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Abstract—Delay is an important metric to understand and im-
prove system performance. While existing approaches focus on ag-
gregated delay statistics in pre-programmed granularity and pro-
vide results such as average and deviation, those approaches may
not provide fine-grained delaymeasurement and thusmaymiss im-
portant delay characteristics. For example, delay anomaly, which
is a critical system performance indicator, may not be captured
by coarse-grained approaches. We propose a new measurement
structure design called order preserving aggregator (OPA). Based
on OPA, we can efficiently encode and recover the ordering and
loss information by exploiting inherent data characteristics. We
then propose a two-layer design to convey both ordering and time
stamp, and efficiently derive per-packet delay/loss measurement.
We evaluate our approach both analytically and experimentally.
The results show that our approach can achieve per-packet delay
measurement with an average of per-packet relative error at 2%,
and an average of aggregated relative error at , while intro-
ducing additional communication overhead in the order of
in terms of number of packets.While at a low data rate, the compu-
tation overhead of OPA is acceptable. Reducing the computation
and communication overhead under high data rate, to make OPA
more practical in real applications, will be our future direction.
Index Terms—Delay measurement, fine-grained, loss and

reordering.

I. INTRODUCTION

A. Background

D ELAY performance is of great importance for various net-
work applications, ranging from daily used applications

such as voice-over-IP, multimedia streaming, video on demand
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to applications in different areas such as data center and auto-
matic trading system [1], [2] . For example, delay performance,
which is closely related to the quality of service for applica-
tions such as voice-over-IP, significantly impacts user experi-
ence. Moreover, for delay sensitive system such as critical au-
tomatic trading, millions of trading may be conducted during a
very short time period. Therefore, a small delay for operational
packets may result in a significant impact on the trading amount
and hence the profit [3]. Therefore, delay is a critical metric that
system designers care about. It is of great importance to under-
stand and improve system performance, and also has attracted a
lot of research efforts [2], [4]–[9].
Intuitively, delay can be measured by embedding a sending

time stamp in each packet. When a packet is received, the re-
ceiving time is recorded. The packet delay can thus be calcu-
lated by subtracting the sending time from the receiving time as
long as the sender and receiver are synchronized. However, in
most routers, it is difficult to modify the IP packets. Even if a
time stamp can be inserted, this may require to add fields or use
preserved fields in a packet [5]. Such modifications may not be
aware by other protocols. Therefore, the behavior of other pro-
tocols may be affected.
To satisfy practical system requirements, a common ap-

plicable approach is to measure packet delay non-intrusively
without modifying data packets. Following such a design
principle, different methods are proposed [5]–[7] for providing
aggregated delay statistics. For example, a representative
method based on Lossy Difference Aggregator (LDA) is pro-
posed for delay measurement [5]. With LDA, the aggregated
delay for a group of packets can be calculated without modi-
fications to packets.

B. Motivation

Existing approaches focus on providing aggregated delay sta-
tistics at a pre-programmed granularity. However, as revealed in
existing approaches [10], fine-grained delay measurement is of
great importance in performance monitoring, system diagnosis,
traffic engineering, etc.
First, fine-grained delay measurement is important for re-

vealing detailed system performance. Considering a simple ex-
ample in which 999 packets have a delay of 1 ms and 1 packet
has a delay of 1001 ms, this is different from the case in which
all 1000 packets have a delay of 2 ms, though both cases ex-
hibit the same aggregated average delay. Moreover, even for
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the same average and deviation, different types of packets may
have different delay performance, e.g., large delays of interest
may appear on a special set of packets that cannot be revealed
from aggregated results on the entire set of packets.
Second, fine-grained delay performance is important to net-

work diagnosis [10]. In diagnosis, it may need to investigate
a special type of packets, e.g., DNS packet, ACK packet. For
example, in a time-critical bidding system, the bidding request
packet usually has a tight deadline [10]. Failure to meet the
deadline may miss some bidding opportunity or even result in
significant profit loss. Thus measuring per-packet delay of re-
quest packet is important in real time bidding system.
Third, fine-grained delay measurement is required or pre-

sumed in various protocols. It can also be used to improve pro-
tocol performance. For example, many protocols in Internet and
data center [11]–[14] show that incorporating fine-grained delay
measurement would improve the system performance.
Last but not least, inherently aggregated delay performance

cannot be accurately calculated in the presence of packet losses
or reorderings [5]–[7]. Even with a single lost packet in a group,
the entire group has to be discarded and the average delay for
such a group cannot be calculated. From system management
perspective, packets with losses or reorderings should be partic-
ularly important to understand system behavior and reliability.

C. Our Approach

We propose a fine-grained delay measurement approach
based on loss and reordering identification. We present a new
data structure named Order Preserving Aggregator (OPA). In
OPA, packet loss as well as ordering information can be effi-
ciently represented and identified. The OPA design leverages
the intrinsic data property that lost and reordering packets are
usually much less than legitimate packets, which facilitates
efficient ordering and loss information representation and
recovery.
Based on OPA, we present a two-layer delay measurement

design in which ordering and loss information, and time stamp
information are separately transmitted and recovered according
to their inherent properties. Then two layers of information
are combined at the receiver to achieve fine-grained delay
measurement.
Compared with existing approaches, OPA has several merits.

First, OPA exploits the inherent data properties, and incurs a
low computation and communication overhead for loss and re-
ordering identification. Second, OPA can provide per-packet
delay and loss measurement instead of aggregated statistics.
Third, packet delays in groups with losses or reorderings, which
is important but cannot be measured in existing approaches, can
be derived.
The contributions are summarized as follows.
• Architecture for loss and reordering identification. We pro-
pose the OPA design, a new measurement structure to effi-
ciently represent and identify the ordering and loss by ex-
ploiting intrinsic data properties. By applying the OPA de-
sign, we design a two-layered information representation
system for fine-grained delay measurement.

