
Edge Assisted Real-time Instance Segmentation
on Mobile Devices

Jialin Zhang1∗, Xiang Huang1∗, Jingao Xu1, Yue Wu1, Qiang Ma1, Xin Miao1,
Li Zhang2, Pengpeng Chen3, Zheng Yang1†

1School of Software and BNRist, Tsinghua University
2HeFei University of Technology

3China University of Mining and Technology
†Corresponding author ∗Co-primary author

Abstract—Accurate and real-time instance segmentation on
mobile devices enables a wide spectrum of applications such
as augmented reality, context-aware inspection and environ-
mental cognition. However, the computation resource demanded
by instance segmentation impedes its deployment on resource-
constrained commercial mobile devices. Prior studies enable
smartphones to conduct computational-intensive tasks in real-
time with the assistance of an edge server. However, simply
applying an edge-assisted framework hardly achieves delightful
segmentation performance due to the movements of devices and
targets, pixel-level precision requirements, and huge computa-
tional overhead even for edge nodes. This work proposes edgeIS,
an edge-assisted system that enables real-time and accurate
instance segmentation on mobile devices. edgeIS embraces the
mobile device sensing ability of surroundings and its own motion,
and redesigns an innovative mobile-edge collaboration paradigm
suitable for segmentation tasks. We implement edgeIS on a
lightweight edge node and different mobile devices. Extensive
experiments are conducted under four datasets. The results show
that edgeIS can run on mobile devices in real-time and achieve
a 0.92 segmentation IoU, outperforming existing state-of-the-art
solutions. We further embed edgeIS in an AR-based inspection
system deployed in an oil field and the performance of edgeIS
meets the demand of the industrial scenario.

I. INTRODUCTION

Instance segmentation aims at detecting and segmenting
object instances in an image [1] and lies in the heart of nu-
merous applications in areas such as robotics and image/video
retrieval. Nowadays, the ability to perform real-time instance
segmentation on mobile devices (e.g., smartphones, smart
glasses, light-weight robots or drones) also gradually becomes
a vital part of Augmented Reality (AR) [2], autonomous
driving [3], context-aware localization [4], etc.. For instance,
in safety-critical applications in complex environments, robots
or drones need to perceive objects and humans instantly, espe-
cially their contours; and in AR applications, understanding the
spatial layout of objects through semantic segmentation will
enhance the realism of virtual effects rendering and provide
immersive experiences for users [5]. However, Deep Learning
(DL) models of instance segmentation tasks usually contain
tons of parameters and thus require powerful GPUs (e.g., Titan
V, Titan RTX) to achieve both high accuracy and real-time
performance [6]. While there has been significant progress in
DL acceleration [7], [8], thus far, no prior work could perform
instance segmentation inference at real-time speeds (e.g., 20-
30 fps camera rate) on commercial mobile devices.

Fig. 1. The user interface of edgeIS. We deploy edgeIS in one of the
world’s largest oil-field and provide an AR-based solution for efficient
and intelligent industrial inspection. edgeIS achieves real-time and high-
precision segmentation on light-weight mobile devices with the assistance
of a commercial edge node.

To date, edge computing has been gaining increasing re-
search interests and makes it feasible to run some tasks
with high computation overhead on mobile devices. With the
assistance of edge nodes or servers, computational-intensive
yet delay-tolerant computation could be offloaded to the edge,
while the mobile devices only focus on those light-weight
yet time-sensitive tasks [9]. Pioneer studies [10]–[14] enable
mobile devices to perform accurate object detection tasks in
real-time with edge assistance. Specifically, the most recent
works, EdgeDuet [10] and EAAR [11], adopt a prevailing
“track+detect” framework [12] where a mobile device uses
cached results to track some objects in the current frame
and an edge node detects those objects merely in selected
keyframes to further update the mobile cache (Section II-A).

Inspired by current practice, an intuitive solution is to
exploit edge offloading to realize real-time segmentation. We
attempt to embed such an edge-assisted “track+detect” frame-
work into an instance segmentation system to provide an AR-
based system for intelligent industrial inspection. As shown
in Fig.1, when a user points to a region (i.e., a set of pixels),
an ideal system would provide semantics (e.g., oil separator,
tube) about it and renders associated industrial information
in his view. In our case, both real-time and high-precision
segmentation performance on a light-weight mobile device
(e.g., AR glasses) are desirable: a semantic misunderstanding



0 5 10 15 20 25 30
Frame

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy
 (I

oU
)

EAAR (Detection)
EdgeDuet (Detection)
EAAR (Segmentation)
EdgeDuet (Segmentation)

(a) Mobile Tracking Performance
Detection Task Segmentation Task

(b) Edge Inference Performance

Fig. 2. An evaluation of existing solutions used for segmentation tasks. The
frame rate is set at 30 fps and detailed setups are provided in Section VI-B.
(a) We leverage the accurate detection bounding box or segmentation mask
at frame #0 as the cached result and use the trackers proposed in EAAR
and EdgeDuet to track it among adjacent frames respectively. As seen, the
segmentation mask tracking performance degrades significantly as the inter-
frame interval increases compared with the detection task, and drops >30%
with a merely 10 frames’ interval (0.33s). (b) Unlike YOLO v3 which achieves
both an accurate (> 0.98 IoU) and real-time (< 30ms delay) detection
performance, the two segmentation models, Mask RCNN (0.92 IoU with
400ms delay) and YOLACT (0.75 IoU with 120ms delay), make a trade-
off between inference accuracy and latency.

of merely a few pixels will result in rendering the wrong infor-
mation; and the user’s view changes rapidly due to the motion
of objects and himself, thus requiring a lower end-to-end
latency. Unfortunately, we eventually find existing solutions
significantly fall short in performing the more complicated
instance segmentation than the object detection task. The grand
challenges are twofold:
• Cached results are hard to reuse on mobile. Unlike
detection tasks, object segmentation requires a compact pixel-
level image mask rather than a rough region-level bounding
box for each object. Due to the movement of the object being
tracked and the camera itself, the pixel association varies
greatly among frames. Existing object trackers [10], [11], [15]
thus cannot transfer the complicated masks among adjacent
frames in fine granularity. To validate our analysis, we measure
the existing solutions’ mobile side tracking performance under
different tasks. As shown in Fig.2a, the performance drops
drastically when handling the segmentation task.
• Heavy DL models are difficult to accelerate on edge.
Unlike well-studied fast object detection DL models (e.g.,
YOLOv3 [16] with 65 GFLOPs1), it’s still difficult to achieve
real-time yet high-precision instance segmentation even on
an edge server due to the huge computational resource over-
head (e.g., Mask R-CNN [17] with ResNet-50 FPN has 294
GFLOPs and a relative light-weight YOLACT [8] still has
118 GFLOPs). As demonstrated in Fig.2b, compared with
YOLOv3, it’s still challenging for Mask RCNN or YOLACT
to achieve an accurate and real-time segmentation perfor-
mance. It’s worth noting that commercial yet resource-limited
edge nodes (e.g., Nvidia Jetson TX2 [18], AGX Xavier [19])
are more preferred due to the limitations such as space and
electric power constraints in actual industrial deployments,
which further boosts the inference delay.
In summary, there still lacks an edge-assisted solution applying
to real-time instance segmentation tasks.

