
2372 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Accurate and Robust Time Reconstruction for
Deployed Sensor Networks

Wei Dong, Member, IEEE, Jie Yu, Jiliang Wang, Member, IEEE, Xuefeng Zhang, Yi Gao, Member, IEEE,
Chun Chen, Member, IEEE, and Jiajun Bu, Member, IEEE, ACM

Abstract—The notion of global time is of great importance for
many sensor network applications. Time reconstruction methods
aim to reconstruct the global time with respect to a reference clock.
To achieve microsecond accuracy, MAC-layer timestamping is re-
quired for recording packet transmission and reception times. The
timestamps, however, can be invalid due to multiple reasons, such
as imperfect system designs, wireless corruptions, or timing at-
tacks, etc. In this paper, we propose ART, an accurate and robust
time reconstruction approach to detecting invalid timestamps and
recovering the needed information. ART is much more accurate
and robust than threshold-based approach, especially in dynamic
networks with inherently varying propagation delays. We evaluate
our approach in both testbed and a real-world deployment. Re-
sults show that: 1) ART achieves a high detection accuracy with
low false-positive rate and low false-negative rate; 2) ART achieves
a high recovery accuracy of less than 2 ms on average, much more
accurate than previously reported results.
Index Terms—Reference clock, sensor networks, time recon-

struction.
I. INTRODUCTION

T HE NOTION of global time is of great importance for
many sensor network applications. Many scientific data

are useful only if the collected measurements have accurate
global timestamps [1], [2]. With the global time, it is also ap-
parent for the measurement of routing delay, which is a key
metric for many network protocols [3].
Traditionally, the global time is setup by a time synchro-

nization protocol, such as FTSP [4], TPSN [5], GTSP [6],
etc. These protocols often incur control-plane overhead since
they require exchanging timesync messages periodically. Re-
cently, Ferrari et al. propose low-power synchronous protocols,
Glossy [7] and LWB [8], which exploit constructive interfer-
ence for fast network floods. They can implicitly perform time
synchronization with a very high accuracy. However, construc-
tive interference based flooding suffers from the scalability
problem [9].

Manuscript received February 19, 2014; revised October 09, 2014; accepted
July 09, 2015; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Ed-
itor Y. Liu. Date of publication August 19, 2015; date of current version Au-
gust 16, 2016. This work was supported by the National Science Foundation of
China under Grants No. 61472360, No. 61202359, and No. 61373166; the Fun-
damental Research Funds for the Central Universities, Zhejiang Commonwealth
Project 2015C33077, and the Zhejiang Provincial Platform of IoT Technology
under Grant 2013E60005.
W. Dong, J. Yu, X. Zhang, Y. Gao, C. Chen, and J. Bu are with the Zhejiang

Provincial Key Laboratory of Service Robot, College of Computer Science,
Zhejiang University, Hangzhou 310027, China (e-mail: dongw@zju.edu.cn).
J. Wang is with the School of Software and Tsinghua National Lab for

Information Science and Technology (TNLIST), Tsinghua University, Beijing
100084, China (e-mail: jiliang@greenorbs.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2015.2456214

Rather than setting up a global time among all network
nodes, the global time can also be reconstructed offline by
instrumenting the protocol stack and analyzing the received
packets at the sink [10], [11], eliminating the need for timesync
message exchanges in the network. MAC-layer timestamping
technique [12] is typically employed in order to achieve mi-
crosecond measurement accuracy. The key idea of MAC-layer
timestamping is to record the timestamps at time instants
closest to the actual transmissions or receptions so that protocol
processing delays can be eliminated.
MAC-layer timestamping, however, can introduce errors

due to two main reasons. First, the timestamping errors happen
frequently when the traffic is bursty with low power lis-
tening (LPL) mechanisms in TinyOS. The community suspects
that the errors are mainly caused by mismatches between
the timestamps and the corresponding packets. Second, the
timestamps can be corrupted during wireless transmissions.
Even worse, those corruptions cannot be detected since the
timestamps are not protected by the CRC in the current CC2420
protocol stack in order not to introduce CRC computation
delays when embedding the timestamps into the packets before
transmissions.
For these reasons, our current work aims to propose an effec-

tive approach to processing and analyzing the collected packet
traces so that invalid timestamps can be detected and recovered.
While a better system design will certainly facilitate interpreting
the data at the higher layer, we argue that offline processing
and analysis are valuable for improving data acquisition quality.
First, it allows to clean historical artifacts in data derived from
an initial and imperfect system version. This is very valuable
since more sensor data can be utilized despite early imperfec-
tions in the realization of a sensor system [10]. Second, even a
well designed system may suffer from fundamental limits [10],
e.g., packet corruptions during wireless transmissions. Third,
data integrity validation is a valuable tool even if a system is de-
signed and/or operating correctly. Lastly, our approach is also
useful for tolerating timing attacks in sensor networks. For ex-
ample, an attacker may compromise and abuse a sensor node to
send incorrect timestamps, or an attacker may modify and fake
the timestamps, causing incorrect estimate of the timing infor-
mation [13], [14]. Our approach is robust against such timing
attacks.
Our approach tries to find out the properties valid packets

(i.e., packets with valid timestamps) have and utilize these
properties for identifying valid packets. The basic idea of our
approach is based on the fact that valid packets from the same
source node are conforming to each other considering the

1063-6692 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 03,2021 at 07:17:14 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: ACCURATE AND ROBUST TIME RECONSTRUCTION FOR DEPLOYED SENSOR NETWORKS 2373

constraint on the relative clock drift. Random errors in invalid
packets will break such a constraint with high probability, i.e.,
an invalid packet will be nonconforming to a valid/an invalid
packet with high probability. The valid packet identification
problem can thus be reduced to the maximum clique problem
that is NP-hard in a general graph. To solve this problem, we
employ a strict conformance relation, transforming the original
problem to a problem that can be solved in polynomial time.
After we have identified the valid packets, we are able to utilize
them for error recovery.
The contributions of our work are summarized as follows.
• We propose ART, an accurate and robust approach to de-
tecting and recovering invalid timestamps. Our approach
is much more accurate and robust than the threshold-based
approach, especially in dynamic networks with inherently
varying propagation delays.

• We formulate the problem of identifying valid packets as
the maximum clique problem in a graph. By utilizing the
transitive property of packet conformance, we transform
the problem to the longest path problem in a directed
acyclic graph that can be solved in polynomial time. We
prove the correctness of our algorithm.

• We evaluate ART in both testbed and a real-world deploy-
ment. Results show that: 1) ART achieves a high detection
accuracy with low false-positive rate and low false-nega-
tive rate; 2) ART achieves a high recovery accuracy of less
than 2 ms on average.

The rest of this paper is structured as follows. Section II dis-
cusses related work. Section III presents the design details
on how to reconstruct accurate global time in spite of errors,
including the packet timestamping method (Section III-A),
the error detection algorithm (Section III-B), and the error
recovery algorithm (Section III-C). Section IV introduces
the implementation. Section V shows the evaluation results.
Finally, Section VI concludes this paper.