Fig. 1. Fine-grained delay measurement with packet loss and reordering.

• Performance analysis. We analyze the computation over-
head at the sender and receiver, and the communication
overhead for the proposed approach.

• Performance evaluation. The evaluation results demon-
strate the effectiveness of the OPA approach. With an over-
head in the order of with respect to the total data
packets, per-packet delay can be measured with an average
relative error at 2%, and the aggregated delay can be mea-
sured with a relative error at .

The remainder of this paper is organized as follows.
Section II describes the assumptions and the network model.
Section III introduces existing approaches. Section IV intro-
duces the design of OPA. Section V shows how to leverage
OPA for per-packet delay measurement. Section VI shows the
analysis result and Section VII shows the evaluation results.
Section VIII emphasizes the limitations on computation and
possible future work. Section IX concludes this work.

II. ASSUMPTIONS AND NETWORK MODEL

We consider measuring packet delay from a to
a . For example, a sender and receiver can be two
routers in a network. We divide packets into segments. We use
two packets as delimiter packets for the sender and receiver to
agree on the start and end of each segment. For example, as
shown in Fig. 1, packets from the sender are , , , .
The delimiter packets are and , which can be used by
the receiver to locate the corresponding segment, i.e., , ,

, where and . Without packet loss and
reordering, we should have and for .
In practice, there may exist packet loss or packet reordering.

As a result, the sending ordering of packets is not necessarily
the same with the receiving ordering of packets. For example, as
shown in Fig. 1, packet is a reordering packet and packet is
a lost packet. Delimiter packets may also get lost. If a delimiter
packet is lost, we discard the corresponding segment and move
to the next segment. Hereafter we assume delimiter packets are
successfully received.
As in previous approaches [5]–[7], we assume that the sender

and receiver are synchronized. This can be achieved by existing
time synchronization protocols [15], [16] . We assume there is
no common sequence number since packets may come from
different sources with different protocols [5], [7] . Meanwhile,
packets are not to be modified. This is common for the Internet
routing infrastructure, in which the intermediate routers do not
modify the packet.
For each packet, the sender can measure the sending time
. When packet is received, the receiver can measure the

receiving time . Our goal is to calculate the delay for each
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received packet. The delay is defined as the receiving time sub-
tracted by the sending time. For example, if packet corre-
sponds to at the sender, the delay can be calculated as

, where and are the receiving time and sending time
respectively. Hereafter, we focus on per-packet delay measure-
ment for a segment of packets.

III. EXISTING APPROACHES

A. Timestamping Based Approaches
A straightforward approach for delay measurement is to in-

sert a time stamp in each packet. We call such kind of method
timestamping (ts) based method. However, ts based method re-
quires modifications to packets, which is not applicable on com-
monly used routers. Even packets can be modified, this incurs
additional transmission cost. Thus inserting time stamps is not
preferable for practical applications.

B. Probing Based Approaches
Probing is a commonly used technique to estimate packet

loss and delay. In probing based methods, probing packets are
sent from the sender to the receiver. Those probing packets are
assumed to have similar behavior with other packets. Based
on probing packets, the statistics for other packets can be
estimated. Probing based methods, which significantly reduce
the measurement overhead, fail to achieve fine-grained delay
measurement [5]–[7].

C. LDA
Loss Difference Aggregator (LDA) is proposed to estimate

delay average and deviation. In LDA, packets are divided into
groups by a certain hash function. For each group, the sum of
the time stamps and the total counter of packets are sent to the
receiver. Upon receiving such information, the receiver first di-
vides packets by applying the same hash function. If the total
packet counter for the group at the receiver matches that at the
sender, the receiver can calculate the average delay for such a
group. Otherwise the receiver will discard such a group.
The average delay is calculated as follows. The sum of de-

lays can be calculated by subtracting the sum of sending time
stamps from the sum of receiving time stamps. Then the av-
erage delay can be calculated by dividing the sum of delay by the
packet counter. Therefore, LDA significantly reduces the mea-
surement overhead by only transmitting the sum of time stamps
and packet counter. However, when there exist packet loss and
reordering in a group, the entire group has to be discarded and
the delay for such a group cannot be estimated. With even a
single loss, the entire group becomes useless.

D. FineComb
In LDA, packets that belong to one segment may be misiden-

tified into other segments due to packet reordering. After
dividing a segment of packets into groups, some groups may
have packets from other segments. In such a case, those groups
of packets cannot be used for delay measurement. To address
such a problem, FineComb [7] proposes a special data struc-
ture called stash, which maintains the information for packets
near the boundary of segments at the receiver. However, for

TABLE I
COMPARISON OF EXISTING APPROACHES

groups with lost packets, FineComb still cannot calculate their
per-packet delay.

E. RLI

A per-flow delay measurement approach called Reference
Latency Interpolation (RLI) is proposed in [6]. In RLI, the
sender generates reference packets (which are similar to probe
packets) to the receiver. Then based on reference packets,
RLI uses interpolation to estimate per-packet delay between
reference packets. The interpolation based method inherently
assumes a specific delay distribution (e.g., linear delay dis-
tribution). Thus it may not be able to accurately measure the
per-packet delay in the presence of frequent or significant delay
variations. For example, a sudden increase of packet delay
between two reference packets cannot be captured, resulting in
missing of important information to investigate delay variations
or anomalies.

