in Figure 9 (c), the x-axis is the correlation
and y-axis is the CDF of nodes. We find that most nodes have
high correlations between retransmission and delay.

Now we investigate the data and particularly look at the
large delays. For hop k, we denote the delays larger than
k × 500 as large delays and other delays as normal delays.
Meanwhile, in order to correlate those large delays to retrans-
missions, we set a packet with retransmission count larger
than 0 as a retransmission event. Then in the entire network,
we calculate that how retransmission events can predict large
delays. For a packet with retransmission event, if such a packet
has a large delay, we say the event is correlated to a large delay
and call it a true positive (TP). Otherwise, we call it a false
negative (FN). For a packet without retransmission event, if
such a packet is correlated to a normal delay, we call it a true
negative (TN). Otherwise, we call it a false positive (FP). Then
we calculate the accuracy which gives the probability that a
retransmission event can predict a large delay, i.e.,

accuracy =
TP + TN

TP + FN + FP + TN
. (7)

Figure 9 (d) shows the CDF of accuracy for all nodes. The x-
axis is the accuracy and y-axis is the CDF of nodes. The result
shows the accuracy for most nodes is very high. More than
80% nodes have a accuracy ratio higher than 60%, indicating
that retransmission event is a good predictor for large delays.

Considering an extreme case when all packets have large
delays. In such a case, even randomly selecting a large enough
subset of packets as retransmission events would lead to a
high accuracy. However, in this case, the retransmission events
cannot predict large delays. To address such a problem, as
in [28], we calculate the balanced accuracy, i.e.,

balanced accuracy =
0.5× TP
TP + FN

+
0.5× TN
TN + FP

. (8)

Figure 9 (d) shows the CDF of balanced accuracy. We can see
that for balanced accuracy, more than 70% nodes have a bal-
anced accuracy larger than 0.6, validating that retransmission
is a good predictor to large delay.

3) Queuing: We also examine the impact of queuing to the
delay performance. For each packet, at each hop along the
path to sink node, we record in the packet the queue length
when the packet arrives at each node. Figure 10 (a) shows

the average queue length for different hops. Unlike the result
for retransmission count, the average queue length varies for
different hops. Nodes near the sink have larger average queue
length. This indicates that though high traffic near the sink
does not incur packet losses and retransmissions, it results in
more congestions and thus larger queue length. Since the sink
is always on, nodes within 1 hop from sink node can quickly
drain their packets and thus the queue length is smaller.

Figure 10 (b) shows the delay with respect to the total
queue length along the path. We also find that many packets
with large queue length are correlated to large delays. We also
calculate the correlation between total queue length and delay.
Figure 10 (c) shows the CDF of correlation for all nodes. The
x-axis is the correlation and y-axis is the CDF of nodes. We
can see that, for most nodes, delay has a positive correlation
with the total queue length, but not as strong as retransmission.
In LPL, the receiver is awake with high probability after the
first packet in the queue. Thus consecutive packets may not
need to wait until the receiver wakes up. Thus the impact of
queue length to delay is relative small. We further explain the
reason in the delay model in Section V.

To examine the predictability of queue length to large delay,
similar to retransmission, we set a packet with queue length
larger than 0 as a queuing event. Then we correlate those
queuing events to large delays and calculate the accuracy
and balanced accuracy. The CDF of accuracy and balanced
accuracy are shown in Figure 10 (d). First, we can find that
on most nodes, queuing events are correlated to large delays
with a relative high probability, e.g., about 80% nodes have
an accuracy higher than 60%. For balanced accuracy, about
80% nodes have a balanced accuracy higher than 40%. In
total, we can see that queuing event is a good predictor for
large delay. Second, the correlation here is not as high as for
retransmission. This coincides with the result of Figure 10 (c).

4) Other Factors: From the result of Rulefit, we find
that environment factors, MAC backoffs (including congestion
backoff and initial backoff), and routing events (including
parent change and loop event) are less important factors to
delay in our network.