II. RELATED WORK

Many sensor network systems have been deployed in recent
years [1], [2], [15]–[17]. The PermaSense project [1] aims to
model physical processes related to high-alphine permafrost.
The SensorScope project [15] deploys several WSN systems
from EPFL's campus to high-mountain sites. The GreenOrbs
project [17], [18] includes more than 300 nodes to monitor en-
vironmental conditions in the forest. The CitySee project [2] is
deployed in an urban area for measuring the carbon absorbance
and emission in different zones.
Many scientific data are useful only if the collected mea-

surements have accurate global timestamps. On the other hand,
many real-world deployments reported a high percentage of
packet losses, packet corruptions, and data inconsistencies [19].
In particular, it is well recognized that the TinyOS CC2420
MAC-layer timestamping mechanism suffers from bogus read-
ings when the incoming traffic is bursty with LPLmechanisms.1
While system design and implementation at the low level will

1See bug reports: Bug in CC2420 timestamp at TinyOS mailing list
(http://mail.millennium.berkeley.edu/pipermail/tinyos-help/2007-October/
028892.html); PacketTimeStamp CC2420 bug (http://docs.tinyos.net/tinywiki/
index.php/PacketTimeStamp_CC2420_bug); CC2420 and microsecond pre-
cision timestamps at TinyOS mailing list (https://www.millennium.berkeley.
edu/pipermail/tinyos-help/2010-August/047507.html).

effectively improve state-of-the-arts, a good implementation
is both time-consuming and labor-intensive [20]. On the other
hand, offline data analysis at a high level can be useful for
detecting and recovering certain errors and has the potential
to reveal the fundamental limits of a system design. It shifts
the complexity from the sensor network to the PC, resulting in
little overhead on the deployed system.
Time reconstruction can be achieved in two ways. First,

timesync protocols can be used to setup a global time across
the entire network. Second, the global time can also be re-
constructed without a timesync protocol by instrumenting
and analyzing the received packets at the sink. With timesync
protocols, each node knows the global time. Without timesync
protocols, each node does not know the global time. The global
time, however, can still be reconstructed at the sink.
Many timesync protocols, such as TPSN [5], FTSP [4], and

GTSP [6], require exchanging timesync messages periodically
in order to maintain a global time. Maintaining an accurate
and stable clock among all nodes in a deployed system is chal-
lenging considering practical issues such as instability in clock
frequency, error propagation, etc. [21], [22]. Moreover, running
an additional timesync protocol incurs additional complexity
and run-time overhead. In particular, broadcasting additional
timesync messages on top of asynchronous low-power MAC
protocols is shown to be costly [23]. Recently, Ferrari et al.
proposed Glossy, which combines flooding and time syn-
chronization by exploiting constructive interference of radio
packets. Low-Power Wireless Bus (LWB) extends Glossy
by supporting one-to-many, many-to-one, and many-to-many
traffic. It maps all traffic demands on fast network floods, and
globally schedules every flood. The use of constructive inter-
ference can be very efficient for many sensor networks. Glossy
and LWB can flood packets within a few milliseconds. Results
show that Glossy can achieve an average time synchronization
error below one microsecond. However, constructive interfer-
ence based flooding suffers the scalability problem. The packet
reception performance of intermediate nodes degrades signif-
icantly as the density or the size of the network increases [9].
Glossy is validated in networks with no more than 8 hops.
However, our approach targets for large-scale sensor networks,
e.g., GreenOrbs and CitySee with more than 20 hops.
Time reconstruction methods reconstruct the event time

at a particular node with respect to a reference clock (e.g.,
the clock of the sink node). A few research works utilize
regularities in environments to reconstruct the time. For ex-
ample, Lukac et al. [24] use microseismics for global time
reconstruction, while Gupchup et al. [25] use sunlight mea-
surements. Phoenix [26] is another recent work dealing with
offline time reconstruction. However, it requires periodically
exchanging timing information within the sensor network.
Keller et al. [10] reconstruct the temporal order and generation
time of packets by instrumenting and analyzing the received
data packets. Similar to Keller et al. [10], our work aims to re-
construct accurate packet generation time by analyzing received
packets offline. Our work has two main differences from [10].
First, our work employs MAC-layer timestamping to achieve
microsecond accuracy. Second and more importantly, we
propose detection and recovery algorithms to specifically deal
with invalid MAC-layer timestamps experienced in real-world
deployments.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 03,2021 at 07:17:14 UTC from IEEE Xplore. Restrictions apply.

2374 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Keller et al. [27] propose Multihop Network Tomography,
MNT, to reconstruct the per-packet routing path and the bounds
of the arriving times at intermediate nodes. The reconstruction
of the routing path assumes the availability of the global packet
generation time, i.e., MNT relies on the information provided
by [10]. We believe that the more accurate timestamps pro-
vided by ART can further improve MNT's reconstruction per-
formance [27]. Our previous work [11] performs measurements
and analysis on the delay performance in a deployed sensor net-
work. It focuses on analyzing factors impacting the delay perfor-
mance and the implications to protocol designs without details
on how invalid timestamps can be detected and recovered in
an accurate and robust manner. Our current work addresses the
issue on how the delay metric can be accurately reconstructed
in a real deployed network.

III. DESIGN

We assume a data collection sensor network in which all (or
a subset of) nodes collect sensing data and forward the data to
the sink node via multihop wireless. The sink node connects to
the rest of the network via low-power wireless. The sink node
can be attached to a host computer via serial connection. We
would like to reconstruct the data generation timewith respect to
the sink node. For our application, knowing the data generation
time with respect to the sink node is sufficient since we only
care about the relative time difference of the sensed events. We
note that the time can be further converted to the time of the host
computer when required. This conversion is complementary to
our work and is well solved by existing approaches [28], which
can achieve an average synchronization accuracy of less than
10 s.
One important design consideration is that the reconstruction

approach should be applicable for large-scale sensor networks
with LPL mechanisms. In the widely used TinyOS system,
LPL is the standard mechanism to achieve low duty-cycling,
which is very important to prolong the lifetime of a deployed
sensor system. CTP is one popular data collection protocol in
TinyOS. CTP can be combined with LPL to achieve low-power
operations (without application-level changes). With LPL, each
node periodically polls the channel for a short duration (e.g., 11
ms) in each cycle. If energy is detected, the node stays awake
for another short duration (defaults to 100 ms in TinyOS).
Otherwise, the node enters the sleep state and resamples the
channel in the next cycle (i.e., 500 ms later). When a node stays
awake, it can receive packets. It can also reply with ACKs if
required. To transmit a data packet, the sender first transmits
a long packetized preamble to wake up the receiver (i.e., the
parent node if CTP is employed). For unicast with link-layer
ACK, the sender can stop the transmission immediately when
an ACK is received. For broadcast, the preamble lasts for the
cycle duration.
We do not assume a specific data generation model, i.e.,

data can be generated and sent either periodically or randomly.
Data packets can follow different paths to the sink from a
specific sender (see detailed explanation in the paragraph after
Theorem 1). We do not require time synchronization among
sensor nodes.
Fig. 1 gives an overview of our approach, ART. There are

three steps. First, a packet timestamping component is installed

Fig. 1. ART overview.

on each sensor node for estimating the network sojourn time
(Section III-A). Second, ART employs a graph theoretical ap-
proach for detecting valid/invalid timestamps in the received
packets (Section III-B). Third, ART utilizes the valid times-
tamps for time reconstruction for packets with invalid times-
tamps (Section III-C).
Before describing the design details, we first introduce the

following notations:
• Packet. A received packet at the sink, , is represented by
a tuple: , where is the packet generation
time measured at the source node (in ms), is the packet
reception time measured at the sink node (in ms), and
is the estimated packet generation time with respect to the
sink's clock.