F. MAPLE

Recently, MAPLE [10] is proposed to store and query per-
packet delay. MAPLE consists of two main components: a scal-
able packet latency store (PLS) and a query engine. PLS can
be used to efficiently store the calculated delay and the query
engine can be used to query packet delay. MAPLE focuses on
delay storage and query rather than per-packet delay measure-
ment. We focus on packet delay measurement. MAPLE can
be further leveraged as the storage and query system for fine-
grained delay measured in our method.
Summary: We summarize existing approaches for delaymea-

surement in Table I. We can see that none of those approaches
can achieve per-packet delay measurement in the presence of
loss and reordering. Therefore, we propose OPA to achieve ef-
ficient per-packet delay measurement in the presence of loss and
reordering without timestamping and probing.

IV. OPA DESIGN

In this section, we present the OPA design. The design goals
of loss and reordering measurement and delay measurement are
as follows.
• The design should be non-intrusive and should not require
any modification to data packets. Thus the design does not
introduce any change to existing routing protocols.

• The design should be light-weight and efficient, not in-
curring much additional computation and communication
overhead.

• The abnormal delay, e.g., large delays, should be captured
and preserved in order to investigate important system
metrics.
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Fig. 2. The design overview of OPAs for fine-grained delay and loss
measurement.

A. Design Overview

A straightforward approach is to send time stamp information
from the sender to the receiver. More specifically, we attach a
packet ID to each time stamp in order to calculate per-packet
delay at the receiver side.Moreover, an immediate improvement
is to send the compressed time stamps to the receiver. At the re-
ceiver side, the time stamps can be recovered and the delay can
be calculated given the receiving time stamps. However, this
does not work in the presence of packet loss and reordering.
For a single packet loss or reordering, the compressed informa-
tion cannot be used since the receiver does not know which one
is lost. As shown in Fig. 1, assume all packets are correctly re-
ceived except packet . Since the receiver does not knowwhich
packet is lost, it incorrectly calculates the sending time of packet
as (packet should correspond to ). What is even worse

is that a single packet loss would pollute an entire group of
packets. Thus the aggregated delay performance (e.g., average
delay) cannot be calculated, not even say per-packet delay. This
problem is exacerbated when there exists packet reordering.
Our basic idea is to efficiently recover the ordering informa-

tion at the receiver. The ordering information corresponds to the
position for each packet at the sender. It is challenging to repre-
sent the ordering information since there are a large number of
possible orderings for the received packets. However, we find
that the receiving ordering should be very similar to the sending
ordering. In production networks, the number of reorderings and
lost packets is usually small. Intuitively, the ordering “differ-
ence” between the sender and receiver should be small. Thus
instead of transmitting information to represent all possible or-
derings, we consider transmit the small ordering difference to
reduce the overhead.
As shown in Fig. 2, we propose a two-layer representation

design. Packets are first divided into groups at the sender side.
For each group, the sender calculates the corresponding OPA
(the first layer) and the compressed time stamps (the second
layer), and then transmit the two-layer information to the re-
ceiver. The receiver can efficiently recover packet ordering with
OPAs. Then those two layers are combined for per-packet delay
measurement. We introduce the first layer in Section IV and the
second layer in Section V.

B. Building Order Preserving Aggregator

The main steps to recover ordering information are shown
in Fig. 3. At the sender, the first step is to divide packets into

Fig. 3. The working flow for loss and ordering information recovery.

groups based on a deterministic hash function . The
hash function maps any string to an integer in the range .
Therefore, packets in a segment are divided into groups,
i.e., . For brevity, we assume each group has
packets, i.e., . By using a hash function, bursty

packet losses (e.g., due to congestion or buffer overflow) can
be divided into different groups. To simplify the presentation,
we denote packets in group as ,
where is the th packet in group .
The second step is to represent packet ordering. We design

a method named augmented hash to encode the ordering. For
group , the sender calculates the augmented hash value of
the th packet as , where can be
a string concatenation operation. We call as the augmented
hash of the th packet in group . We denote as the aug-
mented hash vector as , where
denotes the matrix transpose of . For group , the sender
calculates the augmented hash values for all packets. If the re-
ceiving ordering is exactly the same with the sending ordering,
the augmented hash values should be exactly the same.
To further reduce the overhead, we calculate the linear combi-

nations of the augmented hash values for each group. For group
with packets, the sender calculates linear combinations

as follows

...
...

. . .
...

...
...

(1)

Here is a coefficient matrix. We ex-
plain how to construct the coefficient matrix in the Appendix.
We call the vector for group the
Combined Augmented Hash (CAH). The CAH can be calculated
by the sender. Equation (1) can also be written as

(2)

It should be noted that has values and has values. For
group , the sender calculates the combined augmented hash

and then sends a tuple to the receiver, where is
the CAH and is the number of packets in group . We call
such a tuple the Order Preserving Aggregator (OPA).
In the third step, the sender calculates the OPAs for all

groups. Then the sender assembles tuples for multiple groups
into packets and then send the packets to the receiver.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 03,2021 at 07:18:44 UTC from IEEE Xplore.  Restrictions apply. 



3430 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

C. Identify Correct Groups

To recover the ordering information, the receiver performs
the following steps. The receiver divides packets into groups
using the same hash function (i.e., ) with that at the
sender. Assume the received groups are . We
denote packets in as . As in the 4th
step in Fig. 3, we also calculate the augmented hash for each re-
ceived packet as . The corresponding
result is . For group , the received

). Based on the received and calculated infor-
mation, there are two cases for a group .
• and : the group of packets in should
be the same with the packets in at the sender. Based on

, the value of that satisfies the equation
should be on the intersection of hyperplanes. As packets
are randomly lost, the probability that the calculated is
on the intersection of hyperplanes is negligible. Mean-
while, since we use augmented hash for calculating CAH,
the receiving ordering should also be same with sending
ordering. Based on the OPAs, we can check if the packet
ordering is preserved at the receiver, and we can also check
if the received group is exactly the same with the sending
group.

• Otherwise, those two groups of packets are not the same,
which indicates the existence of packet losses or packet
reorderings from group to .