1Giga Floating-point Operations (GFLOPs) is a golden metric indicating
the computational overhead of a DL model

Nowadays, commercial mobile devices are granted with
capabilities of self-tracking and sensing the ambient environ-
ment. For instance, existing AR frameworks such as ARCore
and ARKit leverage visual odometry (VO) to track the pose
of the smartphone [20]. We found an opportunity to integrate
VO into the edge-assisted framework to realize real-time
segmentation on mobile devices. Our key insight is that the
results (poses of a mobile camera and 3D feature points of
observed objects) acquired from VO could be leveraged to (i)
transfer the segmentation masks between adjacent frames by
exploiting the spatial projection relationship between them;
and (ii) accelerate the mask inference process. As the pre-
diction result (i.e., transferred mask) covers the object, a DL
model on the edge could thus attend to a smaller region around
it, reducing computation operations.

To this end, we propose edgeIS, the first edge-assisted
framework that enable real-time Instance Segmentation on mo-
bile devices. edgeIS re-designs the well-studied “track+detect”
paradigm and provides a “transfer+infer” mobile-edge col-
laboration framework, where mobile devices leverage visual
sensing ability to transfer cached segmentation results while
the prediction results are also leveraged to accelerate the edge
side inference. Our design of edgeIS excels in three unique
aspects as follows.

First, we introduce a motion aware mobile mask transfer
module to transfer the segmentation result from a previous
keyframe to the current frame (Section III). Implementing this
basic idea is non-trivial since existing VO algorithms merely
maintain a 3D map of feature points that are much sparser
than compact pixels in the image plane, and it’s typically
unknown whether a feature point belongs to the object [21].
As a consequence, only a few pixels on the target object can be
tracked, which is inadequate for the prediction of an accurate
mask. In edgeIS, we enrich the representations of concerned
objects and keep track of their motions as well as the device’s
to assure the smooth mask transferring.

Second, we design a contour instructed edge inference
acceleration scheme on the edge (Section IV). With motion-
aided predictions (i.e., transferred masks), edgeIS monitors
and discards unnecessary operations in the DL model, thus
reducing inference latency without compromising accuracy.

Moreover, we present a content-based fine-grained RoI
selection strategy to effectively compress the transmitted data
(Section V). edgeIS divides each frame into tiles of different
compression levels based on its content and upgrades a tile-
level frame encoding scheme [10] to reduce transmission
latency without harming the performance on both sides.

We fully implement edgeIS’s server side on an Nvidia
Jetson TX2 and mobile side on three different types of mobile
devices. We conduct extensive experiments under different net-
work conditions and examine edgeIS on three public datasets
and a self-labeled dataset with more than 19k frames. We
also compare edgeIS with two state-of-the-art related works,
EdgeDuet [10] and EAAR [11]. The results show that edgeIS
achieves an average frame rate of 30fps with 0.92 segmenta-
tion IoU (intersection over union), improving the accuracy by
10-20% and reducing the false rate by at least 70% compared
with previous studies.



Offload Update

…

Track Track
Cached ResultsCached Results

…

Mobile

Frame t Frame t+i Frame t+τ

EdgeDL ModelKeyFrame Results

Fig. 3. Overview of existing “track+detect” framework

Real-world deployment. We have developed a real-time mo-
bile AR inspection application based on edgeIS and deployed it
in one of the world’s largest oil fields for industrial equipment
inspection (Fig.1). Our field study consists of 8 mobile devices
connected with an Nvidia Jetson AGX Xavier [19] as the
edge node through WiFi and LTE connections. A one-week
pilot study shows that edgeIS is capable of providing real-
time segmentation and AR visual effects with an average
IoU accuracy of 0.87, and the computation overhead records
indicate that edgeIS can run stably for hours within the
resource constraints.

In a nutshell, our core contributions are three-fold.

• We propose edgeIS, as far as we are aware of, the first
system that enables mobile devices to perform instance
segmentation, an extremely resource-intensive task, in
real-time by re-designing the edge-assisted architecture.

• We integrate VO into the mobile-edge collaboration
system and design a “transfer+infer” framework that
achieves an innovative two-way facilitation. Not only the
mobile side can transfer segmentation results between
adjacent frames, but the inference of the heavy DL model
on the resource-constrained edge node is dramatically
accelerated.

• We extensively evaluate the performance of edgeIS and
compare it with two related works. The results show that
edgeIS achieves remarkable performance in all scenarios.
We also embed edgeIS in an AR-based inspection system
in an oil-field, and the segmentation accuracy and real-
time performance of edgeIS meet the demand of the
industrial scenario.

II. SYSTEM OVERVIEW

A. Existing Edge-assisted “Track+Detect” Paradigm

We first briefly introduce the prevailing “track+detect”
framework (Fig.3). On the mobile side, the detection results
of the current frame are obtained by adapting cached detection
results of prior frames using lightweight trackers (e.g., motion
vector [11], KCF [22]). Meanwhile, the cached results are
routinely updated by offloading some keyframes for relatively
expensive yet accurate object detection on the edge side (e.g.,
YOLOv3 [16], ViT [23]). Additionally, current efforts [10],
[11] also design region-of-interest (ROI) encoding or content-
prioritized image clips offloading schemes to reduce the data
transferred in-between, improving the real-time performance.

…

Transfer

…

Frame t Frame t+i Frame t+τ

Transfer

3.Motion Aware Mobile 

Mask Transfer

3.Motion Aware Mobile 

Mask Transfer

Object ModelObject ModelObject Model Cached ResultsCached Results

4.Contour Instructed Edge 

Inference Acceleration

4.Contour Instructed Edge 

Inference Acceleration

U
p

d
a

te

 KeyFrame t

Pruning

Edge

Light-weight 

Edge Node

Mobile

Semantic-based 

Upper-layer 

Applications

O
ff

lo
a

d

5.Content-based Fine-

grained RoI Selection

5.Content-based Fine-

grained RoI Selection

5.Content-based Fine-

grained RoI Selection

Infer

Fig. 4. System architecture of edgeIS

B. edgeIS’s ”Transfer+Infer” System Architecture

edgeIS aims to re-design the “track+detect” paradigm, mak-
ing it capable of addressing the heavy tasks of real-time
instance segmentation. Fig.4 sketches the system architecture
of edgeIS. From the top perspective, edgeIS proposes a “trans-
fer+infer” framework, which achieves a two-way promotion of
both mobile and edge sides. Specifically, on the mobile side,
we modify the primary functions of VO and integrate them
into the motion aware mobile mask transfer module. edgeIS
continuously tracks the motion of the device and models the
observed objects, and on the basis of these, computes the
masks for the current frame in real-time.