• Clock model. A local clock where de-
notes the clock drift, denotes the reference time (we use
sink's time as the reference time in this paper), and de-
notes the offset. The clock drift is bounded by .
For example, the TelosB datasheet reports a maximum drift
of 40 ppm with respect to the reference clock [29]. We set

ppm considering clock drifts of the source node
and the sink node.

• Transmission delay. We denote as the real transmission
delay that is not observable and as the measured trans-
mission delay, which satisfies

(1)
This is because the measured delay is estimated by the net-
work sojourn time that is measured using each forwarder's
local clock [see (4)]. Therefore, the real delay is bounded
by the measured delay

(2)

• Packet generation time in sink's clock (i.e., global packet
generation time). We denote as the real global packet
generation time that is not observable and as the mea-
sured global packet generation time. Clearly,
and . Combining (1), we have

(3)

A. Packet Timestamping
In this section, we present the packet timestamping mecha-

nism to reconstruct the packet generation time with respect to
the sink's clock, i.e., . For this purpose, we instrument the
data packet. In each data packet, there are two 4-B fields:

Authorized licensed use limited to: Tsinghua University. Downloaded on February 03,2021 at 07:17:14 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: ACCURATE AND ROBUST TIME RECONSTRUCTION FOR DEPLOYED SENSOR NETWORKS 2375

Fig. 2. Measurement of the global packet generation time () for a two-hop
transmission path ().

• Local packet generation time . It is the local time that the
packet is passed from the application layer to the network
layer (e.g., CTP [30]).

• MAC-layer timestamp that is accumulated hop by hop and
is used to convert the local packet generation time to the
global packet generation time with respect to the sink's
clock.

The measurement of uses MAC-layer timestamping.
During packet transmission, when a preamble of a packet is
transmitted, a start frame delimiter (SFD) interrupt will be
generated immediately. During packet reception, when the
preamble of a packet is received, an SFD interrupt will also be
generated immediately.
We assume a transmission path of (),

where is the source node and is the sink node. We explain
the measurement of based on the MAC-layer timestamping
mechanism as follows [see Fig. 2 for an example of two-hop
transmission path ()].
First, the packet generation time is passed to the radio stack

when the node is sending the packet.When the packet is actually
transmitted (i.e., the SFD interrupt is signaled), a local time-
stamp is taken and the difference of and
(i.e.,) is appended to the data packet and
transmitted over the radio.
Second, when receiving the timestamped packet at a for-

warder with timestamp , the packet reception time is
recorded as (when the SFD interrupt is signaled) in the
local clock. The packet generation time with respect to the for-
warder's local clock is inferred as . (We as-
sume the transmit SFD and the receive SFD happen at the same
time as radio propagation time over short distance is negligible.)
When the forwarded packet is actually transmitted (i.e., the
SFD interrupt is signaled), a local timestamp is taken,
and the difference of the packet generation time and
(i.e.,) is
appended to the data packet and transmitted over the radio.
Finally, when the sink node receives the packet with time-

stamp , the packet generation time with respect to the sink's
clock is inferred as .
We can see that

(4)

Let us denote as the sojourn time at : ,
as the sojourn time at : , and

as the sojourn time at : . Then
. That is, the packet generation

time with respect to the sink's clock is given by subtracting the
estimated sojourn time of a packet at from the
arrival timestamp . The transmission delay can thus be
estimated as .
We can see that using MAC-layer timestamps (i.e., record the

timestamps at the SFD interrupts) can yield accurate measure-
ment results since the sojourn time essentially captures the non-
deterministic delays at local nodes including software routines
and MAC backoffs. It is worth noting that the above descrip-
tion is also valid for networks with LPL: The packet depicted in
Fig. 2 corresponds to the first received packet after the sender
wakes up the receiver.
MAC-layer timestamps (i.e.,), however, are prone to mea-

surement errors especially when LPL is employed. The default
TinyOSCC2420 protocol stack saves the actual reception times-
tamps in a queue in the SFD interrupt before the packet is fully
received. After the SFD interrupt, the protocol stack waits until
the entire packet is received into the radio chip's FIFO buffer.
Only after the entire packet has been received, the protocol stack
starts downloading the packet to a message_t structure in the
MCU's RAM. When the download of the packet is completed
and the CRC check is passed, the corresponding timestamp is
removed from the queue and placed in the metadata of the mes-
sage_t structure. It is possible that another packet is received
into the radio chip's FIFO buffer while the MCU is downloading
the packet into RAM. The downloading procedure may be pre-
empted, causing complex interleaving executions. This can po-
tentially cause mismatch between the packet and the timestamp
corresponding to the SFD event of the packet. If there are re-
ception failures, e.g., the length byte is corrupted, or the CRC
check fails, etc., the corresponding timestamp needs to be re-
moved from the queue. If the timestamp is not at the head of the
queue, the incorrect removal will cause mismatches for all the
timestamps already in the queue.
It is also important to note that packet corruptions typically

occur in wireless networks due to signal fading and interference.
To make the situation even worse, the 4-B timestamp is not pro-
tected by the CRC in the current CC2420 protocol stack in order
not to introduce CRC computation delays when embedding the
timestamp into the packet before transmission. Thus, corrupted
timestamps cannot be detected by the CRC mechanism.
In the above cases, the estimated value of cannot be

trusted. Therefore, we need to filter out those invalid mea-
surements and design efficient algorithms to reconstruct valid
estimates of .

B. Error Detection

A simple threshold-based approach is to setup a maximum
delay threshold to cutoff invalid packets. Valid packets are
those with . The selection of is,
however, nontrivial considering varying transmission delays in
dynamic routing protocols.
We avoid the selection of by employing another approach.

Our approach tries to find out the properties valid packets have
and utilize these properties for identifying valid packets. The

Authorized licensed use limited to: Tsinghua University. Downloaded on February 03,2021 at 07:17:14 UTC from IEEE Xplore. Restrictions apply.

2376 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

basic idea of our approach is based on the fact that valid packets
from the same source node are conforming to each other in the
sense that the difference of and the difference of should be
very close considering sufficiently small clock drifts. Random
errors in invalid packets will break such a relationship with high
probability, i.e., an invalid packet will not be conforming to a
valid/an invalid packet with high probability.
In the following paragraphs, we will use subscripts to dif-

ferentiate different packets from the same source node (when
required). We use a smaller subscript to denote a packet with
earlier packet generation time, i.e., for two packets , from
the same source node, implies that . Two valid
packets from the same source node satisfy a certain constraint.
Conceptually, the difference of and the difference of should
be very close considering a sufficiently small clock drift, i.e.,

. Concretely, the following theorem de-
scribes this constraint exactly.
Theorem 1: For two valid packets and

from source node (), they satisfy
the following constraint:

(5)

where , , and .
In the Appendix, we give the formal proof for the theorem.

There are some important points we would like to make clear.
First, althoughwe use subscripts 1, 2 in Theorem 1,we do not re-
quire these packets to be consecutive in the sequence number. It
also holds true for the following definitions, theorems and corol-
laries. Second, packets and might reach the sink over dif-
ferent paths. In this case, Theorem 1 still holds true. Different
routing paths will impact the delays that are considered in (5)
by the term : the longer the traveling time the packet stays
in the network, the more probable that the sojourn time at each
node will deviate due to clock drifts, impacting the accuracy
of . We also consider the maximum clock drift specified
by the hardware: clock drift at any instant (including sudden
changes in clock drift) is supposed to keep within . There-
fore, Theorem 1 is a necessary condition for the two packets to
be valid.
Definition 1: Two packets and from source node are

conforming (denoted as) iff (5) is satisfied.
We can see that packet conformance is a necessary condition

for packet correctness. Consider an ideal condition in which all
the packets from a source node are valid and they form the set .
According to Theorem 1, any two packets in are conforming,
i.e., . With a graph representation

where represents the set of received packets from a
source node (we will use packets and vertices interchangeably),
and iff . If all packets are valid, is
a clique.
Assume a random error occurs, then the probability that an

invalid packet conforms to a valid packet is low. Consider a case
illustrated in Fig. 3. For two valid packets, must fall in the
range of where . If there
happens an abrupt change in , say now becomes

where is a constant, will move to the point

Fig. 3. Error detection using packet conformance [i.e., (5)].

