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Abstract—Smartphone localization is essential to a wide spec-
trum of applications in the era of mobile computing. The ubiquity
of smartphone mobile cameras and surveillance ambient cam-
eras holds promise for offering sub-meter accuracy localization
services thanks to the maturity of computer vision techniques.
In general, ambient-camera-based solutions are able to localize
pedestrians in video frames at fine-grained, but the tracking
performance under dynamic environments remains unreliable.
On the contrary, mobile-camera-based solutions are capable of
continuously tracking pedestrians, however, they usually involve
constructing a large volume of image database, a labor-intensive
overhead for practical deployment. We observe an opportunity
of integrating these two most promising approaches to overcome
above limitations and revisit the problem of smartphone local-
ization with a fresh perspective. However, fusing mobile-camera-
based and ambient-camera-based systems is non-trivial due to
disparity of camera in terms of perspectives, parameters and
incorrespondence of localization results. In this paper, we propose
iMAC, an integrated mobile cameras and ambient cameras
based localization system that achieves sub-meter accuracy and
enhanced robustness with zero-human start-up effort. The key
innovation of iMAC is a well-designed fusing frame to eliminate
disparity of cameras including a construction of projection map
function to automatically calibrate ambient cameras, an instant
crowd fingerprints model to describe user motion patterns, and
a confidence-aware matching algorithm to associate results from
two sub-systems. We fully implement iMAC on commodity smart-
phones and validate its performance in five different scenarios.
The results show that iMAC achieves a remarkable localization
accuracy of 0.68m, outperforming the state-of-the-art systems by
> 75%.

Index Terms—Indoor Localization, Crowdsourcing, Wireless,
Pedestrians Tracking, Map Construction

I. INTRODUCTION

The popularity of mobile and pervasive computing has
stimulated extensive interests in indoor applications, such as
customer navigation in museums, targeted advertisements in
shopping malls, and personnel emergency rescue in factories.
Therein, accurate and easy-to-deploy indoor localization is
a key enabler for these services on the horizon. During the
past decades, crowdsourced WiFi-based fingerprinting [1]–
[3] and inertial-based pedestrian dead-reckoning (PDR) [4]
hit the mainstream. However, it is well known that PDR
has intrinsically accumulative errors [5], and WiFi fingerprint
suffers from temporal instability and spatial ambiguity [6],
[7], which make these methods yield meter-level accuracy.
While meter-level accuracy can roughly localize or navigate
a customer within a shopping mall, sub-meter level accuracy
is helpful to determine which aisle he/she is facing within

a particular store, to provide detailed information when a
customer stands in front of a painting in a museum, and to
guide a rescuer to find trapped workers in a race against time.

Recently, as computer vision techniques mature, two arising
trends may overcome the above limitations and underpin a
practical solution to push the limit of wireless localization:
First, surveillance cameras are pervasively deployed in pub-
lic areas, such as shopping malls, museums, and galleries.
Researchers realize that these widely installed ambient cam-
eras could provide complementary advantages to conventional
wireless localizations in terms of accuracy. Specifically, these
ambient-camera-based approaches [8]–[12] rely on surveil-
lance cameras and radio sub-systems to extract user’s motion
patterns (traces or tracklets) from continuous video frames and
wireless signals respectively. Then, different motion patterns
are aligned to differentiate users and obtain a fused trajectory
with enhanced accuracy. However, the visual tracking per-
formance may degrade in complicated circumstances due to
frequent LOS blockages and erroneous detections. Moreover,
the pedestrian’s motion patterns depicted by wireless system
are coarse-grained due to localization bias and accumulative
errors [7], [11].
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Fig. 1. Comparison of the state-of-the-art works.

Second, vision capability has become more powerful on mo-
bile devices. Images captured by mobile are leveraged to assist
localization and navigation. Among mobile-camera-based
approaches, simultaneous localization and mapping (SLAM)
and structure from motion (SfM) technologies have made
rapid progress and been widely deployed [13]–[17]. These
approaches are capable of precisely tracking mobile cameras’
location and pose, but involve a labor-intensive and time-
consuming site survey to gather images (or keyframes) about
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Fig. 2. System Overview of iMAC

landmarks. What’s worse, due to frequent LOS blockages by
crowds and environmental dynamics, such a cumbersome site
survey needs to be repeated over time.