It has been shown in [26] [29] that environment factors such
as temperature and humidity affect the clock drift and link
quality. Figure 6 shows the drift of sensor nodes are relatively
small and thus its impact to packet delay is also limited.
The impact of environment on link quality has also been
studied in different works such as [29]. Link quality is indeed
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Fig. 10: Impact of queuing events to delay. (a) queue length to average retransmissions. (b) queue length with respect to delay
distribution. (c) CDF of correlation between queue length and delay for all nodes. (d) accuracy and balanced accuracy of using
queuing events to predict large delay.

related to delay performance. Such an impact is captured in
retransmissions. Thus we do not consider environment as a
direct impact factor.

The impact of MAC backoffs to delay is also extensively
studied in different works such as [13]. However, the impact
in LPL network is not as important as that in an always-on
network. In LPL implementation, preambles are transmitted
in order to wake up the receiver. Since the preambles always
last until the receiver wakes up, the backoffs of preambles do
not impact the delay. More backoffs do not increase the delay.
Besides, backoffs of unsuccessful transmissions do not impact
the delay as well. The delay for such kind of transmissions is
equal to the cycle length in LPL. Therefore, backoffs have a
relative smaller impact compared with other factors.

For routing events such as parent change and loop events,
works such as [30] have studied the impact of those parameters
on the delay performance in Internet. It has been shown
that those events may lead to a large end-to-end delay [30].
However, different from Internet, our result shows that the
impact is relatively small in WSNs. We find that there are
several reasons. First, the number of such events is relative
small. Second, nodes often switch among parents with similar
hop counts. Third, those events, such as loop events, can be
quickly recovered by the network protocol. For example, in
CTP, when a loop is detected, the beacon interval of routing
protocol is decreased to minimum in order to propagate the
information as quickly as possible, alleviating the impact of
loop event to end-to-end delay.

V. DELAY MODEL

According to the analysis of different factors, in this section,
we model the end-to-end packet delay along a path and
validate it in our network.

A. Model

We first model the packet delay for a single hop and then
we extend it to the multi-hop end-to-end delay. To derive the
model, we first describe the following parameters.
• ts: the sleep time in LPL.
• tw: the awake time of the receiver in LPL.
• tb: MAC layer backoff time, including the initial backoff

time and congestion backoff time.
• u: the duty cycle ratio of the receiver, i.e., tw

tw+ts
.

• tx: the packet modulation/demodulation time. This is
usually platform-dependent and is related to the packet
size.

• r: the number of retransmissions for a packet.
We first calculate the time for a single hop packet trans-

mission. Assume the packet is retransmitted for r times.
According to the mechanism of LPL, each unsuccessful trans-
mission will consume tw + ts time. Thus the time used for r
retransmissions is r(tw + ts). For the (r + 1)th transmission
which is successful, there are two cases in LPL:
• Case 1: if the receiver is sleeping, the sender should wait

until the receiver wakes up and then send the packet.
• Case 2: otherwise, the packet can be sent without pream-

bles to wake up the receiver.
For case 1, since the transmission can falls into any time during
the sleep time of the receiver, the delay is U(0, ts) + tb + tx,
where U(0, ts) is a random distribution between 0 and ts. For
case 2, the delay for a packet is tb+ tx. According to the duty
cycle ratio of each receiver, the probability for case 1 is 1−u
and for case 2 is u.

Consequently, the 1-hop delay in LPL is given by:

T (ts, tw, r) =

{
r(tw + ts) + tb + tx with prob. u
r(tw + ts) + U(0, ts) + tb + tx otherwise

(9)

where U(0, ts) is a uniform distribution function between 0
and ts.