. At the same time, the specified range will
increase slightly considering a small clock drift. Therefore, it is
highly probable that will move to the left of the specified
range, and the two packets will no longer conform to each other.
It means that is no longer a clique.
The probability that two invalid packets conform to each

other is also low if the errors happen randomly. The reasoning
is similar as stated above: The change in is usually much
larger than the increase of the range. Therefore, we can use
packet conformance for error detection. Specifically, it is
reasonable to consider that the valid packets will form the
maximum clique in .
Based on the above idea, a straightforward method to identify

valid packets is to find the maximum clique in . However, it
is NP-hard to find the maximum clique in a general graph [31].
The execution overhead will be prohibitively large considering
a large number of received packets.
We try to solve the valid packets detection problem (i.e., max-

imum clique problem) by redefining a graph having good
properties. Problems on certain graphs have algorithms with
polynomial execution time.
In particular, we redefine the edges in : instead of

using the conformance relation defined in Definition 1, we use
a more “strict” conformance relation defined in Definition 2,
i.e., iff .
Definition 2: Two packets and from source node are

strictly conforming (denoted as) iff

(6)

We can see that the strict conformance relation slightly
shortens the specified range by [compared to (5)]. Without
loss of generality, we consider since we can immediately
identify an invalid packet with . Therefore, we only need
to check packets having and . The relation between
conforming and strict conforming is apparent: Two strictly
conforming packets must conform; the opposite, however, does
not necessarily hold true.
In theory, using (6) for identifying valid packets, it is probable

that there will be false negatives (i.e., valid packets misidenti-
fied as invalid) since there is probability that two valid packets
conform but do not strictly conform. Such probabilities are very
small under certain conditions.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 03,2021 at 07:17:14 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: ACCURATE AND ROBUST TIME RECONSTRUCTION FOR DEPLOYED SENSOR NETWORKS 2377

If is uniformly and randomly distributed in its maximum
allowable range specified in (5), the probability that two valid
packets conform but do not strictly conform (denoted as)
can be derived as follows (see the Appendix for the derivation).
Theorem 2: If is uniformly and randomly distributed

in its maximum allowable range specified in (5), the proba-
bility that two valid packets conform but do not strictly conform
satisfies

(7)

where is the maximum delay in the network and is the
minimum transmission interval between two packets originated
from the source node.
Theorem 2 implies that our approach will be more robust in

a network with relatively low transmission rate and short prop-
agation delays. For instance, in the CitySee network with trans-
mission period of 10 min and a maximum network delay of 10 s,
the probability that two packets conform but do not strictly con-
form is smaller than 3.2%.
The reality will be evenmore optimistic since will be in a

smaller range than that specified in (5) [mostly within the range
specified in (6)] considering that the relative clock drifts along
the routing path are evenly distributed. Suppose fast clocks and
slow clocks are evenly distributed along the routing path.

will be close to no matter how long
the routing path is. This is because sojourn time errors at certain
fast/slow nodes will be compensated by other slow/fast nodes.
In other words, (1) can actually be made more stringent with a
smaller bound. It is also true for (3) and (5). Hence, most packet
pairs will reside in a range smaller than that specified in (5).
In Section V, we will show that more than 99.99% con-

forming packet pairs are strictly conforming for a deployed
sensor network.
The benefits of using the strict conformance relation in

defining the edges in is that it will make an equivalent
directed acyclic graph transitive. It is known that the maximum
clique problem in a transitive graph has polynomial-time
algorithms [32].
With Definition 2, we have the following theorem (see the

Appendix for the proof):
Theorem 3: Transitive relation: If packets and

are strictly conforming, and are strictly conforming
(), then and are strictly conforming, i.e.,

We say that the transitive relation is weak in the sense that it
holds true for a given order of packets. In other words,
and do not necessarily yield .
Corollary 1:

We define a directed acyclic graph where is
the set of packets from a source node and
iff and (i.e., a recent packet will point to
an early packet). The undirected version, , is the

Fig. 4. Graph representation using strict packet conformance [i.e., (6)]:
(a) Undirected graph in which an edge represents the two endpoints (i.e.,
packets) are strictly conforming. (b) Directed acyclic graph in which a
recent packet points to an early packet. (c) Directed acyclic graph in which the
implicit edges are removed away. For example, since the edges and

imply , so the edge does not appear in the graph.

Algorithm 1 Algorithm for constructing the directed acyclic
graph

Input: : the set of packets of a give source node
Output: : directed acyclic graph
1: procedure CONSTRUCT
2: for : do
3: for : do
4: if then
5:

6: procedure
7: // check if two pkts are strictly conforming
8: if according to (6) then
9: return TRUE
10: else
11: return FALSE

corresponding graph by turning directed edges into undirected
edges. Fig. 4(a) and (b) shows the undirected graph and the
directed graph .
In the Appendix, we prove that the nodes comprising the

longest path in the directed acyclic graph will form the max-
imum clique in the corresponding undirected graph .
Theorem 4: The nodes comprising the longest path of the

directed acyclic graph will form the maximum clique in the
corresponding undirected graph .
Therefore, we only need to find the longest path for identi-

fying valid packets. It is shown that the longest path problem in
a directed acyclic graph can be solved in polynomial time using
dynamic programming [31], [32].
Algorithm 1 shows the pseudocode for constructing the di-

rected acyclic graph. We use the adjacency list representation of
the graph: stores all earlier packets strictly conforming
to .
Algorithm 2 shows the pseudocode for finding the longest

path. The procedure returns a topological order
of vertices using depth first search. Since this algorithm requires
edges point in the opposite direction: Each node is visited only
after all its predecessors have been visited, the topological order
is obtained by reversing the visited order. For example, a valid

Authorized licensed use limited to: Tsinghua University. Downloaded on February 03,2021 at 07:17:14 UTC from IEEE Xplore. Restrictions apply.

2378 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Algorithm 2 Algorithm for identifying valid packets

Input: : directed acyclic graph
Output: : the set of valid packets
1: procedure LONGEST-PATH
2: for in do
3: ; ;
4: for in do
5: for each edge in do
6: if then
7: ;
8: ;
9: find that has the
10: for ; ; do
11: push to
12: return reverse

13: procedure
14: that will contain the sorted elements
15: with incoming edges
16: for each node in do
17:
18: procedure
19: if has not been visited yet then
20: mark as visited
21: for each node with an edge from to do
22:
23: add to
24: return reverse

topological order for Fig. 4 is (the topolog-
ical order can also be or). The
longest path algorithm visits the nodes in topological order. For
each visiting node , the algorithm checks each outgoing edge
to and records in the maximum path length seen so far.
The algorithm also uses the array to backtrace the previous
node.
The working details of Algorithm 2 can be illustrated using

the example shown in Fig. 4.
1) For , the algorithm checks .