Albeit inspiring, as illustrated in Fig. 1, none of previous
studies achieve enhanced localization accuracy and robustness,
meanwhile, ease start-up efforts. Intuitively, since mobile-
camera-based and ambient-camera-based methods enjoy their
unique advantages, can we fuse these two arising trends
together to push the limit of indoor localization and achieve
all three goals simultaneously? The integration will improve
the precision and robustness of localization, as the leverage
of mobile-camera-based methods could provide a more fine-
grained user motion pattern than wireless systems. On the
other hand, deployment costs will be reduced: frames captures
by surveillance cameras can be served as image database
for mobile systems. However, translating this intuition into
a practical system is non-trivial and faces three significant
challenges:

• Absence of absolute location. Ambient-camera-based
systems are capable of detecting pedestrians in video
frames, however, they cannot obtain absolute locations
of pedestrians in world coordinate (or in floor plan).
To solve the problem, previous works [8]–[10] need
manual calibration of the camera to acquire a projection
matrix, which is labor-intensive. The most recent work
iVR [11] leverages SfM algorithm to automatically cali-
brate cameras, however, it requires multi-cameras viewing
overlapping areas, thus merely fulfill a part of scenarios.

• Incorrespondence of identification. The user IDs pro-
vided by vision-based approaches are typically the labels
of pedestrians. However, the sequence of labels individ-
ually acquired from ambient-camera-based and mobile-
camera-based systems are unordered and mismatched.
This association is a prerequisite to integrate results from
each sub-system.

• Disparity of camera perspective. Although mobile cam-
eras and surveillance cameras view the same area, the
perspective and contents they obtain would vary a lot.
Specially, public ambient cameras are stationary and
view the area from a top-view, compared with horizon-
view from mobile cameras. It is impractical to directly

match their visual features using current computer vision
techniques.

To tackle all challenges above, we propose iMAC, an
integrated Mobile and Ambient Cameras based localization
that achieves sub-meter accuracy and enhanced robustness
with zero start-up efforts. To acquire absolute location, we
propose an automatic construction of projection map frame to
calibrate all the ambient cameras and acquire their projection
matrices without human intervention. To associate user identi-
fications from two sub-systems, we propose an instant crowd
fingerprints model (ICFM), a real-time visual description of
user motion patterns. Different from WiFi fingerprint, ICFM
exploits moving pedestrians as instant beacons to describe
user features, which is demonstrated to be more efficient
and timely. Meanwhile, we analyze the disparity of camera
perspective to find the same estimation error in location will
correspond to unequal errors in angle. In some critical areas,
a small variation in the location could introduce an extremely
large angle estimation error which seriously interferes the
result of localization. We mathematically quantify this unequal
measurement error and purposely adopt a confidence-aware
factor to analyze the similarity of visual features between
mobile cameras and ambient cameras.

We fully prototype iMAC on three different types of
smartphones and an Ubuntu server and conduct extensive
experiments in five typical public scenarios with a practical
ambient camera system, including a floor of an office building,
a teaching building, a holiday hotel, an art museum and a
shopping mall. Evaluation demonstrates that iMAC achieves
a mean error of 0.68m and a 80-percentile error of 1.0m in
all scenarios, which outperforms state-of-the-art smartphone-
based systems by 76.2%. The tracking success rate is more
than 90% in all scenarios, including sophisticated scenarios
with multiple static pedestrians, where previous methods all
malfunction.

The key contributions are summarized as follows:
• We propose a novel system to fuse ambient-camera-based

and mobile-camera-based approaches, making the most
of their complementary advantages while overcoming the
drawback about labor-intensive start-up efforts. To the
best of our knowledge, this is the first work that integrates
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Fig. 3. Indoor Geometric Reasoning by Line Segments with Crowd Mask

ambient camera and mobile camera together and achieves
enhanced localization accuracy.

• We design an automatic ambient camera calibration algo-
rithm without the prior knowledge of camera poses and
human intervention, compared with recent works.

• We fully prototype iMAC and conduct extensive ex-
periments in 5 different scenarios with 4 state-of-the-
art approaches. The evaluation results show that with
zero start-up efforts, iMAC achieves sub-meter accuracy
(0.68m location error on average), outperforming existing
works by 76.2%.

In the rest of this paper, we first present an overview in
Section 2, followed by automatic construction of projection
map in Section 3. Instant crowd fingerprint model is presented
in Section 4. Section 5 explains how we achieve precise
localization and tracking with confidence-aware estimation.
We introduce the settings of experiments in section 6 and make
detailed evaluations in Section 7. In the end, we review the
related work in Section 8 and conclude the proposed work in
Section 9.

II. SYSTEM OVERVIEW

Fig.2 sketches the system architecture of iMAC. Multiple
ambient cameras continuously monitor public areas and stream
the recorded videos to the server. Meanwhile, the mobile
camera carried by a user logs visual clues and streams the
processed features to the server.

A. Workflow from the user perspective

In iMAC, the user records the surrounding environment with
its monocular camera and sends them to iMAC server. In
return, iMAC server will send a location tag to the user on
the floor plan. During navigation, iMAC is compatible with
both visual targets (e.g a picture of Starbuck or a suspect) and
semantic location (e.g Room 211) as destinations. Finally, the
user will receive the optimum path and visual instructions to
achieve there.

