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Abstract—Existing indoor navigation solutions usually require
pre-deployed comprehensive location services with precise indoor
maps and, more importantly, all rely on dedicatedly installed or
existed infrastructure. In this paper, we present Pair-Navi, an
infrastructure-free indoor navigation system that circumvents all
these requirements by reusing a previous traveler’s (i.e. leader)
trace experience to navigate future users (i.e. followers) in a
Peer-to-Peer (P2P) mode. Our system leverages the advances
of visual SLAM on commercial smartphones. Visual SLAM
systems, however, are vulnerable to environmental dynamics in
the precision and robustness and involve intensive computation
that prohibits real-time applications. To combat environmental
changes, we propose to cull non-rigid contexts and keep only the
static and rigid contents in use. To enable real-time navigation on
mobiles, we decouple and reorganize the highly coupled SLAM
modules for leaders and followers. We implement Pair-Navi on
commodity smartphones and validate its performance in three
diverse buildings. Our results show that Pair-Navi achieves an
immediate navigation success rate of 98.6%, which maintains
as 83.4% even after two weeks since the leaders’ traces were
collected, outperforming the state-of-the-art solutions by > 50%.
Being truly infrastructure-free, Pair-Navi sheds lights on practical
indoor navigations for mobile users.

I. INTRODUCTION

During the past decades, technologies using Wi-Fi [1] [2]
[3], RFID [4] [5], sound [6] and visible lights [7] etc., have
been proposed to shape a range of location-based services.
Therein, indoor navigation with a smartphone acts as a killer
application. All conventional navigation techniques, however,
require particular infrastructure, either pre-existing or dedicat-
edly installed, to be appropriately set up in advance in the
area-of-interests. Recently, an alternative Peer-to-Peer (P2P)
navigation is proposed to circumvent the pre-installation of
indoor localization services [8]. In this mode, a previous
traveler, named leader, records the trace information (e.g.,
turnings and certain ambient properties) and shares it through
the Internet to a later follower, who needs to travel to the
same destination. A typical example would be a self-deployed
navigation service to direct a customer to a shop, which
enables a shop owner to record such trace information from
the entrance of a large mall to his/her own shop and offer
them to potential visitors as guidance, without resorting to
any pre-deployed location systems provided by third parties.

Several pioneer works have demonstrated such a leader-
follower mode for P2P navigation [8]–[10]. These works
mainly leverage ambient Wi-Fi signals, in addition to inertial
sensor measurements and/or images captured by smartphone
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Fig. 1. Follower’s navigation interface of Pair-Navi

[11], as trace properties to synchronize leaders’ and followers’
traces. Although these works are inspiring, the pre-installation
of Wi-Fi and the error introduced by the dynamically changing
nature of Wi-Fi signal and the inertial sensors make them less-
than-ideal for practical usage.

Recently, two arising trends may overcome the above limi-
tations and underpin a practical solution to indoor navigation.
First, simultaneous localization and mapping (SLAM) technol-
ogy has been rapidly developed. For example, visual SLAM
has been enabled with a single camera [12]–[14], making it
feasible on commodity smartphones that usually have only one
camera on the back side. Second, vision capability has become
as a standard and continues growing more powerful on mobile
devices, allowing advanced vision tasks on mobiles.

In this work, we investigate visual SLAM with the power of
mobile vision and present Pair-Navi, a P2P indoor navigation
system that requires no pre-existing or dedicatedly installed
infrastructure, pre-deployed localization service, or indoor
digital maps. Visual SLAM utilizes one or more cameras to
explore an unknown environment by continuously locating
the cameara itself in the environment and meanwhile con-
structing a map of the environment [14]. Our approach is
built upon monocular visual SLAM with a single camera
commonly equipped on commodity smartphones. A leader of
Pair-Navi simply walks through a path recording a video clip
along the route and shares the trajectory video via a cloud
server for potential upcoming followers. Pair-Navi consumes
the video for SLAM and constructs the trajectory that the
leader has traveled. When a follower appears, he/she will
be provided with a leader’s trajectory as reference. On the
follower side, Pair-Navi also captures real-time video frames
and precisely locates the follower’s relative location to the
reference trajectory, accordingly navigating the follower by



timely promoting walking hints. As shown in Figure 1, both
the current scene and the reference trace will be displayed
to the follower. In addition, Pair-Navi handles navigation
deviation, which is necessary but neglected by existing P2P
navigation approaches. Without the need to instrument the
building-of-interests, Pair-Navi works in any scenes as long
as a camera-equipped smartphone is available.