D. OPA Recovery

Then we deal with the case with packet loss or packet re-
ordering. First, we consider the case with packet loss. For pre-
sentation simplicity, assume there are packet losses.
Packet reordering can be processed similarly. Later, we explain
how to deal with the case with both packet losses and reorder-
ings. When is less than , we show that OPA can be used to
derive the ordering information and lost positions.
It is difficult to derive the position for those lost packets,

since we do not know the correct position for those received
packets in a group and we do not know which packets are
lost. Due to packet losses, the receiver may not have enough
augmented hash values to calculate . Our goal is to
determine the position of lost packets and the correct ordering
of the received packets.
More specifically, we need to determine the ordering and po-

sition for the received packets among the packets from
the sender, i.e., mapping the receiving packets to the cor-
rect positions. Before diving into details, we first show the intu-
ition of determining the position and ordering for the received

packets. Intuitively, as there are lost packets, we assume
there are unknown variables and enumerate the position for
those variables. This corresponds to the 5th step in Fig. 3. For
each enumeration, we calculate the augmented hash values for
those received packets. Remember that we have ,
using the first equations, we can solve the equation set and
obtain the result for variables, i.e., the augmented hash values
for lost packets. This corresponds to the 6th step in Fig. 3. Then
the solved augmented hash values for lost packets and received

packets are checked with the remaining equations. If the posi-
tions for lost packets are correct, the solved augmented hash
values should satisfy the remaining equations. This is the 7th
step in Fig. 3.
We first show an example of the proposed method. Then we

explain the details behind the intuition.
Example: We use a simplified example to explain the basic

procedure of our approach. Assume a group has three
packets , say (2, 5, 7). We use a very simple
augmented hash function as .
The sender performs the following steps:
• The sender calculates the augmented hash values for those
three packets: ;

• Assume the coefficient matrix , the
sender calculates the CAH as

Therefore, ,
;

• The sender calculates the OPA as ((146, 344), 3), where
.

The receiver performs the following steps:
• The receiver receives .
• If the received packets are , the receiver can
calculate .

• The receiver can calculate and
.

• The receiver have .
Thus from , we know there is no loss and re-
ordering. If the received two packets are , and ,
the second packet 5 is lost and the other two packets are re-
ceived. In such a case, The receiver performs the following
steps:
• The receiver finds .
• The receiver calculates the number of lost packets as

.
• The receiver enumerates the lost positions. Assume the first
packet is lost, i.e., we have . According to the aug-
mented hash function, we have and .
Thus we have

By , we have . Using this
for the checking equation, we have

. Thus the lost packet is not the first packet.
Similarly, we can check whether the second packet is lost.
Finally, we identify the second packet as the lost packet.

E. Mapping and Checking Equation
In this section, we explain the details for recovering the or-

dering information. Table II summarizes important parameters
used in this paper. We denote as a map-
ping vector. The th element denotes that the th packet in
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TABLE II
NOTATIONS

is the packet in . means that the th packet in
has no corresponding packet in . We have the following

definition.
Definition 1: For , we define a -map-

ping from a vector to a vector of length
as , where if there is an

index such that , otherwise, .
By performing -mapping for packets in , we obtain a

new ordering for packets. For example, if the received packets
and , we have .

If and , we have .
With the -mapping from the received packets to

packets in , according to (2), we have

(3)

The first part in the equation is to calculate the
combined augmented hash calculated by mapping the received
packets to the correct position. The second part in
the equation is to calculate the combined augmented hash for
lost packets.
Denote the matrix for ,

and . Denote the column vector
for and . Denote the matrix

where and . Denote as a unknown
column vector of length . Equation (3) can be written as

(4)
We have no information for since we do not know the or-
dering of the received packets. Therefore, both and are

Algorithm 1 OPARecovery

1:
2: Calculate from the received OPA for group ;
3: for all possible do
4: Calculate , ;
5: Calculate according to mapping (5);
6: if The checking equation (6) is satisfied then
7: return ( , );
8: return (NULL, NULL);

unknown in (4). Meanwhile, we do no know the mapping vector
of the received packets.
To obtain the value of and , we leverage the prop-

erties of packets in and , to first find the value of . To
find the value of , we consider different cases for (4). First,
if there are no losses and reorderings, we have and

. In this case we can easily obtain and
. Second, if there are some losses and reorderings, we enu-

merate all possible packet losses and reorderings. For each enu-
meration, we can obtain a mapping to solve (4). Usually, the
number of lost packets should be much less than that of received
packets.
When there are packet losses, we have . Mean-

while, has columns. For any mapping vector , we
can calculate based on the received packets. Thus we have
the following mapping equation:

(5)

where is the matrix consisting of row 1 to row of .
If any columns from are independent, we can solve
the mapping equation and obtain the value for . After solving
the mapping equation, we still do not know whether the solution
is a feasible solution since we do not have the ground truth for

. Therefore, we leverage the remaining rows in matrix to
verify the feasibility of the solution of .
To verify the solution, we require . We use the re-

maining rows as checking rows. Accordingly, we have
the checking equation:

(6)

The solution is feasible only when it satisfies the checking equa-
tion. In summary, the mapping equation is used to find possible
mappings. The checking equation is used to verify the feasi-
bility of each mapping. When all results for the mapping equa-
tion cannot be satisfied with the checking equation, the corre-
sponding group cannot be used.
Algorithm 1 illustrates the main steps to recover the ordering

information. We enumerate possible to calculate . Based
on and the mapping equation (5), we can obtain . Then
we can check whether it is feasible with the checking equa-
tion (6). Line 2 is to calculate CAH from the received OPA for
group . Line 4 to line 5 show the calculation of . Line 6
shows using the checking equation to verify .
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Algorithm 2 CalculateDelay

1: ;
2: Record the received time stamps ;
3: Recover the sending time stamps ;
4: for ; //initialization
5: for to do
6: if then
7: ;

V. DELAY CALCULATION

After recovering the positions for all received packets with
OPA, we then calculate the per-packet delay.