On the server side, a contour instructed edge inference
acceleration module is leveraged to speed up the inference
of the heavy DL model. Specifically, edgeIS deeply couples
the previous prediction results from the mobile device into the
DL model by dynamic anchor placement and RoI pruning.

Furthermore, we design a content-based fine-grained RoI
selection scheme to decide i) whether a frame will be sent
to the edge; and ii) where should we focus in the frame and
which irrelevant areas can be compressed. Benefiting from the
design, edgeIS significantly reduces the network bandwidth
dependency of the system without harming the performance.

III. MOTION AWARE MOBILE MASK TRANSFER

In edgeIS, we design a motion aware mobile mask transfer
scheme to enable mobile devices to accurately predict the
segmentation results of the current frame in real-time (i.e.,
with the 30 fps camera rate). As aforementioned, due to
the complexity of the instance segmentation task, previous
updating schemes (e.g., local tracker based on motion vector,
KCF or feature matching) can hardly achieve delightful mask
prediction performance.

In edgeIS, we leverage VO and embrace the awareness of
objects’ and the device’s motion to achieve accurate pixel-
level mask transfer between adjacent frames. The workflow



InitializationInitialization

Real-time Mask TransferReal-time Mask Transfer Motion Tracking

Pose EstimationPose Estimation

Object TrackingObject TrackingMask PredictionMask Prediction

Object Modeling

Feature 

Extraction

Feature 

Extraction

Mask-Assisted 

Mapping

Mask-Assisted 

Mapping

Initial Frames

& Masks

Frames

Masks

Fig. 5. The workflow of the Motion Aware Mobile Mask Transfer scheme

of mobile mask inference module is shown in Fig.5. In the
beginning, with consecutive frames and their corresponding
accurate masks from the edge server, edgeIS initializes the
pose of the mobile device and models the observed objects
in 3-D space. Once the initial map is constructed, the poses
of the device and observed objects are continuously updated
with a scheme of motion tracking. Then for each frame, edgeIS
leverages spatial information and previous masks to predict the
mask at the current pose. Details of each function are described
below.

A. Initial Object Modeling

To construct the 3-D model of the environment and objects,
edgeIS performs feature extraction and matching between con-
secutive frames to choose a set of feature pixels representing
the same 3-D points in the two frames. In our implementation,
we use ORB [24] feature for its efficiency in computing and
robustness against the change of viewpoints.

During initialization, a pair of video frames are selected to
estimate the starting pose and model the observed objects in 3-
D space. To select the two initial frames, edgeIS continuously
tries consecutive frames for motion estimation and chooses
a pair of them with enough parallax and matched feature
points to construct an initial map. The two determined frames
will then be sent to the edge server for masks with accurate
semantic annotations generated by deep learning models.

According to accurate masks from the edge server, the
features are divided into two groups. As illustrated in Fig.6a,
denote the two frames as Frame 0 and Frame 1, any pair
of features belonging to the background mask as p0 and p1,
and other matched features as q0 and q1. To better model
the objects of interest while avoiding heavy computation, a
selection process is executed on all features. For background
features, edgeIS will check whether they are too blurred or
too close to neighboring ones and filter out features that fail
the check. For features within masks, edgeIS first preserves
all features near the edge of the mask since pixels on the
contour are more representative for the object’s shape, and then
performs blurriness check on features inside the mask. Once
the selection of features is done, the relative pose (consisting
of a rotation matrix R10 and a translation vector t10) between
the two frames is computed by first using epipolar geometry
to solve fundamental matrix F10 [25].

pT
1 F10p0 = 0,

qT
1 F10q0 = 0,

(1)

Solving F10 requires no less than 8 pairs of features and
edgeIS will first uses all pairs of p0 and p1 since the pixels

of background are more likely to be static. Then the relative
pose between the two frames is solved by:

t∧10R10 = KTF10K, (2)

where K is the intrinsic matrix of the camera and (·)∧
calculates the skew-symmetric matrix from a vector. With
the recovered pose, VO triangulates 3-D points from selected
features and construct the initial map of the captured scene
(taking p0 and p1 as example):

s1R10(K
−1p0)

∧(K−1p1) + t∧10(K
−1p1) = 0, (3)

where s1 is the depth of features in Frame 1 and s0 can also be
computed using the same method. Once a 3-D point is created,
edgeIS annotates it according to its corresponding features. If
the two features belong to masks with the same label (e.g.
people or car), the 3-D point will be labeled as the same
class and otherwise as background. After initialization, edgeIS
obtains a starting pose for continuous motion tracking and an
annotated map that models its observed objects.

B. Motion Tracking
As the mobile device moves around, VO continuously tracks

its pose as well as updates the 3-D map. For the i-th coming
frame, VO first detects feature pixels in it and then matches
them to 3-D points in the map. With this correspondence from
2-D pixels to 3-D points, VO can solve the device pose of i-th
frame in the world coordinate Ti

CW = [Ri
CW|tiCW] by minimizing

the reprojection error between the map points projected to the
frame given the pose of the frame and the features in it. The
minimization can be solved as an optimization problem using
bundle adjustment [26]:

Ti
CW = argmin

Ti
CW

∑
k

∥∥π(Ti
CW,PW(k))− pi(k)

∥∥2
2
, (4)

where PW(k) denotes the k-th 3-D point in the map, pi(k)
denotes its corresponding feature in the i-th frame and π(·)
stands for the function of projecting a 3-D point to its pixel
location on the frame given the pose Ti

CW:

π(Ti
CW,PW(k)) = KRi

CWPW(k) + tiCW, (5)

Once the pose of the frame is determined, VO triangulates 3-
D points in the newly observed areas and the map gets updated
in the same frequency as input.

Especially, in our implementation, edgeIS also identifies the
3-D points belonging to moving objects and computes their
poses individually. The process of pose estimation as well as
tracking observed objects is shown in Fig.6b. To compute the
pose the mobile device itself, edgeIS mainly selects 3-D points
which are labeled as background and their matched features to
perform the bundle adjustment and get the current pose Ti

CW.
Then for each object, edgeIS uses all 3-D points belonging to
it and the corresponding features to estimate the device’s pose
relative to the object, denoted as Ti

CO. If the object is moving,
the estimated poses of the mobile device with two different
reference systems will be different. With this difference, the
object’s motion relative to the background can be computed
as:



Frame 0
Frame 1

: Feature Points Matching

: Map Points Construction 

  by Triangularization

: Camera Optical Center

: 2D Object Contour / Background 

  Feature Points

: 3D Constructed Contour / Background 

  Map Points

/

/

(a)

Frame i

Frame i+1

: Obtain Camera Pose 

  in the World-coordinate 

  System 

: Obtain Virtual Camera Pose 

  in the Object-coordinate

  System 

(b)

Fig. 6. Motion aware mask transfer module. (a) Initial object modeling. (b) Pose estimation and object tracking.