However, translating visual SLAM into a robust navigation
system entails various challenges: 1) Environmental Non-
Rigidity. Most popular SLAM solutions assume rigid and
static indoor environments, where the surrounding scenes are
not supposed to change both when the SLAM is running
and after the map is constructed [13]–[15]. However, the
real world is time-varying due to considerable dynamics,
e.g., pedestrians, furniture changes, advertising screens, the
inherent object deformation, and lighting condition variations,
rendering the constructed trajectories inaccurate and difficult
to follow. As shown in Figure 2, such environmental non-
rigidity will cause errors in video frame matching and thus
significantly degrading visual SLAM. Although some SLAM
approaches attempt to reason about minimal non-rigidity with
restrictive applicability [14], [16], it still remains challenging
to employ visual SLAM for mobile indoor navigation in
vibrant scenarios full of dynamics, such as busy shopping
malls and large airports, etc. 2) Real-time. Visual SLAM
technologies typically require intense computation for several
core tasks including visual odometry and optimization, making
them difficult to run in real-time on commodity mobiles. A
practical navigation application, however, should locate the
user precisely, render the navigation path, and provide user-
friendly instructions, all in real-time. Applying visual SLAM
to real-time mobile navigation is a non-trivial task that calls
for significant efforts in system design and implementation.

To combat environmental non-rigidity, we propose to extract
and subtract the dynamic foregrounds, e.g., pedestrians and
other changing contents involved in the trajectory video and
keep only the rigid parts for SLAM. The key observations
are two-fold: 1) Video frames of typical indoor environments
usually provide abundant features for SLAM, allowing room to
sift out non-rigid contexts while keeping as good or even better
performance since the remained features are mainly from those
rigid and reliable objects. 2) Recent progresses in computer
vision, especially with the application of deep learning, make it
feasible for efficient and effective detection and segmentation
of non-rigid dynamic contexts inside a video [17]–[19]. Based
on these two insights, we employ Mask Region-based CNN
(Mask R-CNN) [19] to identify non-rigid objects and cull them
from the video feature set used for SLAM. By doing so, Pair-
Navi eliminates the impacts of the environmental dynamics,
thus retaining robust trajectories for leaders as well as precise
locations for followers.

To enable real-time navigation on smartphones, Pair-Navi
decouples the originally coupled SLAM modules and re-
assembles merely the necessary modules. For a follower,
rather than employing a complete SLAM system, we only
conduct relocalization to synchronize his/her relative walking
progress to a leader’s trajectory. Furthermore, we employ a
synchronization strategy for the basic visual navigation module
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Fig. 2. Illustration of feature point matching of two consecutive frames.
Feature points from rigid contexts are matched correctly (solid green lines),
while most of feature points from non-rigid contexts are mismatched (dashed
red lines), resulting in errors in camera pose calculation.

and non-rigid context culling module. By doing so, Pair-Navi
achieves real-time navigation on a mobile. In contrast, the
latest works [20]–[22] that attempted to incorporate semantics
for robust SLAM fail to operate in real-time.

We implement our system on the Robot Operating System
(ROS) platform [23] on the server and on ROS-Android [24]
on the phone side. Comprehensive experiments are carried out
in three buildings with various conditions over two weeks.
The results demonstrate that Pair-Navi achieves a remarkable
navigation success rate of 98.6%. Even after two weeks since
the construction of the leaders’ trajectory, the rate maintains
83.4%, outperforming the state-of-the-art Travi-Navi [10] by
50.9% and FollowMe [9] by 80.4%. Being truly infrastructure-
free, Pair-Navi takes an important step towards practical
indoor navigation for mobile users.

In summary, the core contributions are as follows.
• We present the first vision-based P2P navigation system,

which neither requires to instrument a building nor relies
on pre-deployed localization service with indoor maps.

• We employ non-rigid context culling by using Mask-
RCNN to overcome indoor environmental dynamics for
visual SLAM, which significantly improves the robust-
ness and precision of navigation.