, and
.

2) For , the algorithm checks .
, and .

3) For , the algorithm checks . and
do not change since the path from is not longer.

4) For , the algorithm checks . and
.

5) For , no actions are performed since has no
outgoing edges.

Hence, the maximum path length is , and the path
is ().
In the Appendix, we formally prove that the above algorithm

outputs the longest path in .
Theorem 5: Algorithm 2 outputs the longest path in the di-

rected acyclic graph .

The complexity of the algorithm is
where is the complexity of the topological
sort algorithm. The complexity of the algorithm can be further
reduced if we eliminate implicit edges implied by the transitive
relation. For example, Fig. 4(c) shows the directed acyclic graph
without implicit edges. However, the reduction of implicit edges
will cause additional overhead in constructing the graph. Hence,
we do not eliminate implicit edges in our implementation.

C. Error Recovery
After we have detected the set of valid packets, we are able

to recover the global packet generation time for the invalid
packets. The basic idea is simple: For each invalid packet, we
find the nearest two valid packets right before and after it. Then,
we use a linear clock model to get an estimate of .
For a valid packet, according to (3) and (2), we have

Therefore, the global packet generation time satisfies

That is

(8)

where and denote the lower and upper bounds of .
Consider a packet with invalid , we cannot get an accurate

estimate of based on . To get an estimate of , we look
for the nearest valid packets and with , and
try to utilize those two valid packets to get an estimate.
According to the clock model, we have

Therefore

Combining (8), we can get the lower and upper bounds of as
follows:

(9)

Hence, we estimate the value of as:

(10)

Algorithm 3 shows the pseudocode for recovering the field
based on (10).

Authorized licensed use limited to: Tsinghua University. Downloaded on February 03,2021 at 07:17:14 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: ACCURATE AND ROBUST TIME RECONSTRUCTION FOR DEPLOYED SENSOR NETWORKS 2379

Algorithm 3 Algorithm for recovering invalid packets

Input: : the set of all invalid packets from a single
source node
Output: : the set of invalid packet with recovered
1: procedure RECOVER
2: for do
3: Find nearest and with
4: // Now and have been found
5: Compute according to (10)

Now that we have successfully obtained an estimate of the
global packet generation time for almost all packets, we can
further derive two important system metrics:
• Packet transmission delay. The packet transmission delay
can be estimated as .

• Clock drift between two successive packets. The drift esti-
mates can be derived

and

where and denote the lower and upper bounds of the
drift. We estimate the drift as: .

There is probability that and may occasionally be invalid.
For example, if is invalid, the recovered will also be invalid.
We ensure the correctness by checking the recovered drift ,
which should satisfy . If is invalid, we can use
nearby packets for detection and estimation. We want to stress
that in practice the error probability of and is very low while
the error probability of is high, especially with low power
listening techniques.

IV. IMPLEMENTATION

We implement the packet timestamping mechanism
(Section III-A) in the CTP protocol based on TinyOS 2.1.1.
The core algorithm for detecting and recovering errors
(Sections III-B and III-C) consists of 585 lines of code in Perl.
The detection and recovery algorithm constructs a separate

graph for each source node. The running overhead of the algo-
rithm can be large for a large number of receiving packets. We
optimize the performance by dividing the receiving packets into
fixed-sized windows (in terms of number of packets) and exe-
cute the algorithm in each window to speed up the execution
time.
There is a tradeoff in determining the window size . If is

too small, the result will be inaccurate. For instance, if , all
packets will be considered valid, resulting in incorrect detection
results. On the other hand, if is too large, the running overhead
for the detection algorithm () will be large (the recovery
algorithm runs much faster since the time complexity is ,
where is the number of received packets).
We perform testbed experiments with 24 TelosB nodes (as

well as in a large-scale deployed network; see Section V), run-
ning the modified CTP protocol with a packet transmission pe-
riod of 1 min. We collect a total of 66, 168 packets, which trans-
lates to about 2700 packets from each node. We then apply two
versions of the detection algorithms: 1) parameterized detection

Fig. 5. Execution time (s) in each window of size .

Fig. 6. Total execution time (s) varied with .

Fig. 7. False positive and false negative varied with .

with window size ; 2) full detection on all received packets for
each source node (i.e., about 2700). We consider the detection
results of the full detection algorithm to be ground truth.
Fig. 5 shows the execution time for one source node in each

window with different sizes. We can see that the time over-
head is quadratic with the number of received packets in each
window. Fig. 6 shows the total execution time for one source
node using parameterized detection. We can see that a small
window size yields small execution overhead because the time
complexity becomes . Fig. 7 shows the
false positive rate (i.e., invalid packets misidentified as valid)
and false negative rate (i.e., valid packets misidentified as in-
valid) for the parameterized detection algorithm. We see that
parameterized detection with yields the same result
as the full detection algorithm while incurring a relatively small
execution overhead of 1.15 s for a single source node. In the
following evaluations, we will use a window size of 300.

V. EVALUATION
We apply ART in CitySee, a large-scale deployed sensor net-

work in urban areas. We evaluate the time reconstruction per-
formance for 764 541 packets collected from one subnet with
more than 280 nodes from July 19 to 25, 2011. In addition, we
also use our own testbed with 24 TelosB nodes (see Fig. 8) to

Authorized licensed use limited to: Tsinghua University. Downloaded on February 03,2021 at 07:17:14 UTC from IEEE Xplore. Restrictions apply.

2380 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Fig. 8. Testbed.

reveal more system insights of ART when multiple parameters
vary.
CitySee: The main applications of CitySee include mea-

suring the carbon absorbance and emissions in different zones
of a city, supporting the government's policy decision in energy
saving and emission reduction, and offering citizens with
convenient daily living services. In CitySee, each sensor node
reads the sensor data, measures and records system status,
and delivers packets to the sink with a period of 10 min.
The application uses the TinyOS LPL MAC protocol (with a
sleep interval of 500 ms) for achieving low duty-cycling, the
CTP routing protocol [30] for multihop routing, and the Drip
dissemination protocol for disseminating and configuring key
system parameters.
In this paper, we analyze data packets for a subnet of more

than 280 nodes from July 19 to 25, 2011.
Evaluation Methodology: We use the packet timestamping

mechanism to instrument the data packets by attaching two 4-B
fields, i.e., a local packet generation time and aMAC-layer time-
stamp (as described in Section III-A). The sink node addition-
ally records the packet reception time.
After collecting packets with fields specified in Section III-A,

we analyze the collected packets at the sink. First, we filter out
corrupted and duplicate packets by checking a few packet con-
tents. Second, we apply the error detection and recovery algo-
rithm to each individual node. Finally, we can get an estimation
of the global packet generation time , the packet transmission
delay , and the clock drift between two successive packets.
In the testbed experiments, we rely on external events trig-

gered by the arrival times of special probing packets (trans-
mitted with the maximum transmission power) to test the re-
construction accuracy. On reception of such a time probe, each
node writes both its hardware and logical time to the external
flash memory. At the end of the experiment, the measurement
results stored in the flash memory of the nodes are transferred to
the PC for further analysis. The accuracy can be inferred since
the logical times of one time probe correspond to the same re-
ception event.
We evaluate our approach in the following sections.

Section V-B shows the results for our detection algorithm.
We use a metric of “drift violations” to compare the quality
of our result to that obtained by a simple threshold-based
approach. Section V-C shows the robustness of our detection
and recovery algorithm by varying both the percentage of

Fig. 9. CDF of the normalized in the range specified in (5) and (6).
, .