A. Time Stamp Recovery

To calculate fine-grained delay, we send the compressed time
stamps to the receiver in the second layer. The variation of each
time stamp will not be large since packets are sent on a high
speed data link. As we have recovered the ordering/loss infor-
mation in the first layer, here we can use lossy compression
method to achieve a high compress ratio. For example, we can
use wavelet for time stamp compression.
In wavelet compression, the error for all recovered time

stamps is nearly zero-sum. Thus the average delay calculated is
very closed to the true average. The error is evenly distributed
and very small. It is worth noting that time stamp compression
is not the focus of our method and other compression methods
can also be used.
Denote the recovered time stamps as . For each

packet, the receiver can also record the receiving time stamps
. According to the result of , we can calculate

the corresponding position for the received packets. Thus we
can calculate the delay for those packets as ,
where is the th element in and . The main steps
to calculate delay are shown in Algorithm 2. Line 2 and Line 3
show the steps to obtain the sending and receiving time stamps.
Line 5–7 show how to use the mapping vector to calculate the
delay for each packet.

B. Deal With Reordering

In the presence of reordering, we need to accordingly enu-
merate possible mapping vector . For example, for a group of
four packets . If the received packets are . We
have .
Intuitively, we need to check all possible reorderings and

generate corresponding mapping vector . Practically, for a re-
ceived packet , the shift between the original position and the
reordered position is assumed to be bounded by [10]. Thus in
the mapping vector , the possible positions are

. After grouping, the possible positions for
a reordering packet are reduced. For example, with 10 groups,
the number of possible positions for a packet is reduced from
to after grouping. For groups with reordering shift larger
than , the solved results for the mapping equation cannot be
satisfied with the checking equation.

Fig. 4. Maintain information near the delimiter packets.

C. Deal With Boundary

Packet reordering inside a segment can be recovered by afore-
mentioned method. Due to packet reordering near the boundary,
packets from one segment (segment ) maymove into neigh-
boring segment (e.g., segment ) [7]. In such a case, packets
from segment will be incorrectly considered as packets in
segment .
For example, as shown in Fig. 4, packet is not the same

with the packet from the sender. Due to packet reordering, a
packet from another segment moves into the middle segment. If
such a packet is not identified, it will be counted for the middle
segment and result in errors in delay measurement. We main-
tain a stash [7] for packets near the boundary. The size of the
stash can be in order to contain all possible reorderings. We
can keep the packets of the stash at the receiver. Only the time
stamps need to be sent from the sender to the receiver.

D. Discussion

It is possible that different groups in a segment have dif-
ferent sizes. In case that some group has more than packets,
the sender can extend the columns of the coefficient matrix .
As long as matrix has more than columns, the proposed
method can still be used.
To achieve fine-grained delay measurement, it is required to

maintain a buffer for all receiving time stamps. Assume there
are packets in a segment and we need bytes to store the
time stamps. For groups with each group of bytes, the total
memory size is . For example, for a segment of
packets, the required memory can be calculated as

when the number of group is and is 28.
The total memory requirement is . This is acceptable
when the size of each segment is small. However, when the
size of segment increases, e.g., , the required memory will
increase to , which is very large. Our approach can also
be used in a on-demand manner. A user can specify particular
constraints on the packets to be measured. For example, a user
can measure packets in a particular flow or in a particular time
period. In such cases, the information to be maintained is further
reduced.
Considering the computation overhead and information rep-

resentation of OPA, the received information can also be stored
on the receiver. The stored information can then be used offline
to calculate per-packet delay .
It is possible that packet loss may not be random, e.g., packet

loss may be bursty due to congestion. The hash function will
divide packets into groups. Thus bursty losses will be divided

Authorized licensed use limited to: Tsinghua University. Downloaded on February 03,2021 at 07:18:44 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: EVERY PACKET COUNTS: LOSS AND REORDERING IDENTIFICATION AND ITS APPLICATION IN DELAY MEASUREMENT 3433

into different groups. The distribution of packet losses will not
affect the effectiveness of our approach.
Our approach leverages the property that the number of

packet errors should be much less than the number of legitimate
packets. When the packet error rate is very high (e.g, 1/10),
OPA will increase the number of packet groups. The commu-
nication overhead accordingly increases due to increasing of
groups. Consequently, the benefit of OPA decreases.

VI. ANALYSIS

We seek to answer the following questions through analysis.
• What is the overhead and limitations for the proposed
approach?

• What is the performance to identify the losses and
reorderings?

• How to determine different parameters for the proposed
approach?

A. Computation Overhead
The main computation overhead is to enumerate all positions

of lost packets. As seen from Algorithm 1 and Algorithm 2,
the overhead is determined by the number of errors and groups.
With more groups, the expected number of errors in each group
will become smaller and thus the computation overhead for each
group will decrease. Meanwhile, the number of OPAs and the
information to the receiver will increase. Therefore, we should
carefully choose the group number to tradeoff the computation
overhead and communication overhead.
For the computation overhead, we first calculate the proba-

bility for different number of errors in each group. Assume there
are errors, and packets are divided into groups with each
group having packets.
Denote as the probability that a particular group

has errors, we have

(7)

Those packet losses can be distributed to positions
in a group. Thus the number of possible permutations we need
to check for each group is . Further, for packet re-
ordering, the number of possible permutations is ,
where is the maximum shift for a reordering packet. The shift
can be reduced to after dividing packets into groups.We
first consider packet loss. The expected overhead can be calcu-
lated as