Ti
CO = argmin

Ti
CO

∑
k

∥∥π(Ti
CO,QO(k))− qi(k)

∥∥2
2
. (6)

To associate the dynamic object’s pose in real-world reference,
the following transformation is needed:

TOW = TOCTCW = T−1
CO TCW

=

[
RT

CORCW RT
CO(tCW − tCO)

0T 1

]
, (7)

where the TOW is the required pose of the dynamic object in
the world coordinate.

Leveraging the annotation and grouping of the 3-D points,
the pose of each object gets to be updated individually and
thus yields better performance in dynamic scenarios. Besides,
it’s worth mentioning that performing BA requires at least 3
pairs of 3-D points and matched features, which is a small
number. Therefore, if the number of points belonging to an
object is less than 3, edgeIS takes it as either it is too small
or too far away for accurate estimation.

C. Mask Prediction
The motion information and the 3-D map of observed scenes

that VO provides lay the foundation of predicting the mask for
the current frame without deep learning models. When a new
frame arrives, edgeIS first estimates its pose and updates the
map with it. However, to render the mask of each instance on
the frame, there are still several problems that need addressing.

The first one is to determine a set of previous frames
which edgeIS uses to predict the mask for the current frame.
By matching feature pixels with existing 3-D points with
annotations, edgeIS gets the initial information about what
objects appear on the current frame. For each object, edgeIS
searches the frame which meets the requirements of both
observing the object clearly (i.e. the object is fully captured
without occlusion) and sharing similar viewpoints with the
current one (the angle between the frames is not too large).
This process can be well integrated into VO structure since
each 3-D point stores the information about frames observing
it and the angle between poses can be easily computed.

After the source frames are selected, the next question is
how to use their object masks to compute one for the current

frame. Compared with the image resolution, the density of
features used for matching and map construction is pretty
sparse, which indicates that the mask can not be directly
reprojected onto the new one. To address this problem, a basic
observation is that the shape of a mask is determined by its
contour. Therefore, if the pixels on the edge of an instance
mask can be located on the new frame, the mask itself is
determined accordingly.

In edgeIS, we first extract the contour of the object mask
on the source frame using the findContours function in
OpenCV. The extracted contour, denoted as S, is represented
by a list of connected pixels. Then for all si ∈ S, if not a
feature pixel itself, edgeIS performs a search for k closest
features within the mask. k is an empirical value based
on our observation that the actual positions in 3-D space
corresponding to a small neighborhood of the object mask
are not likely to experience shape changes in depth (in our
implementation, we set k to 5). With the average depth as its
own depth, si can be projected to the current frame with the
relative pose and the projection function π(·). Applying the
procedure to all observed objects and labeling other pixels as
background, the mask for the current frame is generated by
edgeIS for future use.

IV. CONTOUR INSTRUCTED EDGE INFERENCE
ACCELERATION

As aforementioned, unlike previous object detection tasks,
the instance segmentation is still challenging to perform in
real-time with high accuracy even on an edge node or server.
In general, the latency of predicting instance masks takes a
large portion of total latency and thus significantly influence
the performance with a delayed image [12].

In edgeIS, we design the contour instructed edge inference
acceleration solution. We dig deeper into each functional
module of RoI-based segmentation DL models and eventually
find an opportunity to accelerate the model inference by
leveraging the instant prediction results for object contours
to discard redundant calculations. In what follows, we use
Mask R-CNN [17], one of the most famous and accurate
instance segmentation solutions, as a representative to illustrate
the modification we made on the network structure. We first
describe the scheme of dynamic anchor placement to explain



Fig. 7. Illustration of model acceleration. The computation of deep learning
model is reduced by two functions performing on different stages namely
dynamic anchor placement and RoI pruning.

how we use estimated mask to prune unnecessary operations
and then the design of RoI pruning which improves the
efficiency of selecting active areas.

A. Dynamic Anchor Placement

The architecture of Mask R-CNN consists of two stages.
The first stage is Region Proposal Network (RPN) which
proposes candidate object boxes for the following tasks. And
in the second stage, tasks including classification, object
detection and mask prediction are executed in parallel. When
taking an image as input without extra information, RPN needs
to slide a small network across the whole convolutional feature
map generated by the backbone network to propose initial
bounding boxes. Since the object of interest generally occupies
only a small portion of the image while the background takes
the majority, calculating at every sliding window location
in the feature map inevitably producing a large number of
redundant calculations.

With the transferred mask of the object from the mobile de-
vice, the model can be “instructed” to a perform more targeted
region proposal, inspired by which we design the dynamic
anchor placement. First, a surrounding box is calculated from
the mask of each object. Then all convolutional layers in the
backbone of RPN are registered with the size of feature maps
they produced since the FPN (Feature Pyramid Backbone)
can provide features from different levels. Apart from areas
containing objects, new areas captured by the mobile device
as mentioned in section Section V are also annotated with an
initial box. Once the feature for region proposal is determined,
each initial bounding box in the image will be downsampled
to form a rectangular area in the feature map according to
the scale from image size to feature size with an empirical
padding. As illustrated in Fig.7, to propose regions likely
to contain objects, the range of the feature map that RPN
needs to traverse and place anchors is limited within these
areas. Restricting areas based on the mobile side information,
dynamic anchor placement rid the RPN of a large portion of
unnecessary calculations.

B. RoI Pruning

At each sliding window location, several anchor boxes of
different shapes are used to generate possible regions with
box coordinates and class confidence. Though some selection
processes are executed to reduce the number of RoI used in
the second stage, with the prior knowledge of the approximate
location and the class of the object, this pruning process can
be optimized for better efficiency and accuracy.

First, edgeIS groups all RoIs by the area annotated in the
dynamic anchor placement. Then RoIs coming from the same
area of a known object with class label c are sorted according
to their confidence score on this class. In the sorted queue, an
IoU score is computed between each RoI and the initial box
of the object. (The computing metrics of IoU is described in
Section VI-B.) As shown in Fig.7, an RoI will be pruned if
there exists an RoI with both higher confidence score on class
c and IoU score with the initial box of the object. As for RoIs
from the area corresponding to the unknown contents in the
image, the Fast NMS introduced by [8] is applied to perform
the selection.

The intuition behind the pruning process is that for each
discarded RoI, there is a better candidate for accurate mask
prediction. By utilizing the prior information of the class and
the estimated location of the object, RoI pruning saves the
second stage where a mask is generated within each RoI from a
large portion of unnecessary computations. Besides, the prun-
ing of different classes can run in parallel while IoU computing
and batch sorting are already available in current frameworks.
Therefore, the operations can be efficiently implemented and
accelerated by standard GPU.