TABLE I
DETECTION RESULTS

errors and the magnitude of the error. We examine the de-
tection accuracy in terms of false positives (i.e., the number
of invalid packets misidentified as valid) and false negatives
(i.e., the number of valid packets misidentified as invalid). We
examine the recovery algorithm in terms of the absolute error
(we know the correct value since we artificially inject errors).
Section V-D shows the corrected measurements using our
algorithms. Finally, Section V-E compares ART to traditional
time synchronization.

A. Detection Results
Before we show the detection result, we first verify that the

probability that packet pairs conform but do not strictly conform
is extremely low in our deployed system. Fig. 9 shows the CDF
of the normalized in the range [i.e.,
specified in (6)]. Using both traces from the testbed and CitySee,
we find that the fraction of packet pairs conform but do not
strictly conform only occupies less than 0.01% (the ratio of in-
valid packets, however, can be as large as 60% as observed in
Table I). Therefore, using strictly conformance for detection can
yield accurate results.
Fig. 10 gives a visual illustration on the directed acyclic

graphs for nodes 9 and 20 in the testbed experiment. Each
vertex in the graph represents a received packet. Packets (ver-
tices) are ordered such that early packets are in the inner part,

Authorized licensed use limited to: Tsinghua University. Downloaded on February 03,2021 at 07:17:14 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: ACCURATE AND ROBUST TIME RECONSTRUCTION FOR DEPLOYED SENSOR NETWORKS 2381

Fig. 10. Packet conformance graph for (a) node 9 and (b) node 20 in the testbed.
The solid and dotted lines denote packet conformance relation. The longest path
is illustrated by red solid lines.

while recent packets are in the outer part. For clear illustration,
the implicit edges are removed away. Nodes comprising the
longest path are identified as valid packets. A few isolated
packets have a poor conformance to other packets, indicating
that they are invalid with high probability. Packets from node 9
are mostly valid, while node 16 experiences much more errors.
Table I shows our detection results. In simple threshold-based

approach described in the start of Section III-B, we use
ms for the testbed and ms for CitySee, con-

sidering the duty cycle of 500 ms and maximum hop counts of
10 and 20, respectively. We believe that most valid packets shall
have delays falling in this range.
We use a metric called drift violations to compare the detec-

tion quality of different approaches. The number of drift viola-
tions is computed as follows. For a sequence of received packets
from a single source node, we count the number of times two
successive packets are not conforming according to (5). Then,
we sum up all the numbers for all nodes. Clearly, if all packets
are valid, the number of violations must be 0 [(5) is a necessary
condition for two valid packets]. On the other hand, if there exist
errors, the number of violations will be large. Hence, we can use
this metric for comparing the quality of detection result.
Table I shows that the (unfiltered) packet traces consist of

3629 and 764 541 packets, for the testbed and CitySee, respec-
tively. With the simple threshold-based approach to cutoff in-
valid packets, only 66.2% and 43.7% packets are accepted (as
valid packets). We see that there are large false positives since
our approach only accepts 55.7% and 33.7% packets.
It is obvious that there is no violation using our approach,

while the number of violations using the threshold-based ap-
proach is 24.1% and 25.7% for the testbed and CitySee, respec-
tively. Hence, our approach yields the highest detection quality.

B. Detection and Recovery Accuracy

A direct measurement on the accuracy of detection and re-
covery is challenging since we lack ground truth. We examine
the robustness of our detection and recovery algorithm by “ar-
tificially injecting” errors and varying the percentage and mag-
nitude of errors.
For a specified percentage of all identified valid packets, we

intentionally increase the value of at random. Our detection

Fig. 11. False positive rates. The experiment settings are indicated in the labels
of the -axis in the format , where is the injected error rate and
indicates the interval of the increase.

Fig. 12. Difference of the estimated global packet generation time and the
“real” global packet generation time. Experiment settings are indicated in the
-axis labels as in Fig. 11. In each experiment, the figure shows the median, the

25% percentile, the 75% percentile, the 5% percentile, and the 95% percentile.

algorithm takes thesemodified traces as inputs.Wewould like to
see if our algorithm can detect such intentionally injected errors.
We find in testbed and real deployment that real errors are

roughly uniformly distributed in a large range (see Fig. 13).
Large errors can be definitely detected by our algorithm. For
example, with packet transmission period of 10 min, there are
two consecutive packets (, ,), (,
,) where denotes the introduced error. If

ms s, will be
outside the range . Hence,
these two packets are no longer considered conforming. In order
to see the robustness of our algorithm, we intentionally keep the
increase in a small range, i.e., ms. We conduct experi-
ments under the following parameter settings. The percentages
of injected errors are selected to be 10%, 20%, 30%, 40%, 50%.
We increase by a value randomly distributed in the range of

ms. Hence, the range reflects the magnitude of the error.
The ranges are selected to be [1, 200], [20, 100], [20, 200],
[100, 200]. Intuitively, the larger the error (e.g., [100, 200]), the
easier can it be detected by our algorithm.
Fig. 11 shows the false positive rate of our algorithm (i.e., in-

valid packets misidentified as valid) for the total number of
experiments. We do not show results for the threshold-

based approach since it cannot identify errors with small in-
creases (i.e., they will be definitely accepted as valid). We can
see several facts. 1) With the same percentage of errors (e.g.,
10%), the false positive rate decreases as the error becomes
larger. This is obvious since large errors will more likely break
the drift constraint. 2) With the same magnitude of errors (e.g.,
[1, 200]), the false positive rate increases as the error percentage
increases. 3) In all the cases, the false positive rate is very low.
It is worth noting that a high false positive rate is only possible
when the increase is very small, e.g., in the range of [1, 200].
This rarely happens in practice.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 03,2021 at 07:17:14 UTC from IEEE Xplore. Restrictions apply.

2382 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Fig. 13. Delays (unfiltered) for two datasets.

Fig. 14. Recovered delays for two datasets.

We next examine the false negatives (i.e., valid packet
misidentified as invalid). A direct measure of false negative
is difficult since we lack ground-truth knowledge. We check
if there are possibilities that there are misidentified invalid
packets by examining their conformance [according to (5)]
to the identified valid packets (these valid packets are also
manually verified). If the misidentified invalid packets are
valid, they will conform to all other valid packets since (5) is
a necessary condition. We account for the number of invalid
packets having conformance to all valid packets. We find that
there are no such packets in all packet traces we examined,
indicating there are no false negatives.
To see the accuracy of our recovery algorithm, we examine

the absolute error in terms of the difference of the recovered
and the real , which is originally valid in these experiments.
Fig. 12 shows the difference for the total 18 experiments. For
each experiment, we show the median value, the 5% percentile,
the 95% percentile, the 25% percentile, and the 75% percentile.
We can see that our approach can achieve an accuracy of less
than 2 ms on average. Compared to accuracy result of 2.8 s in
previous work [10] (which utilizes a second-level timer), our
result is three orders of magnitude more accurate.

C. Reconstructed Results
We can obtain two important network metrics using the data

fields (, ,) in packets: routing delay () and
time drift between two received packets. However, without error

Fig. 15. Drifts (unfiltered) for two datasets.