(8)

In practice, we select the number of groups proportional to
the number of errors, e.g., we can select the number of groups
as . When the number of errors is small, the number
of groups is relatively small. Since the number of errors is usu-
ally very small in each group, we ignore groups with errors more
than a threshold in order to further reduce the overhead. Accord-
ingly, we calculate the expected overhead as

(9)

Fig. 5. Computation overhead with respect to the number of groups. (a)
and (b) .

where is the maximum number of errors in a group. We can
also see that for a larger , there will be more recovered packets.
Meanwhile, the computation overhead accordingly increases.
Fig. 5 shows the computation overhead for different number
of groups with different packet loss rates. The total number of
packets is . The loss rate is for Fig. 5(a) and for
Fig. 5(b). It can be seen that for both loss rates, the overhead
decreases as the number of groups increases. This is because the
group size and number of errors in each group decrease as the
number of groups increases.With more groups, the computation
overhead will further decrease as shown in Fig. 5.
The computation overhead at the sender is mainly due to OPA

calculation. Each OPA requires multiplications times. For a
group with OPAs, the computation overhead is calculated as

. The total overhead for packets is ,
which is proportional to the number of packets.
In practice, a router should not solely work either as a sender

or receiver, but to work as both of them. When the data rate
is high, packets may not be able to be processed in real time
due to the computation overhead. Considering the limitations,
OPA can be more appropriate for a particular set or a particular
flow of packets, or be used in an on-demand manner on required
routers rather than on all routers all the time. In those scenarios,
the overhead can be reduced.

B. Communication Overhead

We also consider the communication overhead from the
sender to the receiver. The communication overhead consists
of two parts according to the two-layer design in Fig. 2. The
first part is the overhead for sending OPAs and the second part
is for sending compressed time stamps. For the first part, the
overhead for each group is calculated as the size of plus the
size of . If CAH of is of length 8 and is of length 4, the
total communication overhead for OPAs is for
a group with no more than 2 errors. For the second part, the
overhead depends on the compression ratio. The overhead can
be calculated as where is the compression ratio and is
the number of time stamps. Thus the total overhead is
for each group.
Assume there are 100 groups for a segment of packets,

and a time stamp has 4 bytes, the total overhead is
402800 bytes, which can be assembled in about 300 packets
(with ). The amortized overhead is about

. This also means for packets, no more than 3 packets
are required to achieve fine-grained delay measurement.
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Fig. 6. Recovered delay with respect to the number of groups. (a)
and (b) .

Fig. 7. Computation overhead with respect to recovered packets. The number
of packets is .

C. Storage Overhead

RLI has the lowest storage size since it only needs to maintain
reference packets. LDA has a small storage overhead for the
time stamp sum and counter, which are proportional to the rows
in all banks. The storage overhead of FineComb is that of LDA
plus the storage for stash. Among those approaches, OPA has
the highest overhead. It needs to maintain all OPAs which is
proportional to the number of groups. It also needs a storage
space for the compressed time stamps.

D. Recovered Delays

For a group with less than errors, the probability it can be
recovered is . Therefore, the expected number of
packets that can be recovered in a group is .
Fig. 6 shows the number of recovered packet delays when we
only consider groups with less than two errors ( ). We can
see that with groups more than , e.g., 20 for a low error rate

and 200 for a high error rate, almost all packets can be
recovered.

E. Impact of Parameters

The first parameter to consider is . Intuitively, more groups
indicate less errors in each group and thus less computation
overhead. On the other hand, more groups result in more
communication overhead. We require the expected overhead

for packets is less than a threshold ,
i.e., . We choose the smallest number
of groups with overhead less than . Accordingly, we can
calculate the number of recovered packets and the computation
overhead for different . Fig. 7 shows the percentage of recov-
ered packets with respect to computation overhead. We can
see that when and , most packets are recovered
while the computation overhead is acceptable.

It should be noted that when the error rate is very high (e.g.,
1/10), though increasing the number of groups can reduce the
computation overhead, this inevitably increases the commu-
nication overhead and diminish the benefit of our proposed
approach.
When the loss rate is unknown, we leverage a similar ap-

proach used in LDA and FineComb. We put packets to multiple
banks for different loss rates. In each bank, we divide packets
to groups according to its corresponding loss rate. Therefore,
when OPA cannot solve the mapping equation for a bank, the
packet loss ratio set for this bank is less than the real value and
this bank cannot be used. When OPA can solve the equation for
a bank, the packet loss ratio can be calculated and such a bank
can be used for delay calculation. As in LDA, as long as there
exists one bank that can be used, the delay can be calculated. In
OPA, we do not maintain a disjoint set for different banks.

VII. EVALUATION

A. Data

We use theWeibull delay distributionmodel to generate delay
in our evaluation. The delay has a cumulative distribution func-
tion where and denote the
scale and shape of the distribution. This is also used in other
delay measurement approaches, e.g., [5]–[7].

B. Methodology

For the time stamp compression part, we use the wavelet
compression. There are other efficient wavelet compression
methods [17]. The error of delays for different packets are
averaged, leading to a small aggregated averaged delay in the
order of to . Clearly, when the compression has a
high distortion, the accuracy of delay measurement will be
affected. However, the ordering and loss measurement will not
be affected. Here, the compression method is not the focus of
the evaluation. At the receiver side, we accordingly calculate
per-packet delay by combining OPA and compressed time
stamps. It should be noted that OPA needs the compressed time
stamps while other approaches do not. We also demonstrate
that our method can be used to detect abnormal delays that
would otherwise be unable to reveal.
To compare the performance of OPA with existing ap-

proaches, we implement the methods of LDA [5], FineComb [7]
and RLI [6]. Since RLI can provide per-packet delay mea-
surement, we first compare the performance of OPA with RLI
in terms of relative per-packet delay error. We also show that
compared with RLI, OPA provides more accurate fine-grained
delay measurements. Moreover, we show that OPA can also
identify the delay anomalies.
Further, we compare OPA with LDA, FineComb, RLI in

terms of
• average delay,
• standard deviation,
• overhead, and
• number of delays that can be calculated.