V. CONTENT-BASED FINE-GRAINED ROI SELECTION

The performance of the mobile device and the edge server
is also highly influenced by the transmission delay [27]. As
discussed in our previous work [10], the transmission scheme
should meet the requirements of both providing images (or
some critical areas in images) of high resolution for the
inference on the edge server and reducing transmission latency
for real-time performance on the mobile side. In edgeIS, we
propose a content-based fine-grained RoI selection scheme
that first decides the frame to be transmitted and then effi-
ciently compresses frames and masks on fine-grained RoI level
based on the awareness of image content.

To determine the timing of transmitting a frame to the
edge, edgeIS leverages the motion information obtained from
Section III-B. As the device moves, the content observed at the
current location is continuously updated with the device’s pose
and modeled objects. As illustrated in Fig.8b, if the proportion
of the features matched with unlabeled points (the yellow ones
in the frame) is larger than a threshold t, edgeIS will take it as
that a large area of the frame is new and thus needs accurate
pixel-level annotation (in practice, we set t to 0.25). Apart
from the unseen areas, edgeIS checks the motion of observed
objects, especially dynamic ones. If an object’s pose changes
significantly over a period, the transmission is also triggered
for mask correction.

The frame to be transmitted is first divided into several
different types of rectangular areas. As shown in Fig.8c,



(a) (b)

(c) (d)

Fig. 8. An example of the proposed RoI selection and image compression
module. (a) The original frame, the segmentation mask of a truck, and
feature points about static background (marked in orange) and dynamic objects
(marked in red). (b) A video frame to be transmitted after both the camera
and the object move. The yellow points indicate the feature points extracted
from newly emerging scenes. (c) Frame area partition according to different
contents. (d) Encoded frame with different compression levels for each region
in it.

for dynamic objects marked with red features and unknown
areas with yellow ones in Fig.8b, the corresponding areas are
assigned with low compression levels to preserve the high
quality of the image. The remaining blocks, containing either
background or static pixels (marked with orange features), are
compressed to low quality without harming the performance of
the segmentation model on the edge server. Put them together,
the eventually image with different compression levels for each
region is shown in Fig.8d.

Based on the definition of tile defined in HEVC [28], we
implement the encoding method by modifying Kvazaar [29]
which supports parallel tile encoding and therefore is suitable
for acceleration. For each tile of different compression level,
we encode the types and contour coordinates of objects it con-
tains along with its picture parameter set into the bit-stream of
the frame. Correspondingly, we modify the OpenHEVC [30]
to decode the blocks and provide the position information of
target objects to the inference acceleration module.

As for the mask generated on the edge, instead of transmit-
ting the whole mask back to the mobile device, edgeIS only
extracts and sends the contour and class label of each instance
back to the mobile device, which are enough to reproduce and
render the whole mask. By compressing individual blocks of
the frame differently according to their contents, our transmis-
sion module achieves the goal of reducing the amount of trans-
mitted data while maintaining high accuracy. By using pixel
coordinates rather than image representation, the transmission
cost of sending back masks is also considerably reduced.

VI. EXPERIMENTS AND EVALUATION

A. Implementation

Client. We implement the mobile part of edgeIS on mo-
bile devices, including an Apple iPhone 11 and a Samsung
Galaxy 10. The functions of the mobile module are mainly
implemented in C++ for ease of cross-platform deployment.
For input and output, we use OpenCV [31] for feeding video
frames at fixed 30 fps and rendering masks and visual effects
on the screen. The core parts of the mask transfer module

follow the workflow in Fig.5, we modify the VO from ORB-
SLAM [32] to realize motion tracking and object modeling,
based on which the functions of object tracking and mask
prediction are implemented. Specifically, we modify its feature
extraction and matching function to apply information from
the instance mask. In the tracking thread, we separate the
original motion estimation function to maintain both the poses
of objects and the mobile device in parallel. The triangulation
function is also rewritten to view the points belonging to target
objects as a whole rather than only operate on element level
(i.e. map points and frames), which exceedingly improves its
efficiency. The mask prediction function is added to output the
segmentation result once the tracking for the current frame is
done. Besides, an additional thread is used for communicating
with the transmission module to send frames according to the
mobile device and receive masks from the server.

Server. We deploy our edge-side module on an Nvidia Jet-
son TX2 edge server. For the deep learning model, we choose
Mask R-CNN [17] with a ResNet-101-FPN as backbone
feature extractor and the parameters are pretrained on COCO
image dataset [33]. Our contour instructed edge inference
acceleration as well as the Mask R-CNN is implemented in
python-3.6.5 with PyTorch-0.4.0 [34].

Remote Data Interaction. As introduced in Section V,
we implement our video encoder on the mobile side based
on Kvazaar [29] in C++ and the decoder on the server side
with the OpenHEVC [30] library. For information such as
vertices of the contour, we use C++ Boost [35] library for
the serialization and transmission between the two sides.

B. Experiment Setup

We perform an extensive experimental validation of edgeIS
on three public video datasets namely DAVIS [36], KITTI [37]
and Xiph [38] as well as a handcrafted dataset with typical
indoor and outdoor AR scenarios. The videos we select for
processing from the three public datasets contain a total
number of 6,834 frames and the videos in our dataset have
a total lasting time of 7.3 minutes with 13,276 frames. In our
experiments, all videos are set to an input rate of 30fps with
uniform resolution.

Similar to previous works, the most critical performance in-
dicators we care about an edge-assisted system are latency and
accuracy, since other factors all lead to a delayed rendering and
finally a decreased accuracy [12], [27]. In practice, we use the
average IoU representing the similarity between predictions
and ground truths to measure the accuracy of edgeIS. For an
object, denote the set of pixels in its ground truth mask as
Sgroundtruth and the set of pixels in the predicted mask as
Sprediction, IoU is given by:

IoU =
| Sgroundtruth ∩ Sprediction |
| Sgroundtruth ∪ Sprediction |

. (8)

A high IoU score indicates that the predicted mask covers the
ground truth without taking in too many unrelated pixels.