Based on the 1-hop delay, we derive the delay for a multi-
hop path. A packet p is transmitted on a path consisting of n
nodes from node 1 to n. At each node, the packet is first put
into the transmission queue and then transmitted after prior
packets in the queue are transmitted. To calculate the multi-
hop delay, we first describe the following parameters.
• li: queue length at node i, i.e., the number of packets

in the transmission queue, including the packet p. The
packet needs to wait until all the prior li − 1 packets are
transmitted.

• ri,j : the number of retransmissions for the j-th packet in
the queue on node i.

The time for the first packet in the queue can be calculated
according to Eq. 9. We then calculate the time for following
packets in the queue. In LPL, the receiver may be awake after
the first packet. When r = 0, the packet in the queue is directly
sent to the receiver since the receiver is awake. Otherwise,
the packet is retransmitted which takes time tw + ts and the
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Fig. 11: Delay distribution of the model and real collected data
with respect to different hop counts.

receiver is no longer awake. Thus for packets except the first
one in the queue, the delay is given by

Tq(ts, tw, r) =

{
tb + tx r = 0

T (ts, tw, r) otherwise
(10)

Therefore, the delay for a path consisting of n nodes
(1, 2, . . . , n) is given by

D(n) =

n−1∑
i=1

T (ti+1
s , ti+1

w , ri,li ) +

n−1∑
i=1

li−1∑
j=1

Tq(t
i+1
s , ti+1

w , ri,j) (11)

where T (ti+1
s , ti+1

w , ri,li) is the single hop transmission time
for the first packet in the queue at node i, Tq(ti+1

s , ti+1
w , ri,j)

is the transmission time for the jth packet in the queue, ti+1
s

is the sleep time and ti+1
w is the awake time of node i+ 1.

B. Model Validation

We validate our model with the collected data. In CitySee
network, we have recorded the queue length on each node of
the path, i.e., li. From C2 packet, we have recorded the ETX
value, which is the expected transmission count, from each
node to its neighbors. This can be used for ri,j , for j > 1.
For each packet, we also recorded the retransmissions on each
hop. This can be calculated as ri,j , for j = 1. On each node,
by the recorded information in C3 packet, we calculate the
average duty cycle u and average backoff time tb. Using those
parameters as the input, we calculate the delay with the model.
Then we compare the result of the model with the practical
delay calculated from the packets. The result in Figure 11
shows that both the delay in the model and practical delay
increase linearly with the hop count. The model and practical
delay have very similar distribution, showing that our model
is effective to capture those important factors.

VI. IMPLICATIONS

The analysis of delay and the model can be used to direct
the protocol design in WSNs. In this section, we revisit three
prevalent protocols and discuss the implications of our analysis
and delay model to those protocols.

A. Collection Tree Protocol

We first analyze most commonly used data collection pro-
tocol CTP in WSNs. Through analysis, we find that CTP pro-
tocol, with ETX as the routing metric, may not appropriately

choose a good path. For brevity, we assume the queuing delay
on each hop is 0, i.e., li = 1 on each hop. Then we have

D(n) =

n−1∑
i=1

T (ti+1
s , ti+1

w , ri,1)

According to Eq. 9, the expected delay is

E(D(n)) = E(

n−1∑
i=1

(ri,1(tw + ts) + tb + tx)) + (1− u)E(

n−1∑
i=1

U(0, ts))

Denote ETXi as the ETX for the link from node i to i +
1. According to the definition of ETX, we have ETXi =
E(ri,1) + 1. The expected delay on the path is

E(D(n)) =

n−1∑
i=1

((ETXi − 1)(tw + ts) + tb + tx) + (1− u)(n− 1)
ts

2

= PathETX(tw + ts)− (n− 1)(tw +
1 + u

2
ts − tb − tx).

(12)

We can see that even for paths with the same path ETX,
the expected end-to-end delay can be different. In practical
settings, the awake time tw and sleep time ts are usually larger
than the backoff time tb and data transmission time tx. Thus
we have (n − 1)(tw + 1+u

2 ts − tb − tx) > 0. According to
Eq. 12, for the same path ETX, E(D(n)) decreases as the hop
count n increases. This indicates that longer paths, which are
often prohibited, may even be better than shorter ones.