We also compare different approaches under different loss rate
and reordering rate combinations.
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Fig. 8. Relative per-packet delay error of RLI and OPA.

C. Fine-Grained Delay Measurement
Wefirst compare OPAwith RLI and evaluate the performance

of OPA for fine-grained delay measurement. We vary the loss
rate from to a relatively high rate . As we have in-
troduced, OPA is effective to detect abnormal delays (e.g., large
delays). We generate large delays with a probability of .
Meanwhile, we set be the probability of a large delay given
its previous packet has a large delay. Increasing , the gener-
ated large delays will be more bursty. We set . Since
the data rate in our evaluation is relatively stable, the reference
packets are added in a fixed rate of . We also evaluate
other rates for the reference packet, e.g., and as sug-
gested in [6]. We find that the result is similar. Thus we choose
a rate of in order to reduce the overhead of RLI.
For comparison, we define the per-packet relative delay error

and average delay error. Assume there are totally packets and
the true delay of packet is where . The av-
erage delay is calculated as . For an ap-
proach , we denote the estimate delay for packet by with

. Therefore, we calculate the per-packet relative error for
packet as

(10)

Meanwhile, we define the average delay error as

(11)

It should be noted that we can only calculate per-packet relative
delay error for RLI and OPA. For other protocols, we cannot
calculate the per-packet delay and the per-packet relative delay
error. We compare the per-packet relative delay error for OPA
and RLI. Fig. 8 shows the CDF of per-packet relative delay
error. We can see that the relative per-packet delay error of RLI
is larger than that of OPA. The relative per-packet delay error is
very small for OPA.
To investigate how OPA can be used to calculate per-packet

delay, we compare the delay calculated by RLI and OPA with
the original delay. We check if RLI and OPA can correctly iden-
tify those large delays. Fig. 9 shows the error of those large de-
lays. We can see that the error of RLI for most large delays is
larger than that of OPA, because RLI uses interpolation based
approach between reference packets. Since large delays are in-
frequent, packets with large delays may not be chosen as refer-
ence packets. Therefore, the delay calculated from interpolation
cannot reflect those large delays, resulting in estimation error.
This also explains Fig. 8 that RLI has a high estimation error.
We can also see that OPA can effectively estimate each packet

Fig. 9. The estimation error of large delays for RLI and OPA.

Fig. 10. Estimation error of large delays in RLI and OPA.

especially for those large delays. In Fig. 9, we only plot the er-
rors for large delays for clarity.
To further investigate the performance, we calculate cumu-

lative distribution of per-packet relative delay error for those
large delays in Fig. 10. In Fig. 10, we show the cumulative dis-
tribution of delay error for RLI and OPA respectively. First,
per-packet delay can be efficiently recovered with OPA since
most of relative errors are distributed between and 0.05.
The relative per-packet delay error of RLI is larger than OPA.
Second, those large delay are smoothed in RLI, leading to a neg-
ative relative error as shown in Fig. 10.

D. Comparison With Existing Approaches (LDA, FineComb,
RLI)
In additional to per-packet delay, we also compare OPA with

existing approaches (LDA, FineComb and RLI). We compare
the overhead and ratio of recovered delays (i.e., delays that can
be calculated) for those four approaches in order to examine
their practical performance. The reordering rate is set to
in those evaluations.
Fig. 11(a) shows the comparison of average delay error. We

can see that all those four approaches have a very small error
for average delay. Due to a small reordering rate ( ) and the
sampling, the difference between LDA and FineComb is very
small.
Fig. 11(b) shows the comparison of error for standard devia-

tion. We can see that all four approaches exhibit a low relative
error. RLI has the largest relative error. As we have explained,
RLI cannot identify large delays, leading to a large error in av-
erage delay and standard deviation. It should be noted that RLI
is proposed to be applied to delays with locality. It is less bene-
ficial to apply RLI to other delay distributions.
Fig. 11(c) shows the communication overhead from the

sender to the receiver for delay calculation. RLI and OPA can
calculate per-packet delay while LDA and FineComb can only
calculate the aggregated delay statistics. The communication
overhead of LDA is determined by the number of rows. The
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Fig. 11. Comparison of LDA, FineComb, RLI and OPA. (a) Error of average delay, (b) error of standard deviation, (c) communication overhead, and (d) fraction
of delays that can be calculated.

Fig. 12. Performance of different combinations for different approaches. (a) Average delay error. (b) Communication overhead. (c) Recovered packets.

communication overhead of FineComb is determined by the
number of groups and the size of stash (100). The communi-
cation overhead of RLI depends on the number of reference
packets. The communication overhead of OPA depends on the
number of groups and the compression ratio. Fig. 11(c) shows
that the overhead of OPA and RLI is higher than that of the
other two approaches. Meanwhile, OPA and RLI provide
per-packet measurement rather than aggregated delay statistics.
The overhead of OPA is in the order of , which indicates
OPA only needs several packets to measure delay for 10000
packets. The result also coincides with the analytical result in
Section VI. It can also be seen that RLI has a relative stable
overhead while the error rate is increasing.
Fig. 11(d) shows the fraction of recovered delays (i.e., de-

lays that can be calculated). In LDA and FineComb, a group is
useless if the group contains lost packets. The packet losses are
reduced after sampling. However, the total number of recovered
delays is also reduced. In RLI, almost all delays can be calcu-
lated except for lost packets. For OPA, theoretically, OPA can
recover all groups of packets with losses and reordering. Practi-
cally, we only calculate the delays in groups with no more than
two errors. There may exist groups with more than two errors
and thus those groups are not recovered. However, as long as
the number of group is carefully chosen as we have shown, the
number of such kind of groups should be very small. As shown
in Fig. 11(d), the number of recovered delays is high for OPA
and RLI, which is higher than that of the other two approaches.