B. Workflow from the server perspective

In the initialization stage (in Fig.2), iMAC server auto-
matically calibrates all the ambient cameras and obtains their
projection matrices with zero effort.

In the localization stage, a user sends a query (including
images of the environment and description of the destination)
to iMAC server. First, a rough location is estimated by a
place recognition system called FAB-MAP [18]. Afterwards,

to achieve precise localization, we put forward Instant Crowd
Fingerprint Model which identifies the user appearing in the
candidate areas. During matching period, we mathematically
quantify unequal estimation between ambient cameras and
mobile cameras, and achieve precise tracking by confidence-
aware estimation. After locking the user and obtain his loca-
tion, iMAC sends the optimum path and visual instructions to
the user.

III. AUTOMATIC CONSTRUCTION OF PROJECTION MAP

Automatically acquiring projection matrix is an indispens-
able prerequisite to enable ambient-camera-based navigation
to acquire absolute location without human intervention. Most
previous works depend on manual measurement to cali-
brate ambient cameras, which is a labor-intensive and time-
consuming process. Existing techniques including SfM and
visual SLAM require hundreds of overlapping images from
different perspectives to reconstruct 3D model of objects,
which is unaccessible towards sparse distributed ambient cam-
eras. Most recent work iVR [11] constructs semantic map
requiring two ambient cameras to view same area, which is
a strong assumption and invalid in most cases. We design
a scheme combining floor plan to automatically calibrate
ambient cameras and acquire their projection matrix with no
assumption and other prior information.

A. Original Camera Pose Estimation

iMAC combines the idea of SfM and crowd trajectory to
calibrate the first batch of ambient cameras which monitor
corridors, coners and doors (Fig.3a). To calculate the map rela-
tionship between image-generated 3D point cloud and absolute
location, we adopt Indoor Geometric Reasoning [19] which
assumes that indoor environments satisfy the Manhattan World
assumption and recognize the three dimensional structure of
the interior of a building from a collection of line segments
automatically extracted from single indoor image. However,
merge and filter operations [15] fail to effectively extract
building structure from line segments (Fig.3b) due to clutter
of various objects in complex indoor scenarios. Inspired by
crowdsourcing strategy, we capture the trajectory of pedestrian
movements and generate a crowd mask (Fig.3c) through
particle filter algorithm. Assuming the appear and disappear
centers of the crowd as the doors or coners, we effectively
remove redundant line segments and extract building structure
(Fig.3d) corresponding to physical scale deriving from the
floor plan.
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Then, iMAC exploits the idea of Perspective-n-Point [20]
(PnP) to calibrate camera external parameters. Concretely,
after Indoor Geometric Reasoning we acquire a set of points
correspondences, each composed of a 3D reference point
Pi = (Xi, Yi, Zi)

T, i = 1, . . . , n, n > 4 expressed in world
coordinates and its 2D projection pi = (ui, vi, 1)

T, i =
1, . . . , n, n > 4 expressed in image coordinates. T is the
transformation matrix with which we can acquire the absolute
location of the points on image. Then it comes to solving an
optimizing problem to estimate the transformation matrix T:

T = argmin
T

e = argmin
T

1

2

n∑
i=1

∥∥∥∥pi −
1

si
KTPi

∥∥∥∥2
2

, (1)

where e is the cost function of reprojection error, si is the
depth of point Pi, K is the intrinsic matrix which assumed
easy to known from factory defaults.

B. Neighbour Camera Pose Estimation

Although we acquire satisfied pose estimation of some orig-
inal cameras, more ambient cameras whose monitoring areas
unmatching the condition have to be calibrated automatically.
Fortunately, for security reasons, ambient cameras systems
are required to cover public space [21] which means overlap
exists between neighbour cameras. However, these narrow
overlapping areas can not support the SfM algorithm to extract
enough corresponding feature points.
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Thanks to astonishing progress of pedestrian detection in
recent years, iMAC can calibrates neighbour cameras through
keypoints extracted from the same pedestrian appearing in the
overlapping area. Fig.4 illustrates the process of neighbour
cameras pose estimation.

First, iMAC topologizes the ambient cameras by their
neighbouring relations and selects a pair of know-unknown
cameras. Then, iMAC recognizes the same pedestrian in the
overlapping area through ReID (Pedestrian Re-Identification)
technique [22], [23] which performs well under tight spatio-
temporal constraint. To this pedestrian, iMAC adopts Open-
Pose [24] (a realtime approach to detect the 2D pose of

multiple people in an image) to extract his skelecton and select
his arthrosis as feature points in neighbour images. Afterwards,
iMAC exploits these corresponding points to calculate camera
pose estimation.