To evaluate the segmentation performance, we implement
two baseline approaches: running entirely on the mobile device
and on the edge node. The former one uses TensorFlow Lite
[39] to fully deploy the DL model on the mobile devices. The



0.0 0.2 0.4 0.6 0.8 1.0
Segmentation Accuracy (IoU)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

edgeIS
EAAR
EdgeDuet
On-Edge
On-Device

Fig. 9. Overall Performance Comparison

0.0 0.2 0.4 0.6 0.8 1.0
Segmentation Accuracy (IoU)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

edgeIS (5G)
edgeIS (2.4G)
EAAR (5G)
EAAR (2.4G)
EdgeDuet (5G)
EdgeDuet (2.4G)

Fig. 10. Performance with Network Conditions

EdgeIS EAAR EdgeDuet
Method

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 (I
oU

)

Accuracy

0

10

20

30

40

50

60

La
te

nc
y (

m
s)

Latency

Fig. 11. Overall Latency Comparison

0.0 0.2 0.4 0.6 0.8 1.0
Segmentation IoU

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Slow
Medium
Fast

Fig. 12. Impact of Movement Speeds

0.0 0.2 0.4 0.6 0.8 1.0
Segmentation IoU

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Easy
Medium
Hard

Fig. 13. Impact of Scene Complexities

latter one sends all frames to the edge to perform segmentation
and returns results to the mobile device with a best effort
strategy. Besides, we apply a motion vector-based scheme on
the mobile side to approximately track the mask locally.

Additionally, we modify two previous systems, EdgeDuet
[10] and EAAR [11], designed for real-time object detec-
tion with edge-assisted architecture to perform the instance
segmentation task. We adopt their transmission strategy and
replace the object detection model on the edge server with the
same Mask R-CNN as edgeIS uses. On the mobile side, we
adopt the local tracker proposed by them based on either KCF
or motion-vector to update the contour of observed objects
rather than detection boxes.

C. Performance Comparison

We first evaluate the instance segmentation accuracy and
latency of edgeIS and compared systems, which are most
relevant to user experience. In our evaluation, we adopt a
loose threshold of 0.5 and a strict threshold of 0.75 which are
commonly used in computer vision community to determine
an acceptable accuracy. IoU smaller than the threshold is called
a false result. We mainly focus on the strict threshold since
high accuracy is required for target application scenarios. For
each video clip edgeIS runs 3 times and calculate the mean
IOU value for each frame.

1) Overall Performance: Fig.9 illustrates the CDF of in-
stance segmentation accuracy. The false segmentation rate
of pure mobile computing and best-effort edge-assistance is
78.3% and 60.1%, respectively. With local tracker and trans-
mission schemes, EAAR and EdgeDuet reduce the false rate
to 21% and 39% respectively. outperforming these straight-
forward methods. However, the trackers designed for ob-
jection detection is still too coarse for segmentation task,
and the segmentation model fail to provide timely results
without acceleration. With motion information obtained for
more accurate mask prediction, the false rate of edgeIS is only
3.9%, reducing that of EAAR and EdgeDuet by 82% and 91%
correspondingly. Besides, the average accuracy of edgeIS is
0.92, improving that of the two systems by 10% and 20%.

2) Performance under different networks: Since the net-
work conditions vary in real scenarios and have an important
influence on edge-assisted systems, we further evaluate the
performance under different network settings including WiFi
2.4GHz and WiFi 5GHz. We first evaluate the segmentation
accuracy of edgeIS. As shown in Fig.10, for segmentation
tasks, the false rate of edgeIS under WiFi 2.4GHz and WiFi
5GHz is 6.1% and 4.1% respectively while the false rate of
EAAR and EdgeDuet under the fastest WiFi 5GHz is 21% and
41%, which will be higher when switched to WiFi 2.4GHz.
Under either network condition, edgeIS reduce the false rate
by at least 78% compared with EAAR and 83% compared with
EdgeDuet, proving effective in various circumstances.

3) Latency Comparison: Fig.11 shows the average latency
and accuracy on the mobile side of edgeIS and compared
systems under WiFi 5GHz. The average IOU of edgeIS is
0.89 while that of EAAR and EdgeDuet is 0.83 and 0.78
respectively. As for the time of processing each frame, the
average latency of edgeIS, EAAR and EdgeDuet is 28ms,
41ms and 49ms correspondingly. With input video of 30fps,
latency longer than 33ms accumulates and eventually results
in a delayed mask rendering on a later frame, which explains
strong relevance between the accuracy and latency. Apart
from the impacts of model acceleration which is discussed
in the following section, our content-based encoding scheme
also helps with compressing the frame with little influence
on segmenting the objects. On the contrary, EdgeDuet only
preserves small objects in high resolution which leads to a
harmed accuracy of large objects and EAAR predicts RoI
using motion vector which is more coarse and leaves room
for further compression.

D. Robustness Evaluation

1) Camera Motion: To evaluate edgeIS’s robustness against
different moving status, we record videos of the same route
with people walking, striding and jogging. Fig.12 shows that
the false rate of edgeIS is 4.7%, 9.8% and 29.9% respectively
in slow, medium and fast circumstances. In the worst case,
edgeIS can still achieve an average IoU of 0.82. The results



Baseline Dynamic Anchor Placement RoI Pruning All
Modules in CIIA

0.90

0.92

0.94

0.96

0.98

1.00
Ac

cu
ra

cy
 (I

oU
)

Accuracy

0

100

200

300

400

La
te

nc
y (

m
s)

RPN Latency
Inference Latency

Fig. 14. Effectiveness of Model Acceleration

30 60 90 120 150Time (s)
20%

40%

60%

80%

100%

CP
U 

Us
ag

e

CPU RAM

0

500

1000

1500

2000

M
em

or
y U

sa
ge

 (M
B)

Fig. 15. CPU and Memory Usages on Device

Baseline w/ CFRS w/ CIIA w/ MAMT All
Components in edgeIS

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 (I
oU

)

5G
2.4G
LTE

Fig. 16. Effectiveness of each Component

0.0 0.2 0.4 0.6 0.8 1.0Rendering Accuracy
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Visual Effect Accuracy
Segmentation Accuracy

Fig. 17. Rendering Accuracy

demonstrate that with motion information used for predicting
masks and transmitting data, edgeIS proves robust against
various motions and competent for most application scenarios.

2) Scene Complexity: To evaluate edgeIS’s performance in
various scenarios, we manually arrange scenes of different
complexity. The number of objects in simple scenes is no more
than three and rises to ten in medium scenes. In scenes of hard
level, objects will move during the experiment. As shown in
Fig.13, the average accuracy in terms of IoU in easy, medium
and complex scenes is 0.91, 0.88 and 0.83, respectively. In
scenes where objects move during the process, the false rate of
edgeIS is 19.7%, indicating that most of the observed objects
can be well segmented. The results prove that tracking objects’
3-D poses effectively improves the robustness of edgeIS in
dynamic environments, making it applicable in real scenarios.

E. Benefits of Individual Components
We further analyze the three core components of edgeIS,

particularly the performance gains that each brings to the
overall system. In the following, we abbreviate the three mod-
ules, motion aware mobile mask transfer, contour instructed
edge inference acceleration, and content-based fine-grained
RoI selection as MAMT, CIIA, and CFRS, respectively.