• We implement a complete real-time system on com-
modity smartphones and extensively evaluate the perfor-
mance. The results show Pair-Navi achieves delightful
results and outperforms all existing solutions.

The rest of paper is organized as follows. We present an
overview in Section II and introduce visual navigation in non-
rigid environment in Section III. Real-time design and imple-
mentation is provided in Section IV, followed by experiments
in Section V. We review related works in Section VI and
conclude in Section VII.

II. OVERVIEW

A. Peer-to-peer Navigation
Different from conventional navigationsystems that rely on

pre-deployed localization services, Pair-Navi works in an easy-
to-deploy P2P navigation mode. P2P navigation also circum-
vents the need of indoor digital maps, which are sometimes
difficult to obtain and process. There are two key roles in a P2P
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Fig. 3. Pair-Navi architecture

navigation system, i.e., a leader and a follower. The basic idea
is to reuse the experience from earlier travelers who become
leaders. Anyone walked through a path can serve as a leader
for that particular path by contributing corresponding trace
information, i.e., certain trace data (e.g., Wi-Fi signal series,
goemagnetic series and IMU sensor measurements [8]–[10],
or video clips in our case) together with the automatically
extracted walking hints (e.g., heading, turning, climbing, etc.).
The trace information is later requested by and sent to a
follower for his/her reference. The navigation for the follower
is then achieved by synchronizing his/her relative location to a
leader’s reference trajectory. Note that a user can participate as
either a leader or a follower, depending on specific scenarios.

P2P navigation is in particular useful as a fast- and easy-
to-deploy service for ordinary users who demand to provide
small-scale navigation. For example, a shop owner can provide
a self-owned navigation service to guide potential customers
to his/her own shop, and a conference organizer can direct
attendees to the conference location with little efforts. Among
many other similar scenarios, P2P navigation, which is self-
deployable and almost zero-effort, acts as a promising al-
ternative to traditional centralized localization and navigation
systems.

B. System Overview

Pair-Navi enables this kind of leader-follower navigation by
leveraging mobile vision capabilities. The system architecture
is illustrated in Figure 3. For both leaders and followers, they
walk naturally in the course and hold their smartphones to
shoot videos along the trace. Every video frame captured
by his/her smartphone camera is sent to a cloud server via
network for further processing. Although we leverage SLAM
technology, our system does not involve all modules for leader
and follower. For a leader, we feed the video clips into
two SLAM modules, i.e., Visual Odometry and Trajectory
Construction, to simultaneously form a trajectory (a sequence
of 3D camera poses) and construct a map (3D map points and
key frames). When the trace is completed, the trajectory and
map data, in addition to leader-labeled starting and destination
places, will be stored on the server.

In case a follower arrives, he/she first chooses the destina-
tion and will be provided with a reference trace leading to
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Fig. 4. Illustration of Visual Odometry

the same destination, contributed by some leader. When the
follower walks, our system will immediately locate his/her
relative location to the reference trace by relocalization based
on the currently captured video frame. If relocalization suc-
ceeds, the follower will be relatively located and accordingly
instructed with timely walking hints that come with the
leader’s reference trace. However, if relocalization fails, which
indicates the follower may deviate from the given path in the
following steps, a deviation detection module will be triggered
to launch auxiliary visual odometry to track the follower’s
camera poses independently. The results will also be fed
back and displayed on the follower’s phone, together with the
reference trace, so that the follower can get himself back on
the correct path for further navigation.

A key and unique component in Pair-Navi is the Non-
Rigid Context Culling (NRCC), which aims to extract and
subtract dynamic contents in the video clips to combat time-
varying environments. To ensure precise reference trajectory
generation and robust follower localization, NRCC is applied
to both leader’s and follower’s videos.

III. VISUAL NAVIGATION IN NON-RIGID ENVIRONMENT

In this section, we describe how Pair-Navi utilizes visual
SLAM for navigation and how it addresses non-rigidity in the
environment.

A. Visual SLAM for Navigation

In Pair-Navi, we use monocular visual SLAM that works
with a single camera since most smartphones have only one
camera on the back side. We decouple the tightly coupled
modules of a monocular visual SLAM system, and reorganize
the required modules into leader and follower applications
to simplify for real-time meanwhile ensure accuracy. In par-
ticular, we introduce two key modules, visual odometry and
relocalization, as follow.