Fig. 16. Recovered drifts for two datasets.

detection and recovery, there will be large fractions of invalid
timestamps as shown in Figs. 13 and 15. As is corrupted, the
measured delay and drift are invalid. Fig. 13 shows very large
delays that are impossible in our network. Fig. 15 shows very
large time drifts that far exceed the specified maximum value
in the TelosB datasheet. The above results clearly indicate the
measured results must be further processed to obtain accurate
results.
With our time reconstruction approach, we can transform the

erroneousmetrics shown in Figs. 13 and 15 into the correct ones.
Fig. 14 shows the CDF of recovered delays using our approach.
The result is consistent with our expectation: The network delay
should be on the order of seconds. The conclusion is similar
for the drifts. Fig. 16 shows the CDF of recovered drifts using
our approach. The recovered drifts fall in the expected range of

. For a more detailed analysis and discus-
sion on the measurement results, please refer to [11].

D. Comparison to Traditional Time Synchronization
We conduct experiments in a 24-node testbed to compare

ART to FTSP [4]—a traditional time synchronization protocol
for accurate time reconstruction. In the experiments, we use
the CitySee program that incorporates the ART approach. For
comparison, we add the FTSP protocol to the CitySee program
(without ART) for time reconstruction using traditional time
synchronization. The transmission power is set to 31.5 dbm
in order to simulate multihop behaviors. Each node periodically

Authorized licensed use limited to: Tsinghua University. Downloaded on February 03,2021 at 07:17:14 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: ACCURATE AND ROBUST TIME RECONSTRUCTION FOR DEPLOYED SENSOR NETWORKS 2383

Fig. 17. Comparison of ART and FTSP. (a) Transmission overhead. (b) Radio
duty cycle.

Fig. 18. Time reconstruction accuracy.

sends three packets to the sink node via multihop wireless (using
the CTP protocol) with a period of 10 s. The beaconing interval
of FTSP is also set to 10 s.
Fig. 17 shows the overhead of ART with FTSP in terms of

the number of transmissions and the radio duty cycle for an
experiment duration of 2 h. We can see that ART has a much
smaller overhead than FTSP since it does not generate addi-
tional traffic for time synchronization. Therefore, the passive
approach adopted by ART is suitable for deployed sensor net-
works for its low overhead and high accuracy.
Fig. 18 shows the accuracy with increasing hop count.We can

see that ART achieves a higher accuracy than FTSP. Each FTSP
node broadcasts timesync beacons with a fixed interval. For a
node far away from the synchronization root, the synchroniza-
tion errors amplify due to relatively large sojourn time at each
node. This problem is largely mitigated by PulseSync, which
distributes information on clock values as fast as possible [33].
We can see that PulseSync can achieve the highest accuracywith
errors less than 25 s even at hop count of 10. We think that the
main benefit of ART lies in its low overhead: Unlike FTSP and
PulseSync, it can reconstruct the global time at the sink node
without periodically exchanging control-plane messages.

VI. CONCLUSION

In this paper, we propose ART, an accurate and robust
approach for detecting and recovering invalid timestamps.
We check the conformance of two packets for identifying
valid packets. The valid packet identification problem can be
reduced to the maximum clique problem that is NP-hard in a
general graph. We thus employ a strict conformance relation,
transforming the problem to the longest path problem in a

directed acyclic graph that can be solved in polynomial time.
We formally prove the correctness of our algorithm.
We evaluate ART in both testbed and real-world deployed

systems. Evaluation results show that: 1) ART achieves a high
detection accuracy with low false positive rate and low false
negative rate; 2) ART achieves a high recovery accuracy of less
than 2 ms on average.

APPENDIX

A. Proof of Theorem 1
For two valid packets, we get the following equations ac-

cording to the clock model:

Subtracting the above two equations yields

(11)
Considering the drift bound, we have

(12)

However, we only have the estimated values of . Therefore,
we need to further derive the relation between and .
According to (3), we have

Subtracting the above two equations yields

(13)

where .
Combining (13) with (12), we have

(14)

Combining (13) and (2), we have:

Hence

Combining (12), we have

Hence, the theorem holds.

B. Proof of Theorem 2
The probability that two valid packets conform but do not

strictly conform can be calculated by observing the corre-
sponding ranges (see Fig. 3), i.e.,

(15)

Authorized licensed use limited to: Tsinghua University. Downloaded on February 03,2021 at 07:17:14 UTC from IEEE Xplore. Restrictions apply.

2384 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

We can see from (14) that if two packets are valid, can be
as small as where denotes the real
network delay (as opposed to where
is the observed network delay). Since
where is the maximum network delay, we can get

(16)

C. Proof of Theorem 3
Since , from the definition, we have

Adding these two equations yields

By the definition, . Therefore, the theorem holds.

D. Proof of Theorem 4
We first prove that the nodes comprising the longest path in
form a clique in . Assume the path is ,

. It is easy to see that for any two packets in the path,
and , according to the transitive relation
given in Corollary 1. Therefore, the nodes in the longest path
form a clique in .
Next, we prove that the resulting clique is maximum. We

show the correctness by contradiction. Assume there exists a
maximum clique with where is the clique
formed by nodes comprising the longest path. We order the ver-
tices in by the corresponding local packet generation times.
There must be a path from the first vertex in to the last vertex
in . Therefore, there exists another path with length larger
than . This contradicts the assumption is the longest path
length. Hence, the theorem holds.

E. Proof of Theorem 5
Assume the topological order of the graph is .We

prove the theorem by induction.
For , it is easy to see that the longest path length

will be 0 since it has no incoming edges. We assume for
, stores the longest path length.We will

prove that for , also stores the longest path length. This
is true because the algorithm sets ,
where is a predecessor of in the topo-
logical order. Since is the longest path length, is
also the longest path length.

REFERENCES
[1] A. Hasler, I. Talzi, C. Tschudin, and S. Gruber, “Wireless sensor net-

works in permafrost research—Concept, requirements, implementa-
tion and challenges,” in Proc. 9th Int. Conf. Permafrost, 2008, pp.
669–674.

[2] X. Mao, X. Miao, Y. He, X.-Y. Li, and Y. Liu, “CitySee: Urban
monitoring with sensors,” in Proc. IEEE INFOCOM, 2012, pp.

1611–1619.
[3] Y. Wang, M. C. Vuran, and S. Goddard, “Cross-layer analysis of the

end-to-end delay distribution in wireless sensor networks,” IEEE/ACM
Trans. Netw., vol. 20, no. 1, pp. 305–318, Feb. 2012.

[4] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, “The flooding time
synchronization protocol,” in Proc. ACM SenSys, 2004, pp. 39–49.

[5] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” in Proc. ACM SenSys, 2003, pp. 138–149.

[6] P. Sommer and R. Wattenhofer, “Gradient clock synchronization in
wireless sensor networks,” in Proc. ACM/IEEE IPSN, 2009, pp. 37–48.

[7] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with Glossy,” in Proc. ACM/IEEE
IPSN, 2011, pp. 73–84.

[8] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power
wireless bus,” in Proc. ACM SenSys, 2012, pp. 1–14.

[9] Y. Wang, Y. He, X. Mao, Y. Liu, and X. Li, “Exploiting constructive
interference for scalable flooding in wireless networks,” IEEE/ACM
Trans. Netw., vol. 21, no. 6, pp. 1880–1889, Dec. 2013.

[10] M. Keller, L. Thiele, and J. Beutel, “Reconstruction of the correct tem-
poral order of sensor network data,” in Proc. IPSN, 2011, pp. 282–293.

[11] J. Wang, W. Dong, Z. Cao, and Y. Liu, “On the delay performance
analysis in a large scale wireless sensor network,” in Proc. IEEE RTSS,
2012, pp. 305–314.