1) Benefits of Individual Modules: In this part, we analyze
the improvements obtained with the three core components in
edgeIS individually. The baseline method we use is the best-
effort edge-assistance with motion vector tracking mentioned
in Section VI-B. As shown in Fig.16, with CFRS to reduce
transmitted data, edgeIS achieves a more even performance
under different network conditions and the accuracy is im-
proved by 3-7% due to reduced transmission latency. With
CIIA, the inference latency on the edge is significantly reduced
(the evaluation is shown in Fig.14) and thus provides more
timely results. The accuracy is improved by 12-14% under
different network connections. The improvement gained with
MAMT is more than 19% since motion information directly
benefits mask prediction on the mobile side. Compared with
baseline methods, edgeIS achieves an overall improvement of
27% on accuracy under all network conditions.

2) Benefits of Model Acceleration: We further examine
the latency improvement that model acceleration brings to
Mask R-CNN. The overall latency is divided into RPN latency
and inference latency. As in Fig.14, with dynamic anchor
placement, RPN latency is reduced by 46% benefiting from
discarding unnecessary anchor computation and inference
latency is reduced by 21% with less RoI produced. With
RoI pruning, the inference latency is reduced by 43% for
redundant RoIs are not used for further inference. Overall,
the model acceleration module reduces the latency by 48%
while maintaining an accuracy higher than 0.92.

F. Resource Overhead
1) Mobile Resource Usage: As depicted in Fig.15, we

measure the CPU and memory usage of edgeIS for a period
of time after initialization on an iPhone 11. The CPU usage of
the system is around 75% and the memory usage is increased
by nearly 2MB/s. The increase in memory usage comes from
the recording of new data in picture frames and local maps.
Through the additional clearing algorithm, the system can
periodically clear the data of low utilization to control the
global memory usage within 1GB, allowing edgeIS to run
smoothly on the latest mobile phones.

2) Power Consumption: We record the power consumption
of an iPhone 11 and a Samsung Galaxy 10 starting with full
power for 10 minutes through the management application
The experiment is repeated dozens of times. On average, the
power consumption of edgeIS in 10 minutes is 4.2% and 5.4%
respectively on iPhone11 and Galaxy 10, which is comparable
to running ARKit and ARCore demo applications continuously
for the same time duration.

G. Case Study
Based on edgeIS, we develop a real-time AR inspection

application and test it in one of the world’s largest oil fields
in the Middle East. Our system uses an Nvidia Jetson AGX
Xavier as the edge node. For indoor scenarios and places near
the campus where WiFi connection can be established, we
provide 5 pairs of Dream Glasses as mobile devices. For other



circumstances such as a user checking equipment in locations
without WiFi signal covered, we use 3 iPhone 11 with LTE
connection instead. We conduct the study for a week and from
each device collect video clips of an hour long and summarize
our findings regarding system performance.

We measure the system accuracy in two perspectives. In
terms of segmentation accuracy, we use a same Mask R-CNN
model as the one used on the datasets to segment every frame
in the video clips offline as the ground truth and compare the
system output with it. Besides, we also evaluate the accuracy
of visual information such as equipment details rendered on
the frame. We select a consecutive video clip of 5 minutes
from each mobile device and randomly sample 1 frame out of
every 30 frames (the corresponding time length is 1 second).
For each frame, the users are asked to record the number of
objects they are interested in and the number of visual effects
they are satisfied with, based on which the average accuracy
of rendered information is calculated.

As shown in Fig.17, the average segmentation accuracy
is 87%, which is lower than that on the datasets but still
satisfying considering the more complicated scenarios and
longer latency in such outdoor field. The average accuracy for
the rendered information is 92% since the users tend to focus
more on objects that are either large or in the central position
in the frame which are well segmented and rendered by edgeIS
and ignore the small ones. Besides, the false segmentation and
rendering rate is 8% and 2% respectively, proving that edgeIS
is well capable of providing helpful AR assists.

VII. RELATED WORK

Instance Segmentation. Deep learning (DL) models have
been well studied in recent years to perform accurate instance
segmentation tasks. Typical methods usually follow the routine
of generating pixel-level segmentation results within a pro-
posed region [40], [41]. Mask R-CNN [17], one of the most
representative models in this category, adds a branch based
on Faster R-CNN [42] to perform segmentation in parallel
with object detection. Pioneer studies such as PANet [43]
and FCIS [41] make efforts to exploit information inside the
detection box to improve segmentation accuracy. Apart from
these phased solutions, there emerge end-to-end segmentation
models that are free of region proposal schemes using tech-
niques such as pixel clustering and coefficient regression [8],
[44]. However, these models are usually less accurate than
region-based ones and hard to decomposite, leaving little room
for improvement when deployed for mobile applications. In
edgeIS, we significantly reduce region-based models’ latency
with mobile side information while preserving their accuracy.

Edge Offloading. Offloading computational intensive tasks
to powerful edge servers to enable complex mobile applica-
tions has been a popular research topic. The most important
concern about various edge-assisted applications is the balance
between the two sides and latency incurred by offloading
[15], [27], [45]. In recent years, the “detect+track” framework
that requires key information from the edge server and per-
forms tracking locally on mobile devices has proved effective.
Some methods [12], [46], [47] design mechanisms to decide
whether to upload the content to the server or update the

result locally. Chameleon [14] and VideoStorm [48] apply
video configurations to achieve higher accuracy with the same
amount of resources on the server. Besides, some previous
systems focus on reducing transmission latency. The recent
work of Liu et al. [11] introduces an edge-assisted system
achieving high accuracy object detection and human keypoint
detection task on existing AR/MR systems running at 60fps for
both the object detection. EdgeDuet [10] further decomposite
the offloading pipeline to tile-level for more efficient video
transmission. While existing techniques mainly use the edge
server to assist mobile devices, edgeIS leverages information
unique on the mobile side to build a two-way instructional
system to achieve better performance in our “transfer+infer”
paradigm.

Visual Odometry. Visual odometry takes in consecutive
frames to estimate device trajectory and construct a 3-D map
of environment [49], [50]. Pioneer studies apply filtering-based
approaches [51], which are replaced by optimization-based
ones [52] for better accuracy and efficiency. ORB-SLAM [53],
one of the most representative work, uses ORB features for
tracking and mapping and achieves excellent performance.
Using visual clues, visual odometry has the potential of
combining with other vision-based methods to realize various
applications [3]. edgeIS exploits the sensing ability of visual
odometry and integrates it with accurate instance annotations
to enable robust object tracking and segmentation on mobile
devices.

VIII. CONCLUSION

In this work, we propose edgeIS, an instance segmentation
solution for mobile devices, achieving accuracy and real-
time simultaneously with the assistance of edge computation
resources. Distinguished from existing “track+detect” edge-
assisted architecture, we re-design and propose a fresh “trans-
fer+infer” mobile-edge collaboration paradigm which achieves
a two-way promotion of both sides by fully exploiting the mo-
tion and environmental sensing capabilities of mobile devices.
We fully implement edgeIS on a resource-limited edge node
and different types of mobile devices and extensively evaluate
the performance on four datasets under different network
conditions. The experimental results, as well as a field study
in an industrial scenario, show that edgeIS achieves satisfying
results in all scenarios.