Visual Odometry. To begin with, our system takes an
initialization step using epipolar geometry [25] [14] to locate
the camera in an initial map with 3D map points as landmarks
of the environment. The visual odometry (VO) module takes
charge of the system thence, to continuously track the camera
pose from consecutive video frames. Specifically, when a
new video frame arrives, its 2D feature points are extracted
and associated to already-created 3D map points by feature
matching. We choose ORB feature point [26] for this purpose
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Fig. 5. Examples of non-rigid contexts: feature points from non-rigid contexts,
pedestrians in (a) and mirror reflections in (b), are recognized and marked as
red, while the remaining feature points from rigid and static objects are green.

since it simultaneously yields sufficient matching accuracy and
efficient computation.

Figure 4 shows example of the extracted feature points as-
sociated to 3D map points. From the association of 2D feature
points and 3D map points, we can acquire the camera pose
of this frame by solving a so-called Perspective-n-Point (PnP)
problem [27], which determines the position and orientation
of a camera from a set of correspondences between 3D points
and 2D pixel points. As shown in Figure 4, given the camera
poses of two frames, new 3D map points can be generated
by calculating the 3D coordinates via triangulation among the
two frames [25]. Repeatedly, as more new frames come, a
trajectory of the camera poses and a map of the 3D landmarks
and corresponding keyframes1 are built incrementally. In Pair-
Navi, VO is the core module for a leader to construct a
trajectory map.

Relocalization. In order to reuse a previously built trajec-
tory map, relocalizaiton module comes in handy, which is
the central component in the follower program. It compares
a video frame with the keyframes in the map, and finds out
the most similar keyframe based on feature point matching.
This step is also called visual place recognition, of which
the state-of-the-art is Bags of Visual Words [28]. After the
most similar keyframe is found, the feature points in the
current follower frame is associated to the feature points in
the selected keyframe. On this basis, a PnP problem [27] is
solved in the same manner as VO module to get the camera
pose, thus relocalizing the camera in the map. In Pair-Navi,
the follower program mainly employs relocalization to achieve
efficient relative localization (Section IV).

Note that classical monocular visual SLAM still involves
complicated steps like loop closing detection, global optimiza-
tion, etc. [14]. In our system, however, we merely apply the
necessary modules for leaders and followers respectively to
avoid intensive computation, as detailed in Section IV.

B. Non-Rigid Context Culling (NRCC)
1) Limitations of Visual SLAM in Non-Rigid Environments:

While visual SLAM technology underpins a promising solu-
tion to infrastructure-free navigation, it is vulnerable to non-
rigid indoor environments with significant dynamic changes
over time. Specifically, the limitations are two-fold:

Low-Precision Trajectory. As is described in the above
section, to calculate the camera poses, we need to match

1Keyframes are a subset of all frames to eliminate redundancy.

feature points first. Therefore, correct feature point matches
influences the accuracy of the constructed trajectory. In pres-
ence of erroneous matches, the generated trajectory will de-
viate from the ground truth. Figure 2 illustrates an example
of matching two consecutive video frames from a typical
shopping mall. As seen, feature points extracted from those
dynamic contexts (e.g., pedestrians) will lead to considerable
erroneous matching, as indicated by red lines in Figure 2.
As a consequence, if we calculate camera poses from the
whole set of feature point matches without screening, the
constructed trajectory will deviate from the truth, depraving
further navigation. To obtain precise trajectory, we need to
intelligently recognize the non-rigid contexts and sift out their
corresponding feature points.

Vulnerable Relocalization. Apart from degrading trajectory
precision, non-rigid contexts further harm relocalization ro-
bustness. In practice, the environment observed by a leader and
later a follower may change significantly, leading to feature
point mismatches and thus large relocalization errors or even
relocalization failures. In one situation, if there are only a
small number of matching outliers, the feature points may be
matched to wrong 3D map points, resulting in errors in camera
pose computation. In another situation, if a large portion of
feature points fail to match, a wrong keyframe will be chosen
and relocalization fails.