As shown in Fig.5, P is a pedestrian recognized in the
overlapping area of a pose-estimated camera 1 and a pose-
unestimated camera 2. S1 containing the foot keypoints on
the floor plane where Z = 0 and the rest keypoints are
contained in S2. According to the pinhole model, we get
pixel coordinates p1 = (u1, v1, 1)

T and p2 = (u2, v2, 1)
T

on image planes, which are corresponding points of point
P = (X,Y, Z)T:{

s1p1 = K1(R1P+ t1)
s2p2 = K2(R2P+ t2)

, (2)

where K1, R1, t1 are known parameters of calibrated camera
1 and K2, R2, t2 are unknown parameters of uncalibrated
camera 2. Using PnP algorithm [20], we can obtain K2, R2,
t2 and acquire the projection matrix of camera 2.

Finally, we calibrate all ambient cameras and obtain their
projection matrices, which enable iMAC to acquire absolute
location of detected objects in world coordinates.

IV. INSTANT CROWD FINGERPRINT MODEL

Mobile-camera-based navigation depends on high-quality
recognition of the landmark, which suffers from environment
fluctuations and frequent LOS blockages of crowds. Although
ambient camera offers instant information of environment, it is
unworkable to directly match images from the mobile camera
and the ambient camera since perspective disparity. Conversely
thinking, the crowd not only leads to LOS blockages but also
offers a unique description of pedestrian location and motion
pattern. iMAC proposes a brand new model called Instant
Crowd Fingerprint Model to discern different pedestrians
based on the description of crowds.

Fig.6 illustrates this process. First, iMAC sever uses Mo-
bileNetV3 (a class of efficient models for mobile vision
applications) [25] to detective pedestrians appearing in can-
didate areas and acquire their absolute locations. Afterwards,
we calculate the geometric estimation of each pedestrian
Pi, i = 1, . . . , n, n > 3 to distinguish each potential user.
Concretely speaking, each pedestrain Pi has a series of
angles αi = (αi1, . . . , αij , . . . αim), j = 1, . . . ,m, which
engendered with the rest m pedestrians in sight:

αij = arccos

−−→
PiPj ·

−−−−→
PiPj+1∥∥∥−−→PiPj

∥∥∥ ∗
∥∥∥−−−−→PiPj+1

∥∥∥ (3)
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Up to now, iMAC sets up an instant fingerprint database
of candidate pedestrians. However,it becomes difficult to esti-
mate geometric relationship for mobile cameras due to scale
ambiguity of monocular vision system.
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Fig. 7. Extraction of Instant Crowd Feature from Mobile Camera Based on
Monocular Vision

Fortunately, we find it still accessible to obtain angle infor-
mations in (Fig.7). Pi = (xi, yi, zi) and Pj = (xj , yj , zj) are
3D world coordinates of two objects and P′

i = (x′
i, y

′
i, z

′
i) and

P′
j = (x′

j , y
′
j , z

′
j) are their projection on the image plane where

Z = f (f is focal length). P∗
i = (ui, vi) and P∗

j = (uj , vj)
are their 2D pixel coordinates in the image. According to
trigonometric constraints:

∠PiOPj = ∠P ′
iOP ′

j , (4)
our aim equals to calculate ∠P ′

iOP ′
j :

∠P ′
iOP ′

j = arccos
(x′

i, y
′
i, z

′
i) · (x′

j , y
′
j , z

′
j)

∥(x′
i, y

′
i, z

′
i)∥ ∗

∥∥(x′
j , y

′
j , z

′
j)
∥∥ (5)

Afterwards, iMAC obtains β = (β1, . . . βi . . . βs), i =
1, . . . s, s > 2 as an instant fingerprint on the mobile side,
which will be uploaded to iMAC sever and compared with
other fingerprints in ICFM database.

V. PRECISE LOCALIZATION AND TRACKING WITH
CONFIDENCE-AWARE ESTIMATION

However, it is quite unwise to directly compare the similari-
ties of geometric features between mobile camera and ambient
camera. Since each side of them has a different function of
error, among which the error of ambient camera depends on
location error, but the error of mobile camera comes from
angle error.

As shown in Fig.8.a, θ is an estimation error of angle from
the mobile camera, L is the corresponding location error from
the ambient camera, d is the unit distance from a candidate
pedestrian to reference pedestrian:

L = 2(M − 1)d sin
θ

2
(6)

When θ is set to a constant, L becomes a linear increasing
function of M . That is to say, to each candidate pedestrian, the
farther a reference pedestrian stands away, the more confidence
this reference pedestrian has.
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To eliminate the unequal error, we set different confidence to
angles in the fingerprint database. For example (in Fig.8.b), P1

is a candidate pedestrian, R1, R2, R3 and R4 are its reference
pedestrians, d1, d2, d3 and d4 (d2 > d4 > d3 > d1)are
distance between them. α1, α2 and α3 are fingerprints of P1.
According to Eq. (6), we first set the confidence of the farthest
reference pedestrian R2 to 1, and the rest R1, R3, R4 to d1

d2
,

d3

d2
, d4

d2
respectively. Then we set different confidence factor

of fingerprints according to the influence of two sides of the
angle: 