ACKNOWLEDGMENT

We sincerely thank the anonymous reviewers for their
helpful comments and advices. This work is supported in part
by the NSFC under grant No. 61832010 and No. 61972131.

REFERENCES

[1] A. M. Hafiz and G. M. Bhat, “A survey on instance segmentation: state
of the art,” International journal of multimedia information retrieval,
pp. 1–19, 2020.

[2] “Hololens,” https://www.microsoft.com/en-us/hololens.
[3] F. Ahmad, H. Qiu, R. Eells, F. Bai, and R. Govindan, “Carmap: Fast 3d

feature map updates for automobiles,” in 17th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 20), 2020,
pp. 1063–1081.

[4] K. Kanistras, G. Martins, M. J. Rutherford, and K. P. Valavanis, “A
survey of unmanned aerial vehicles (uavs) for traffic monitoring,” in
2013 International Conference on Unmanned Aircraft Systems (ICUAS).
IEEE, 2013, pp. 221–234.



[5] J. Xu, G. Chi, Z. Yang, D. Li, Q. Zhang, Q. Ma, and X. Miao,
“Followupar: Enabling follow-up effects in mobile ar applications,” in
Proceedings of the ACM MobiSys, June 24-July 2 2021.

[6] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and
D. Terzopoulos, “Image segmentation using deep learning: A survey,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[7] M. Gamal, M. Siam, and M. Abdel-Razek, “Shuffleseg: Real-time se-
mantic segmentation network,” arXiv preprint arXiv:1803.03816, 2018.

[8] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time instance
segmentation,” in Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2019, pp. 9157–9166.

[9] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-
aware video analytics on edge computing platform,” in Proceedings of
the Second ACM/IEEE Symposium on Edge Computing, 2017, pp. 1–13.

[10] X. Wang, Z. Yang, J. Wu, Y. Zhao, and Z. Zhou, “Edgeduet: Tiling
small object detection for edge assisted autonomous mobile vision,” in
Proceedings of the IEEE INFOCOM, 2021.

[11] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection
for mobile augmented reality,” in Proceedings of the ACM Mobicom,
2019.

[12] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in Proceedings of the ACM Sensys, 2015.

[13] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, and
J. Jiang, “Server-driven video streaming for deep learning inference,” in
Proceedings of the ACM SIGCOMM, 2020, pp. 557–570.

[14] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proceedings of
the ACM SIGCOMM, 2018.

[15] J. Xu, H. Cao, D. Li, K. Huang, C. Qian, L. Shangguan, and Z. Yang,
“Edge assisted mobile semantic visual slam,” in IEEE INFOCOM 2020-
IEEE Conference on Computer Communications. IEEE, 2020, pp.
1828–1837.

[16] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[17] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[18] “Nvidia jetson tx2,” https://developer.nvidia.com/embedded/jetson-tx2.
[19] “Nvidia jetson agx xavier,” https://developer.nvidia.com/embedded/

jetson-agx-xavier.
[20] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” in Proceed-

ings of the 2004 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2004. CVPR 2004., vol. 1. Ieee, 2004, pp.
I–I.

[21] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[22] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed track-
ing with kernelized correlation filters,” IEEE transactions on pattern
analysis and machine intelligence, vol. 37, no. 3, pp. 583–596, 2014.

[23] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[24] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in 2011 International conference on computer
vision. Ieee, 2011, pp. 2564–2571.

[25] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge university press, 2003.

[26] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustment—a modern synthesis,” in International workshop
on vision algorithms. Springer, 1999, pp. 298–372.

[27] Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, G. Wu, K. Ha, K. Elgazzar,
P. Pillai, R. Klatzky et al., “An empirical study of latency in an emerging
class of edge computing applications for wearable cognitive assistance,”
in Proceedings of the ACM/IEEE Symposium on Edge Computing, 2017.

[28] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou,
“An overview of tiles in hevc,” IEEE journal of selected topics in signal
processing, vol. 7, no. 6, pp. 969–977, 2013.

[29] “Kvazaar,” https://github.com/ultravideo/kvazaar.
[30] “Openhevc,” https://github.com/OpenHEVC/openHEVC.
[31] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.
[32] “Orb-slam2,” https://github.com/raulmur/ORB SLAM2.
[33] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014.

[34] “Pytorch mask r-cnn,” https://github.com/multimodallearning/
pytorch-mask-rcnn.

[35] S. Koranne, “Boost c++ libraries,” in Handbook of open source tools.
Springer, 2011, pp. 127–143.

[36] S. Caelles, J. Pont-Tuset, F. Perazzi, A. Montes, K.-K. Maninis, and
L. Van Gool, “The 2019 davis challenge on vos: Unsupervised multi-
object segmentation,” arXiv:1905.00737, 2019.

[37] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[38] C. Montgomery and H. Lars, “Xiph. org video test media (derf’s
collection),” URL: https://media. xiph. org/video/derf, 1994.

[39] “Tensorflow lite,” https://tensorflow.org/lite.
[40] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation via

multi-task network cascades,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 3150–3158.

[41] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolutional instance-
aware semantic segmentation,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 2359–2367.

[42] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, pp. 91–99, 2015.

[43] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for
instance segmentation,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 8759–8768.

[44] D. Neven, B. D. Brabandere, M. Proesmans, and L. V. Gool, “Instance
segmentation by jointly optimizing spatial embeddings and clustering
bandwidth,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 8837–8845.

[45] J. Xu, H. Cao, Z. Yang, L. Shangguan, J. Zhang, X. He, and Y. Liu,
“Swarmmap: Scaling up real-time collaborative visual slam at the edge,”
in Proceedings of the USENIX NSDI, 2022.

[46] K. Chen, T. Li, H.-S. Kim, D. E. Culler, and R. H. Katz, “Marvel:
Enabling mobile augmented reality with low energy and low latency,”
in Proceedings of the 16th ACM Conference on Embedded Networked
Sensor Systems, 2018, pp. 292–304.

[47] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in Proceedings of
the IEEE INFOCOM, 2018.

[48] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
delay-tolerance,” in Proceedings of the USENIX NSDI, 2017.

[49] A. J. Davison, “Real-time simultaneous localisation and mapping with
a single camera,” in Proceedings of the IEEE ICCV, 2003.

[50] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct
monocular visual odometry,” in 2014 IEEE international conference on
robotics and automation (ICRA). IEEE, 2014, pp. 15–22.

[51] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” IEEE transactions on pattern analysis
and machine intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[52] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in Proceedings of the IEEE ISMAR, 2007.

[53] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile
and accurate monocular slam system,” IEEE Transactions on Robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.