Therefore, to ensure accurate trajectory construction for
leader as well as successful relocalization for follower naviga-
tion, we propose the non-rigid context culling (NRCC) module
that takes out features points from non-rigid contexts and only
exploits the remaining reliable feature points, mainly from
rigid and static areas, for frame matching. Our key observation
is that there are abundant feature points for frame matching,
allowing room to cull part of them without degrading visual
SLAM performance.

2) Non-Rigid Context Culling via Mask R-CNN: In Pair-
Navi, we adapt Mask R-CNN [19] for NRCC. Mask R-CNN
is a recent framework for instance segmentation. It aims to
separate different instances in an image via a segmentation
mask for each instance. We use the Mask R-CNN network pre-
trained on COCO dataset [29], and select the object categories
that are suitable for indoor scenario.

Since we aim at distinguishing rigid and non-rigid context,
we divide all the object categories into two sets: rigid context
objects and non-rigid context objects as shown in Table I. If an
object belongs to the rigid context set, it means the location,
pose and shape of the object will not change, and whenever the
leader or follower come to the same place, they will observe
the object in the same situation. On the contrary, an object
is dynamic if it belongs to the non-rigid context set. What
is worth mentioning is the classification of the two sets is
flexible. Some objects (e.g. vase, potted plant) can belong to
either the rigid context object set or the other, depending on the
time interval between the leader’s trajectory being constructed
and follower’s navigation. For example, for vases, if the time
interval is shorter than 7 days, they will be regarded as rigid
context objects. Yet if the interval is longer than 7 days, they
will be treated as non-rigid context.

When the server receives a video frame from the camera,
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Fig. 6. The effect of NRCC on trajectory construction: A complex trajectory computed (a) without NRCC, in which the camera poses of some frames in the
red circle are deviated from the original path, and (b) with NRCC, in which the camera poses are correct and smooth. Similarly, (c) and (d) show a simple
trajectory without and with NRCC, respectively.

we extract its feature points and use Mask R-CNN framework
to detect the non-rigid contexts, then we filter out the feature
points that lie in the masks of dynamic instances. As shown
in Figure 5, the feature points filtered out, which are marked
by red color, are from mainly from people, and the map is
generated only using the feature points belonging to static
environment, which are marked by green. Moreover, we also
use the method proposed in YOLO [30] to detect mirrors and
smooth surfaces in video frames (as shown in Figure 5b).
We believe the illumination change in places like academic
buildings may be drastic, rendering the feature points lying
in mirrors volatile. Therefore they are also culled to increase
system robustness. After this preprocessing of the video frame,
although the user may be facing a non-rigid environment,
the feature points lying in the masks of dynamic instances
will not be involved in trajectory construction (for leaders) or
relocalization (for followers). As shown in Figure 6, removing
non-rigid contexts helps improve precision and avoid potential
relocalization failures.

IV. REAL-TIME NAVIGATION

In this section, we present the design of Pair-Navi to enable
real-time navigation.

A. Follower Real-time Navigation

In the follower navigation program, the smartphone runs
as a ROS node, captures video frames, and sends them to
the server. The server, as another ROS node, runs relocal-
ization, renders the visualization of follower’s camera pose
in the leader’s trajectory map, and calculates the navigation
instruction.

The navigation instruction is calculated as this: the server
averages the next 10 keyframe poses in the leader’s trajectory
as temporary navigation destination, and, for example, if the
temporary navigation destination is on the left of the follower’s
camera, the server will give an instruction of ”turn left”. On
receiving all the returned messages, the follower can see the
navigation instruction, together with an visualization of the
current camera pose and leader’s trajectory map.

If the relocalization observes inadequate quantity of 3D map
points, the auxiliary VO is launched from this frame, and will
take place of the relocalization to show camera pose if it truely
fails. At this time, the follower can still see the camera pose

in the leader’s trajectory and spare little effort to return to
the course. Once the relocalization is successful again, the
auxiliary VO is shut down, and the follower goes back to the
normal case, in which only relocalization is executed.