F1 = d1

d2
· 1

F2 = 1 · d3

d2

F3 = d3

d2
· d4

d2
,

, (7)

where F1, F2 and F3 are the confidence of α1, α2 and α3

respectively. Meanwhile, these confidence factors will be used
to calibrate the rough comparison during query process, which
means each likelihood of angles will multiply its correspond
confidence factor to get the last value of likelihood.
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Fig. 9. Query result of one frame by confidence-aware estimation

Fig.9 illustrates the estimation result of a frame. Usually,
we keep several candidate pedestrians a time and repeat the
same execution until the right pedestrian is locked.



TABLE I
DIFFERENT REPRESENTATIVE SCENARIOS OF EXPERIMENTS

Scenario Size(m2) Original Cameras Neighbour Cameras Frames Duration
Office building 600 3 6 20.3k 1h(office hours)&1h(rush hours)
Teaching building 1360 4 8 28.4k 2h(break hours)
Art museum 860 3 6 13.4k 1h(weekday)&1h(weekend)
Holiday hotel 1120 3 6 14.6k 2h(intermittently in 5days)
Shopping mall 2130 4 8 26.4k 1h(weekday)&1h(weekend)

VI. EXPERIMENT SETTINGS

A. Implementation Setup

We prototype iMAC front-end on three phones of different
types, including a Google Pixel, a HUAWEI P30 and an
iPhone X, which are equipped with different types of mobile
cameras and computing resources. Images are processed on the
phone and uploaded to a server, which is a desktop computer
with i7-9700F CPU of 4.7GHz main frequency and 16G
RAM, runs the Ubuntu 16.04 operation system. The ambient
camera we use is HIKIVISION-C3A ,which continuously
stream recorded videos to the server. We use Bundler [26]
for SfM, EPnP [27] for PnP. We also use VisualSFM [28] to
validate and visualize our results.

B. Implementation Scenarios

We implement experiments in five different typical public
areas, including a floor of an office building, a teaching
building, a holiday hotel, an art museum and a shopping mall.
In each scenario, We collect video data during different periods
of the day to guarantee the cover of different crowd flows
situations. The summarize of collected videos are listed in
Table I.

C. Ground truth Acquisition

To acquire the ground truth of cameras pose, we manually
measure the location and orientation of each ambient camera
in the scenarios. Then we use the measurements to calculate
projection as ground truth. In total, we collect 49 calibration
results of ambient cameras.

To acquire the ground truth of localization and tracking, we
invite 3 volunteers to label the video. They manually recognize
the user and localize the user through measured projection
matrices. Specifically, each user on each frame will have a
tuple (UID, Loc, ti), where UID is the ID of users, Loc is the
ground truth location and ti represents the timestamp of each
frame. Overall, our label collection contains 45K records.

VII. PERFORMANCE EVALUATION

A. Evaluation Methods

We evaluate the performance of iMAC in three fields.
First we evaluate the self-calibration performance of ambi-

ent cameras. Since original cameras and neighbour cameras
are calibrated through different approaches, they are analyzed
separately. We use the classic precise chessboard calibration
method in [29] as the control group. We contrast calibration
error of rotation and translation respectively.

Then we test overall localization accuracy of iMAC and
compare its performance with three different representative
indoor localization fusing surveillance cameras observation or
mobile camera observation:

• RAVEL [12]: RAVEL (Radio And Vision Enhanced Lo-
calization) is a generic vision+radio tracking framework,
which fuse visual signals from surveillance cameras and
WiFi radio signals and is the first paper that proposes a
practical solution of radio-aided visual tracking.

• PHADE [9]: PHADE is a recent vision+sensor tracking
framework, which relies on surveillance cameras viewing
users motion patterns, and compares the uniqueness of
these patterns with the patterns extracted from user’s IMU
data.

• iVR [11]: iVR is a most recent vision+radio+sensor
tracking framework, which combines observations from
surveillance cameras, WiFi radio signals and IMU data
and outperform the state-of-the-art system.

• ClickLoc [15]:ClickLoc is a typical high accurate lo-
calization system integrating mobile cameras and IMU
signals from the smartphone.

In the end, we focus on evaluating tracking success rate.
Since tracking success rate is the main influence factors of
localization based on ambient cameras. If tracking successful-
ly, the localization accuracy depends on projection accuracy
of ambient cameras, which depends on calibration accuracy
of ambient cameras. If tracking incorrectly, it will result in a
large bias in localization. During this period, we introduce a
classic vision-based object tracking system [30] as a contrast,
which is a robust collaborative model accounting for drastic
appearance change especially occlusion problem.