[12] B. Kusy et al., “Elapsed time on arrival: A simple and versatile primi-
tive for canonical time synchronisation services,” Int. J. Ad Hoc Ubiq-
uitous Comput., vol. 1, no. 4, pp. 239–251, 2006.

[13] X. Hu, T. Park, and K. G. Shin, “Attack-tolerant time-synchroniza-
tion in wireless sensor networks,” in Proc. IEEE INFOCOM, 2008,
pp. 448–456.

[14] J. He, J. Chen, P. Cheng, and X. Cao, “Secure time synchronization
in wireless sensor networks: A maximum consensus-based approach,”
IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 4, pp. 1055–1065, Apr.
2014.

[15] G. Barrenetxea et al., “SensorScope: Out-of-the-Box environmental
monitoring,” in Proc. ACM/IEEE IPSN, 2008, pp. 332–343.

[16] M. Ceriotti et al., “Is there light at the ends of the tunnel? Wireless
sensor networks for adaptive lighting in road tunnels,” in Proc. ACM/
IEEE IPSN, 2011, pp. 187–198.

[17] Y. Liu et al., “Does wireless sensor network scale? A measurement
study on GreenOrbs,” in Proc. IEEE INFOCOM, 2011, pp. 873–881.

[18] L. Mo et al., “Canopy closure estimates with GreenOrbs: Sustainable
sensing in the forest,” in Proc. ACM SenSys, 2009, pp. 99–112.

[19] W. Dong, Y. Liu, Y. He, and T. Zhu, “Measurement and analysis on
the packet delivery performance in a large scale sensor network,” in
Proc. IEEE INFOCOM, 2013, pp. 2679–2687.

[20] P. Levis, “Experiences from a decade of TinyOS development,” in
Proc. USENIX OSDI, 2012, pp. 207–220.

[21] T. Schmid, Z. Charbiwala, Z. Anagnostopoulou, M. B. Srivastava, and
P. Dutta, “A case against routing-integrated time synchronization,” in
Proc. ACM SenSys, 2010, pp. 267–280.

[22] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh, “Fi-
delity and yield in a volcano monitoring sensor networks,” in Proc.
USENIX OSDI, 2006, pp. 381–396.

[23] D. Puccinelli, M. Zuniga, S. Giordano, and P. J. Marron, “Broadcast-
free collection protocol,” in Proc. ACM SenSys, 2012, pp. 29–42.

[24] M. Lukac, P. Davis, R. Clayton, and D. Estrin, “Recovering temporal
integrity with data driven time synchronization,” in Proc. ACM/IEEE
IPSN, 2009, pp. 61–72.

[25] J. Gupchup, R. Musăloiu-E, A. Szalay, and A. Terzis, “Sundial: Using
sunlight to reconstruct global timestamps,” in Proc. EWSN, 2009, pp.
183–198.

[26] J. Gupchup, D. Carlson, R. Musaloiu-Elefteri, A. S. Szalay, and A.
Terzis, “Phoenix: An epidemic approach to time reconstruction,” in
Proc. EWSN, 2010, pp. 17–32.

[27] M. Keller, J. Beutel, and L. Thiele, “How was your journey? uncov-
ering routing dynamics in deployed sensor networks with multi-hop
network tomography,” in Proc. ACM SenSys, 2012, pp. 15–28.

[28] I. Amundson, B. Kusy, P. Volgyesi, X. Koutsoukos, and A. Ledeczi,
“Time synchronization in heterogeneous sensor networks,” in Proc.
IEEE DCOSS, 2008, pp. 17–31.

[29] T. Hao, R. Zhou, G. Xing, and M. Mutka, “WizSync: Exploiting Wi-Fi
infrastructure for clock synchronization in wireless sensor networks,”
in Proc. IEEE RTSS, 2011, pp. 149–158.

[30] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collec-
tion tree protocol,” in Proc. ACM SenSys, 2009, pp. 1–14.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 03,2021 at 07:17:14 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: ACCURATE AND ROBUST TIME RECONSTRUCTION FOR DEPLOYED SENSOR NETWORKS 2385

[31] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness Bell Telephone Laboratories, Inc.,
1979.

[32] S. Even, A. Pnueli, and A. Lempel, “Permutation graphs and transitive
graphs,” J. ACM, vol. 19, no. 3, pp. 400–410, Jul. 1972.

[33] C. Lenzen, P. Sommer, and R. Wattenhofer, “Pulsesync: An effcient
and scalable clock synchronization protocol,” IEEE/ACM Trans.
Netw., vol. 23, no. 3, pp. 717–727, Jun. 2015.

Wei Dong (S’08–M’11) received the B.S. and
Ph.D. degrees in computer science from Zhejiang
University, Hangzhou, China, in 2005 and 2011,
respectively.
He is currently an Associate Professor with the

College of Computer Science, Zhejiang University.
His research interests include network measure-
ment, wireless and mobile computing, and sensor
networks.

Jie Yu received the B.Eng. degree in software engi-
neering from Shandong University, Jinan, China, in
2013.
He is currently a graduate student with Zhejiang

University, Hangzhou, China. His research interests
include network protocol design and wireless sensor
networks.

JiliangWang (S’09–M’12) received the B.E. degree
in computer science and technology from the Uni-
versity of Science and Technology of China, Hefei,
China, in 2007, and the Ph.D. degree in computer sci-
ence and engineering from Hong Kong University of
Science and Technology, Hong Kong, in 2011.
He is currently an Assistant Professor with the

School of Software and TNLIST, Tsinghua Univer-
sity, Beijing, China. His research interests include
sensor and wireless networks, network measurement,
and pervasive computing.

Xuefeng Zhang received the B.S. degree from
Northeastern University, Shenyang, China, in 2011,
and the Master’s degree from Zhejiang University,
Hangzhou, China, in 2014, both in computer science.
His research interests include sensor network pro-

tocol and wireless sensor network.
Mr. Zhang is a student member of CCF.

YiGao (S’09–M’15) received the B.S. degree in soft-
ware engineering and Ph.D. degree in computer sci-
ence from Zhejiang University, Hangzhou, China, in
2009 and 2014, respectively.
He is currently a Research Assistant Professor

with Zhejiang University. From 2008 to 2009,
he worked with the Information System College,
Singapore Management University, Singapore, as
an exchange student. From 2011 to 2012, he worked
with McGill University, Montreal, QC, Canada, as a
joint training research student. His research interests

include protocols design and measurement in sensor networks.

Chun Chen (M’13) received the Bachelor of Math-
ematics degree from Xiamen University, Xiamen,
China, in 1981, and the M.S. and Ph.D. degrees
in computer science from Zhejiang University,
Hangzhou, China, in 1984 and 1990, respectively.
He is a Professor with the College of Computer

Science and Director of the Institute of Computer
Software, Zhejiang University. His research inter-
ests include embedded system, image processing,
computer vision, and CAD/CAM.

Jiajun Bu (M’06) received the B.S. and Ph.D. de-
grees in computer science from Zhejiang University,
Hangzhou, China, in 1995 and 2000, respectively.
He is a Professor with the College of Computer

Science and the Deputy Dean of the School of
Software Technology, Zhejiang University. His
research interests include embedded system, mobile
multimedia, and data mining.
Prof. Bu is a member of the Association for Com-

puting Machinery (ACM).

Authorized licensed use limited to: Tsinghua University. Downloaded on February 03,2021 at 07:17:14 UTC from IEEE Xplore. Restrictions apply.