Our system has the following three designs that ensure it
can run in real-time (by ”real-time”, we mean at least 10 fps,
the typical value of vision persistence):

Relocalization. We decouple a typical visual SLAM sys-
tem, adaptively combining the relocalization module and VO
module into our follower navigation program. In this design,
we avoid the heavy overhead to acquire the follower’s current
position with a full visual SLAM system since the beginning
of follower’s navigation. Instead, we get the utmost of the
leaders’ efforts, only running relocalization for follower, which
is more efficient than a full visual SLAM system yet produces
as accurate results as it. As will be demonstrated in Section V,
our design considerably reduces running latency compared to
a conventional SLAM system.

Mask Synchronization Strategy. Non-rigid context culling
is for both leader and follower’s video frames, but in different
ways. For leaders, we generate one mask for each frame,
because the leader’s map construction can be done offline.
Yet for followers, the calculation of Mask R-CNN is relatively
slow, at an average frame rate of about 5 fps. So we take a
trade off strategy to synchronize Mask R-CNN with visual
SLAM. We aggregate every 2 frames (corresponding to 0.2s
due to 10fps), and generate one mask for them both.

The rationale behind is that a user will move for only about
20cm during the 0.2s time-window, assuming a typical walking
speed of 1m/s. Therefore the potential scene changes in two
consecutive frames will not be too significant, which may
slightly affect trajectory construction accuracy for leaders, but
do not necessarily influence relocalization for followers. In
summary, to obtain a highly precise and reliable trajectory for
followers to use, we need to cull non-rigid contexts for each
frame; yet to save the the computational resources for real-
time follower navigation, we can confidently reuse the masks
for several consecutive frames.

The fringe benefit of NRCC. Additionally, NRCC brings
some fringe benifit to the real-time performance. Since the
number of feature points are reduced, further computation,
including feature point matching, calculating bags of visual
words, PnP, etc., is simplified by the proportion of the rigid



TABLE I
OBJECT CLASSIFICATION FOR INDOOR SCENARIO

Non-Rigid Context objects Rigid Context objects
person, hair drier, toothbrush, cat, keyboard, phone, bottle, apple, cup

backpack, umbrella, handbag, tie, suitcase, dog, frisbee, book, clock, skis
snowboard, sports ball, kite, bat, glove, skatebord, surfboard, mouse, remote

glass, fork, knife, spoon, bowl, banana, tennis racket, scissors, teddy bear
sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake, chair, laptop

couch, potted plant∗, dining table
tv, microwave, oven, toaster

refrigerator, vase∗, bed, toilet, sink
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Fig. 7. Illustration of auxiliary VO when deviation happens

feature points in all the feature points.

B. Follower Deviation Handling
Existing P2P navigation systems such as Travi-Navi and

FollowMe have no function of deviation handling, and thus
if follower deviation happens, the tracking will lose and the
navigation will fail, with no recovery approach. In contrast, we
add an auxiliary VO module to track the deviated trajectory,
which acts as a fail-safe measure to guarantee the success of
navigation.

In our scenario, deviation happens when the follower walks
off the instructed course, or even when camera pose slightly
deviates. In these cases, the follower’s relocalization module
observes inadequate 3D map points in a frame, which is
when the system launches the auxiliary VO. The auxiliary
VO, extracting new feature points and generating new 3D
map points, runs in parallel with the relocalization to retain
continuous tracking and show the camera pose in the trajectory
map, as shown in Figure 7. With the camera pose shown in the
trajectory map, the follower can easily go back on the right
track. Once the relocalization observes a healthy quantity of
3D map points, the auxiliary VO will shutdown and handover
the navigation to the relocalization module.

Note that to further keep our system running in real-time
with this auxiliary VO, we strictly select a feature point
number threshold for triggering it, so that redundant calcu-
lation is eliminated. In this way, we make the system tolerate
navigation deviations in the wild while still maintaining real-
time performance.

C. Implementation
We implement our system on ROS Kinetic platform. The

user program is developed on ROS-Android platform. The
server’s SLAM program is developed on ORB-SLAM [14]
on ROS, and we develop the system visualization upon the
visualization of ORB-SLAM, with some modifications via
OpenCV. We resize all the frames to 640 × 480, which is
relatively high-resolution and still not too large to prolong the
process time of each frame. The phone-server communication
resorts to ROS topic publicaction and subscription, which

guarantees all the imformation is integral because ROS data
transfer is based on TCP protocal.