• SDC&SGM [30]: A robust appearance model that ex-
ploits both holistic templates and local representations,
which develops a sparsity-based discriminative classifier
(SDC) and a sparsity-based generative model (SGM).

B. Performance of Pose Estimation

As mentioned before, automatically acquiring camera exter-
nal parameters without human intervention is a basic premise
of all localization schemes based on ambient cameras. We first
test the calibration accuracy of original cameras. We choose
8 ambient cameras in each scenario and calibrate 40 original
cameras automantically in total.

1) Original Cameras Calibration: Fig.10.c illustrates that
our method achieves similar accuracy in total compared with
Zhang’s [29] standard result. Concretely speaking, our method
achieves better performance in rotation calibration (Fig.10.b)
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Fig. 10. Evaluation of Automatic Camera Calibration

in most scenarios and outperform Zhang’s output by 0.5
degrees on average. Meanwhile, it achieves worse performance
in translation calibration (Fig.10.a) in most scenarios. It is
because the corresponding points we take in our method is
far from the original camera and far apart from each other.
But the corresponding points on Zhang’s standard chessboard
are much closer to the original camera and close to each other.
Although the error of world coordinates of our corresponding
points is larger than that of Zhang’s corresponding points. It
induces worse performance in the translation calibration but
little influence in the rotation calibration.

Meanwhile, our method performs better accuracy in the
holiday hotel. Since the holiday hotel has more regular texture
especially in the area of guest corridors which offers more
corresponding points for calibration.

Eventually, our method achieves roughly the same perfor-
mance in average projection accuracy compared with Zhang’s
(Fig.10.c). Moreover, our result is more stable in each scenario
since it has a smaller range of waving. The rationale behind
is rotation accuracy becomes more influential to projection
than translation accuracy, when the distance between point
and camera grows. And as expected, our method performs the
best in the holiday hotel, which even outstands Zhang’s by
nearly 40%.

2) Neighbour Cameras Calibration: Afterwards, we e-
valuate the performance of neighbour cameras calibration.
Compared with original camera (Fig.10.d), the average pro-
jection error of neighbour camera is about 0.1m larger since
the cumulative error. Since pedestrians offer the key points
which play a decisive role in calibration, Fig.11 analyzes the
relationship between projection accuracy and the number of
pedestrians. Although the projection produces large errors at
the first three pedestrians, it becomes narrow and stable with
the increase of pedestrians and ultimately stabilizes after 10
pedestrians. As a result, we only list neighbour cameras in a
white list after being calibrated by more than 20 pedestrians.
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Fig. 11. Relationship between projection accuracy and number of pedestrians

Although we obtain precise calibration results on original

cameras, cumulative error will be transmitted to every next
neighbour camera. Fig.10.d analyzes this cumulation through
increasing layers of neighbour cameras. According to observa-
tion, the projection error is linearly proportional to the layers
of neighbour cameras in topology structure. And the fourth
layer of nighbour camera still has an acceptable projection
error in 1m. In practise, an uncalibrated camera may connect to
different original camera through distinct routines. Thus, this
camera will engender multiple calibration results derived from
different original cameras. Fortunately, this regularity directs
us to adopt projection result from neighbour camera which is
more closer to an original camera in topological relationship.

On the whole, we accomplish a reliable solution to self-
calibrate the global cameras which has similar accuracy to
Zhang’s standard results. Although Zhang’s method has been
a flexible and convenient calibration method, it still costs
us about half an hour and two professional volunteers to
calibrate each camera on average. Since Zhang’s method only
offers calibration result in coordinate of chessboard. It induces
additional labor and bias to manually calibrate the location of
chessboard. By comparison, our method leverages a zero-cost
and effective method to calibrate ambient cameras and help
construct the indoor projection map.

C. Performance of Localization

1) Overall Comparison: Compared with three other state-
of-the-art indoor localization systems, iMAC achieves the best
performance in overall accuracy(in Fig.12.a). The average
localization accuracy of iMAC is 0.68m, which surpasses
iVR by 34.7%, PHADE by 76.2%, ClickLoc by 77.4%, and
RAVEL by 83.4%.

In ambient-camera-based systems, it is noteworthy that
WiFi, IMU and vision make different contribution to the final
performance. Basically, WiFi plays a fundamental role to offer
a rough localization, which obtains 3-5m precision and avoids
excessive outliers. IMU plays a definitive role in distinguishing
pedestrians in proximate space, which differ in the shape
of trajectory. That is why RAVEL has better result(6m) in
maximum error than PHADE(7m), although it performs worse
in average accuracy. iVR integrates the advantages of both
IMU and WiFi to achieve an overall better localization system.
On this basis, iMAC replaces WiFi fingerprints with instant
visual geometry fingerprints, which performs more accurate,
realtime and low-cost.