Consider a simple example with two paths, the first path
consists of only one link with link ETX 2; the second path
consists of two links, each of which has a link ETX 1. In
CTP, both those two paths have path ETX value 2. CTP treats
those two paths equally and thus randomly chooses one as the
routing path (in the current implementation, the one appears
earlier in the routing table is selected). In fact, according to
the delay model, the second path is better than the first one in
terms of delay, even though it has a larger hop count. For the
first path, there are 2 transmissions in expectation including 1
retransmission. For the second path, there are 2 transmissions
in expectation without retransmissions. Intuitively, according
to the mechanism of LPL, if a packet is successful transmitted,
the expected time is L/2, where L is the cycle in LPL.
However, if a packet is retransmitted, the expected time is L
until the sender realizes the unsuccessful transmission. Hence,
the second path is better. This also explains in Figure 7
why retransmission count is more important than hop count.
Each retransmission accounts for L time, while a successful
transmission only accounts for L/2 in expectation. In the
current design, the ETX metric only counts the expectation of
transmissions and makes no difference for retransmissions and
successful transmissions. The analysis result shows the current
CTP design can be improved by incorporating the delay model.

B. Opportunistic Routing
Based on the collected data, we then examine the widely

adopted opportunistic routing techniques. In traditional rout-
ing, a sender often has one fixed forwarder to relay all the
data packets. In opportunistic routing e.g., [31], considering
the broadcast nature of wireless signal, a packet may be
opportunistically forwarded by other nodes instead of the fixed
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Fig. 12: Evaluation of opportunistic routing

forwarder. It has been shown in [32] [33] that opportunis-
tic routing can significantly improve system performance. A
problem in opportunistic routing is that the improvement is
not guaranteed to opportunistically select a forwarder, e.g., in
terms of delay. The opportunistic forwarder may even have a
much larger delay than the fixed forwarder.

We evaluate the practical performance of opportunistic
routing with real data and investigate how to improve it. For
all neighbors of each node, we calculate the delay from each
neighbor to the sink node. Since we consider opportunistic
routing, we omit the delay from the sender to the neighbors.
At the first step, for each node, we calculate the portion of
neighbors with smaller delay than the node itself, which gives
the probability that a node can benefit by opportunistically
selecting a forwarder from its neighbors. The result is shown
in Figure 12. We can see that a node can benefit with a
high probability by opportunistic routing. For more than 50%
nodes, the probability to select a better node is higher than
50%. Opportunistic routing with all neighbors may select a
forwarder with a larger delay.

Further, we investigate possible improvement based on the
collected data. For each node, we only use neighbors with
smaller hop count to sink node than itself. We calculate the
portion of nodes with smaller delay. We can see from Figure 12
that it is better to select nodes from neighbors with smaller hop
count to sink node. For more than 80% nodes, the probability
to select a node with smaller delay is larger than 95%.

C. Dynamic Switching based Forwarding

To improve the data delivery performance, in many data
forwarding applications, instead of selecting a single node as
a forwarder, a node will select a set of nodes as forwarders. For
example, Dynamic switching based forwarding (DSF) [34] is
proposed to optimize the expected end-to-end delay in WSNs
by selecting a set of forwarders. In DSF, each node searches in
its neighbors to find a optimal forwarding set with minimum
expected end-to-end delay. More specifically, a node searches
through each neighbor and calculates whether it is beneficial
to add this node into the forwarding set. This is different from
opportunistic routing. In opportunistic routing, the forwarder
is opportunistically selected. In DSF, once the forwarding set
is calculated, the sender sends packet to nodes in the set until
the packet is successfully received by one node.