We applied our Mask R-CNN models with the ResNet-FPN-
50 backbone and the network parameters are pre-trained on
COCO image Dateset. The Mask R-CNN code is implemented
in python-3.6.5 with pytorch-0.4.0.

V. EXPERIMENTS AND EVALUATION

A. Experiment Settings and Methodology

Experiment Venues. We conducted extensive experiments
in an office building, a gymnasium and the 1st-4th floor of a
shopping mall, with area sizes of about 400m2, 1,000m2 and
6,000m2, respectively. The three testing environments have
diverse conditions. In particular, the crowded shopping mall
is the most dynamic. The office building has the most drastic
illumination oscillation during a day. The gymnasium has the
medium crowdedness among the three environments.

Data Collection. Overall, we design 21 navigation paths,
including 6 short paths (≤ 100m), 7 medium paths (100m−
200m) and 8 long paths (≥ 200m), covering all the main
pathways of the testing areas. Figure 8 shows four trajectories
of different lengths constructed from the three areas. The
reference trajectories for these paths are constructed by 3
different leaders. The total length of leaders’ reference tra-
jectories is about 3.1km with 33, 452 video frames, among
which 6, 781 keyframes are selected, and the followers’ total
walking distance is around 15km.

Devices. We tested Pair-Navi on a variety of Android
mobile devices, including Huawei P10, Nexus 6p, Nexus 7,
and Lenovo Phab2 pro. Since the main device discrepancies
are camera intrinsics (i.e. focal length, lens center and distor-
tion), we calibrate camera intrinsics of the smartphones and
accordingly rectify video frames. The server, Lenovo IdeaPad-
Y700 with i7-6700HQ CPU of 2.6GHz main frequency and
8G RAM, runs the Ubuntu 16.0.4 operating system and ROS
Kinetic. For Mask R-CNN, the GPU we used is TITAN V
with cuda version 9.1.85 and cudnn-7.05.

Users. We recruited 4 volunteer followers to walk along
different routes naturally as they usually do. The follower
behaviors are diverse in camera holding gestures and heights.
For example, one user prefers to hold the camera with two
hands, while others tend to use their right hands. Thus the
cameras suffer from various extents of shake when the users
are walking, which may cause different feature point matches.
User study is conducted on three particular days: the same day
as the trajectories were constructed, one week later and two
weeks later.

Comparison. To evaluate the performance of Pair-Navi, we
implemented Travi-Navi [10] and FollowMe [9], two start-of-
the-art P2P navigation systems for comparison.
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Fig. 8. Four typical real trajectories in our experiment: (a) a straight line; (b) a U-turn; (c) a complex trajectory going up an escalator; (d) a complex trajectory
going up one escalator and then down another
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Fig. 10. Different users and time interval
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Fig. 12. Different users and areas
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Fig. 14. System latency

Evaluation Metrics. Similar to some existing works like
Travi-Navi and FollowMe, we set checkpoints at turns, esca-
lators and some landmarks on each trajectory. In total, we set
274 checkpoints for the 21 navigation paths. The followers
were not informed of navigation routes, the final destination,
or the checkpoint locations. Navigation success rate is defined
as the rate of successful arrival at each checkpoint in Travi-
Navi and FollowMe. Thanks to the employment of deviation
handling, this rate is always 100% in Pair-Navi, which means
the followers arrived at the destinations successfully in all
cases. So instead, we use a more strict definition of navigation
success rate as 1 − p (where p is the rate of auxiliary VO
launches) for Pair-Navi; while keep the original defination
of navigation success rate unchanged for Travi-Navi and
FollowMe.

B. Overall Performance

1) Performance Comparison: The performances of Pair-
Navi as well as the two state-of-the-art approaches to compare
are depicted in Figure 9. We find that Pair-Navi achieves the
best performance among all three of them, no matter how
long the time interval is. The average navigation success rates
by Pair-Navi in the same day of the trajectory’s construction,
after one week and after two weeks are 98.6%, 93.2% and
83.4%, respectively. Compared with the immediate perfor-
mance (tested in the same day), the navigation success rates
after two weeks decline 14.1%, 49.3% and 59.3% in Pair-

Navi, Travi-Navi and FollowMe. In contrast to Travi-Navi and
FollowMe, Pair-Navi attains high navigation accuracy after
two-week interval, and outperforms Travi-Navi by 50.9% and
FollowMe by 80.4%. The performance gains come from not
only the advantages of our vision-based design over previously
radio- and sensor-based methods, but also the robustness
introduced by NRCC.