In mobile-camera-based systems, location accuracy depends
on visual recognition of landmark. Once fails in recognition,
ClickLoc will degenerate into WiFi-based localization. Thus,
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Fig. 12. Evaluation of localization and tracking: (a) Overall location accuracy comparison with state-of-the-art systems. (b) Location accuracy in different
public scenarios. (c) Comparison of overall tracking success rate in different public scenarios. (d) Influence to tracking success rate from number of pedestrians.
(e) Performance comparison of different sampling time for retracking. (f) Performance comparison in complex scenarios with multiple static pedestrians.

ClickLoc has a better performance than RAVEL in average
accuracy but performs as bad as PHADE in maximum error.
iMAC leverages ambient cameras to enhance accuracy and
significantly surpasses ClickLoc in average accuracy and worst
accuracy.

For above reasons, iMAC attains outstanding location per-
formance through fusing ambient camera and mobile camera
and acquires better accuracy without human efforts.

2) Performance in Different Scenarios: To meticulously
evaluate iMAC, Fig.12.b depicts location accuracy in different
scenarios. The 80-percentile error in each scenario is within
2m, meaning iMAC has better performance in different envi-
ronments. Among them, teaching building, holiday hotel and
office building contribute better average accuracy, which are
0.65m, 0.68m and 0.74m respectively. However, art museum
and shopping mall contribute slightly worse average accuracy,
which are 1.22m and 1.31m. According to our observation,
visual occlusion is the primary cause of the drop in accuracy.
Complexity of crowd and environment still makes negative
influence to some degree.

Basically, iMAC resists the striking disparity between di-
verse scenarios and achieves an acceptable accuracy in all
scenarios.

D. Performance of Tracking

1) Overall Success Rate: Since iMAC, iVR, PHADE are
recent indoor localization systems drawing in surveillance
cameras, we further analyze the success rate of tracking.
For better understanding, we add a classical visual track-
ing algorithm (SDC&SGM [30]) into comparison. Fig.12.c
depicts the comparison in 3 distinct scenarios. Significantly,
iMAC, iVR and PHADE all achieve better success rate and
higher robustness than SDC&SGM, which proves combining

surveillance video and mobile sensors is a promising way to
enhance and promote indoor localization and tracking.

Moreover, iMAC achieves the highest rate in each scenario
and shows high robustness, keeping more than 90% success
rate regardless of environments. Meanwhile, iVR gains slightly
inferior success rate (in 4%) in teaching building and holiday
hotel, which is slightly superior (in 6%) than that of PHADE.
However, both iVR and PHADE have a more significant drop
of success rate in art museum than that of iMAC. Although all
these visual tracking algorithms suffer from visual occlusion,
iMAC still wins a relative robustness in complex environment
by adopting instant geometry features.

Thus, ICFM is demonstrated to have better performance and
robustness than using WiFi fingerprints in tracking people in
real scenarios. It is remarkable that iMAC gets rid of human
intervening in map construction, collecting radio fingerprints
and calibrating ambient cameras.

2) Number of Pedestrians: Obviously, the number of pedes-
trians influences the visual processing and disturbs tracking
scheme. We further test the influence of multiple pedestrians
in iMAC, which is shown in Fig.12.d.

iMAC achieves the best success rate when there are d-
ifferent number of pedestrians under the camera, which is
97%,95%,93%,88% for 4, 8, 12, 16 pedestrians respectively.
iVR also shows high accuracy over 90% within 8 pedestrians,
which precipitately drops down to 70% when there are 16
pedestrians. Worse still, PHADE drops down to less than 60%
when the number of pedestrians is 16. Although all three
methods degenerate with the increase of pedestrians, which
induces visual occlusion. iMAC shows significantly better
resistance against scenarios with more pedestrians.

Previous solutions depend on WiFi and IMU datas will lose
efficacy when more pedestrians appear with similar trajectory



and close location. Thus, their accuracy will deteriorate precip-
itately, which put those location-based indoor smart applica-
tion out of commission. However, the increase of pedestrians
meanwhile brings more complex geometry features of crowds,
which offers rich discrimination for ICFM module and benefits
iMAC in crowded public areas.

As a result, iMAC achieves better advantages in scenarios
with multiple pedestrians, which are insurmountable for all
previous methods.

3) ReTracking Delay: We also concern the time cost for
one-time tracking, since it has quite an influence on retracking
and relocation. As shown in Fig.12.e, iMAC shows stably
excellence success rates, which is 95%, 92%, 90% and 85%
when sampling time is set to 7s, 5s, 3s and 1s respectively.
iVR performs an equally better rate, which is 92% and 90% in
7s and 5s. However, iVR drops down to 82% and 72% when
sampling time reduces to 3s and 1s. Worse still, PHADE faces
this drop (78%) even earlier when sampling time reduces to 5s.
Eventually, PHADE reaps an unacceptable success rate (51%)
when sample time is compressed to 1s.