In this paper, we evaluate DSF in a practical network. For
each node, we calculate its link quality qi to each neighbor i
and the delay Ti of neighbor i. According to DSF, assume the
forwarding set is F = {v1, v2, . . . , v|F |} and v1, v2, . . . , v|F |
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Fig. 13: Delay difference the practical packet delay and DSF.

are in ascending order of waking up time. Then in one cycle,
the expected delay is

D1 =

|F |∑
i=1

i−1∏
k=0

(1− qk)qiTi, (13)

where q0 = 0. If all nodes in F fail to receive packet in one
cycle, DSF takes a second round and repeatedly tries nodes in
F until the packet is successfully received by one forwarder.
If the transmission succeeds in the jth round, the delay is

Dj = (j − 1)L+D1. (14)

Accordingly, the expected delay is

E(D) =

+∞∑
j=1

pj−1
f (1− pf )Dj (15)

where pf =
∏|F |

i=1(1−qi) is the probability that transmissions
to all nodes in the forwarding set fail in one round. As
in DSF, we use dynamic programming to find F such that
argF minE(D) and calculate the corresponding delay E(D).
We compare the delay of DSF with the practical packet delay.
Figure 13 shows the delay difference of practical delay and
DSF delay, i.e. practical delay−DSF delay. First, for most
packets, the difference is larger than 0. We can see that the
practical delay for more than 75% packets is larger than the
DSF delay, indicating that using DSF is beneficial in terms of
delay performance. Meanwhile, note that the improvement for
most nodes is less than 500 ms, indicating that if a forwarder
cannot be found in one cycle, we can use other approaches
since DSF may not improve the performance.

VII. RELATED WORK

There are extensive studies of delay performance analysis
in WSNs. Those studies in WSNs can mainly be divided
into two categories. The first category is to provide delay
bounds. For example, probabilistic delay bounds are proposed
in [3] [4] [5] [6] by extending network calculus. However,
worst case delay bounds often deviate from practical delays
in WSNs. In the second category, stochastic delay models are
proposed. For example, in [7] [8] [9], different models are
proposed by combining real-time theory and queuing theory.
In those models, unreliable networks with heavy traffic are
considered. Heavy traffic does not always hold in real WSNs
and hence those models are not applicable. There are some
empirical network delay models [11] [12] proposed for end-
to-end delay measurements. A delay model based on Discrete
Markov Processing in the network is proposed in [10]. Besides



those end-to-end delay models, the single hop channel access
delay models are also analyzed in [13] [14] [15]. However,
those works proposed in WSNs are often based on assump-
tions, e.g., traffic, routing path, and not evaluated in a real
large-scale network. In this work, we are the first to propose
a light-weight delay measurement method and validate our
model in a large-scale WSN.

There are also a large number of research works in Internet
and data centers. Pucha et al. [30] show the impact of routing
events to end-to-end delay in Internet. It has been shown that
routing events such as parent change may have a large impact
on delay performance. Kompella et al. [16] present fine grain
latency measurements in presence of packet losses for internet
with a lossy difference aggregator. By leveraging this method,
delay for every packet in internet can be measured while incur-
ring very limited additional traffic overhead. To measure the
per-flow delay, Lee et al. [17] present a measurement method
with reference delay interpolation. This work further extends
existing works to efficiently measure per-flow delay. As the
development of data center technologies, Wilson et al. [18]
present delay analysis results in the data center.

VIII. CONCLUSION

We present the first comprehensive delay performance anal-
ysis in an operational large-scale urban wireless sensor net-
work. Through carefully examine system metrics, we show the
spatial and temporal characteristics of delay distribution. To
combat with the incomplete data in presence of randomness,
we leverage Rulefit to rank different parameters and find the
most important impacting factors. Accordingly, we propose a
practical delay model and validate it in a large-scale network.
We revisit commonly used protocols with real data. In the
future, we will investigate more detailed correlations between
different parameters to the delay performance.
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