E. Different Error Rate Combinations
We also evaluate the performance for different approaches

under different loss rates and reordering rates. In this evalua-
tion, we have relatively high loss/reordering rate ( , denoted
with H) and relatively low loss/reordering rate ( , denoted

with L). We use two characters to denote different loss and re-
ordering rate combinations, and then examine the performance
of different combinations. The first character indicates the loss
rate and the second one indicates the reordering rate. For ex-
ample, HLmeans a relatively high loss rate and a low reordering
rate. Fig. 12 shows the results. We can see that OPA can achieve
the smallest average delay error. Due to large delays, RLI has a
larger delay error than other approaches. It should also be noted
that RLI performs well for delays with locality. For communi-
cation overhead, OPA has the largest overhead while RLI has
the smallest overhead since RLI only needs to send reference
packets to the receiver. For the recovered packets, OPA can re-
cover most of the packets. For RLI, it can always recover all
packets since it uses interpolation based approach. In LDA and
FineComb, groups with loss packets are discarded, leading to
less recovered packets than OPA and RLI.

F. Handling Unknown Error Rate
We evaluate different approaches for handling unknown error

rate. As we have introduced, LDA and FineComb use multi-
bank approach to handle unknown error rate.We follow the con-
figurations introduced in LDA [5]. More specifically, the sam-
pling probability is set to , where ,

is the number of rows (i.e., groups in each bank)
and is the number of packet losses. As in LDA, we set the
probabilities to 0.00001, 0.0001, and 0.001. The probabilities
can also be set to other values. Fig. 13(a) shows the result for
relative error for different loss rates with multi-bank LDA and
FineComb. For a loss rate in the interval between two probabil-
ities (e.g., 0.00001 and 0.0001), the smaller the loss rate is, the
higher accuracy OPA can achieve. Fig. 13(b) shows the recov-
ered packets for different methods. OPA has a high recovered
ratio. In OPA, we do not maintain disjoint set for different bank
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Fig. 13. Evaluation of multi-bank approach for unknown error rate. (a) The av-
erage delay error for different methods. (b) The calculated packets for different
methods.

Fig. 14. Overhead for unknown error rate. (a) The communication overhead
for different methods. (b) The computation overhead for different methods.

and thus a packet can be used for different banks. Due to sam-
pling, the effective sampling size of LDA and FineComb are
decreasing as loss rate increasing. The effective sampling size
of LDA and FineComb is calculated from the bank chosen for
delay estimation as introduced in LDA.
Fig. 14(a) shows the overall communication overhead. It can

be seen that the communication overhead is increased by using
multiple banks compared with the overhead for a single bank.
As increasing of loss rate, the computation overhead of OPA
increases. This is because the when the number of errors in-
creases, the average number of errors in each group for a certain
bank will increase. This further leads to increase of the overall
computation overhead. Meanwhile, the computation overhead
of LDA and FineComb increases slightly.

VIII. LIMITATIONS AND FUTURE WORK

While OPA can improve the accuracy of delay measure-
ment by finding the loss and reordering, it incurs additional
overhead compared with existing approaches such as LDA and
FineComb. On the other hand, LDA and FineComb only need
to calculate the sum of time stamps and the stash. The overhead
is proportional to the number of packets. Thus the overhead of
OPA is much higher than that of LDA and FineComb. In the
analysis section, we have shown the communication overhead
and the computation time. We can see that if the data rate is
very high, e.g., 10 Gbps which is not uncommon, the overhead
will be too high to run OPA online on the router. Therefore, it is
better to use OPA for low data rate link or for a particular flow
in a high data link. For example, a network manager may need
to investigate the conditions of a particular flow. OPA can also
be used for offline analysis to derive the packet delay. We hope
that future research can further reduce the overhead and make

the proposed method more practical and efficient in production
networks.

IX. CONCLUSION

Fine-grained delay measurement is critical to understand and
improve system performance. We design a new data structure
named order preserving aggregator (OPA) to efficiently recover
the ordering and identify the losses. OPA exploits intrinsic data
properties, i.e., most packets are order-preserved and correct.
Based on OPA, we propose a two-layer design for efficient per-
packet delay measurement. We implement OPA and the evalu-
ation results show that OPA achieves per-packet delay with 2%
relative error while only incurring overhead in the order of
with respect to the number of data packets. We believe OPA can
be widely used for per-packet delay measurement and ordering
recovery in system management, performance monitoring and
diagnosis. OPA also has some limitations regarding the compu-
tation and communication overhead. We also hope that future
research can further reduce the overhead of OPA and make it
more practical and efficient in production networks.

APPENDIX
CONSTRUCTING THE COEFFICIENT MATRIX

We require that any columns in the submatrix are
independent. Here we leverage the Vandermonde matrix to con-
struct the matrix , i.e.,

...
...

. . .
...

(12)

where for . We have the following theorem:
Theorem 1: Any columns in submatrix are

independent.
Proof: Denote the matrix consisting of any columns

from matrix as . We have

...
...

. . .
...

(13)

where for . The determinant of matrix
can be calculated as

(14)

As for all , we can see that .
Thus any columns from matrix are independent.
Normally, we only need one checking row (checking equa-

tion) for each group. Therefore, for a group with lost packets,
we require that matrix has rows. Then we can use the
first rows for the mapping equation and the last row (row

) for the checking equation.
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