The above results verify that iMAC keeps an effective
performance in each short sampling. Thus it proves ICFM
is a highly discriminable real-time model compared with
IMU driven model. Since the latter depends on trajectory
difference over a period of time, which costs more time to
achieve a high accuracy as stable as iMAC. iVR alleviates this
shortage by fusing WiFi signals into consideration. However,
the improvement of fusing WiFi signals is also limited to a
short time slice. For instance, normal human walks about 1.2m
per second in a relaxed state [31], which is within the location
error engendered by WiFi signals.

iMAC performs extraordinary speed in retracking, which
enables users to gain precise location as soon as they pick up
their smartphones.

4) Static Pedestrian: Pedestrians regularly slow down or
halt their steps in public areas like art museum or shopping
mall. We evaluate the performance of iMAC in scenarios with
multiple static pedestrians. Concretely, we set different number
of static pedestrians ,and set one of them as a user. The result
is shown in Fig.12.f.

iMAC shows overwhelming advantages in distinguishing
different static pedestrians, achieving over 90% regardless of
numbers of pedestrians. Although iMAC, iVR and PHADE
all achieve high success rate when there is only one stat-
ic pedestrian. iVR suffers from multiple static pedestrians,
which soon linearly decreases to below 49% when there
are 8 static pedestrians. Worst of all, PHADE performs like
a random selection algorithm. The rational is IMU module
becomes completely out of action when there are multiple
static pedestrians. Due to the same reason, iVR performs
relatively better since WiFi module still makes efforts to offer
a rough difference in location.

Compared with state-of-the-art systems, iMAC overcomes
difficulties in dealing with scenarios with multiple static pedes-
trians, which is very common in public areas.

VIII. RELATED WORK

iMAC is the first work to combine mobile cameras and
ambient cameras. Here we list most recent works related to
our work.

A. Mobile-camera-based Localization

Vision has higher resolution than WiFi kind of radio signals
and IMU signals, several existing works leverage mobile
camera to improve performance of location service.

OPS [32] integrates GPS, inertial sensors and multiple im-
ages of a same object to furnish an outdoor object localization
system. Sextant [33] leverages environmental physical features
from inertial sensors and mobile cameras to triangulate user
locations using at least 3 photos. ClickLoc [15] fuses the
advantages of mobile cameras, WiFi fingerprints and IMU sig-
nals to achieve an easy-to-use image-based indoor localization
system with multi-modal sensing. Travi-Navi [34] and Pair-
Navi [17] both provide trace-driven navigation on smartphone.
Travi-Navi records high-quality images and sensor readings
during a guider’s walk on the navigation paths. The followers
track the navigation trace, get prompt visual instructions and
image tips. Pair-Navi exploits visual SLAM based on mobile
cameras to achieve a real-time P2P navigation without help of
other sensors in smartphone.

B. Ambient-camera-based Localization

Researchers integrate images from ambient cameras, radio
signals and IMU signals to achieve higher accuracy.

RAVEL [12] and EV-Loc fuses visual signals from surveil-
lance cameras with WiFi radio signals for higher location accu-
racy. [35] combines visual signals from surveillance cameras
and sensors signals from IMU to achieve robust pedestrian
tracking. Shortly afterwards, PHADE [9] extracts uniqueness
patterns of users in surveillance cameras and compares these
patterns with user’s IMU data to discern different users. Most
recently, iVR [11] designs a tightly coupled fusion algorithm
to exploit advantages of visual signals, IMU signals and WiFi
signals, which outperforms previous systems in accuracy and
performs more robust in multi-pedestrian scenario.

C. Easing start-up effort

Indoor floor plan construction has been a major bottleneck
for image-based localization, which is time-consuming and
labor-intensive. Tango [36] reconstructs 3D indoor structure
in real time fusing a depth camera and extra motion capture
sensors. Jigsaw [37] using SfM to construct 2D floor plan
with commodity smartphones by carefully designed ’Click-
Walk-Click’ model. IndoorCrowd2D [38] integrates mobile
cameras and inertial measurements to construct building in-
terior skeleton. ClickLoc [15] reduces the overhead of image
database by correlating image-generated relative models to
physical coordinates. iVR [11] further reduces human inter-
vention leveraging two ambient cameras to construct an indoor
semantic map



IX. CONCLUSIONS

In this paper, we present iMAC, a robust sub-meter accu-
racy indoor localization and navigation system which fuses
observation from mobile cameras and ambient cameras. By
integrating observation from two sub-modules, iMAC finally
overcomes their respective bottlenecks of heavy start-up efforts
and calibration efforts and achieves enhanced accuracy and
robustness. iMAC is implemented on several commercial
smartphones in different scenarios to validate its performance.
The result demonstrates that iMAC shows the light of offering
universal indoor location service and becoming a practical
indoor navigation system without human efforts.
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