2) Performance under Different Conditions: We invite four
volunteers to examine the robustness and practicability of Pair-
Navi in different areas and at different times. As shown in
Figure 10, Pair-Navi achieves an average navigation success
rate of more than 85% for each user and the decrease of
success rate for each one is less than 15% after two weeks.
Furtherore, Figure 11 shows that Pair-Navi yields similar
performance regardless of the different crowdedness levels and
illumination conditions at different areas. Pair-Navi achieves
consistently delightful success rate of more than 90%, 85%
and 80% in the office building, gymnasium and large shopping
mall under time interval within two weeks.

To further demonstrate the applicability of Pair-Navi, we
note that the trajectories in the office building are mainly
constructed by User-2 and User-3, and in the gymnasium and
shopping mall by User-1 and User-2. The heights of the four
users are different, and camera holding gestures are variant.
Figure 12 reflects the robustness of Pair-Navi for different
leaders and followers. Navigation success rates for all users
in different areas are more the 80% and the success rate gaps
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Fig. 15. Impact of NRCC on relocalization failure rate.

between different users are within 5%.
3) Impact of NRCC: To demonstrate the effect of non-rigid

context culling, we compare the relocalization failure rate with
and without non-rigid context culling. Specifically, we save
all the video frames captured by follower’s camera and record
whether each frame can be relocalized (matched to a keyframe
in the trajectory map with enough feature point matches). The
experiment is conducted on all 21 navigation trajectories and
under different time intervals.

As shown in Figure 15a, the relocalization failure rate
increases from 4% to 27% without NRCC in the same day,
one week later and two weeks later, while keeps low at 3%,
5% and 9% respectively with NRCC. In other words, the use
of NRCC significantly declines the relocalization failures by
more than 65% when the time interval exceeds two weeks.

Furthermore, Figure 15b shows the relocalization robustness
at different areas. We conducted the experiment under the
time interval of two weeks. The relocalizaiton failure rate at
the office building, the gymnasium and the shopping mall
is 2%, 5% and 10% with NRCC, compared to 4%, 15%
and 25% when without NRCC. In average, NRCC declines
relocalization failures by 57%. Especially in the gymnasium,
the failure rate is decreased by 67%, which reflects remarkable
improvement on robustness.

4) Impact of Illumination: We further tested our system
with different illumination conditions in the office build-
ing, which undergos the most drastic illumination oscillation
among the three areas. We first asked a leader to walk 4
pathways in the morning, afternoon and evening during a
day. Then we asked volunteers to walk the same pathways
correspondingly and calculate the navigation success rate of
each test case. As shown in Figure 13, whenever followers
walk the pathways, the navigation success rates are more
than 80% and more than 90% if followers walk at evening.
Generally, in the office building, we usually turn on all of the
lights at evening, majority at morning but rarely at afternoon,
which lead to the same video frame captured at evening enjoys
the most drastic light and shadow oscillation. Therefore, the
video frame has more ORB feature points than captured at
morning and afternoon [26] and the relocalization success rate
of the frame will increase.

5) System Latency: We recorded the time consumption of
all frames in all followers’ navigation experiments. As shown
in Figure 14, Pair-Navi reduces the average relocalization time
for one frame to 76ms. Compared with a complete SLAM
system, the average delay is reduced by 17.4%, moreover, the
percentage of frames using less than 100ms for relocalization
increase from 81.6% to 91%. Surprisingly, we also observe

that NRCC even slightly reduces the system latency by 4ms
per frame in average. This is because NRCC shrinks the
number of valid features points involved in relocalization.
The average mask process time for each frame (resized as
640 × 480) is 0.18s in our system. In other words, a mask
takes in charge of the NRCC of two frames that are captured
in 0.2s. In a nutshell, Pair-Navi accomplishes relocalization
and navigation within the system sampling time of 0.1s and
runs fluently in real-time, with partial computation off-loaded
to a cloud server. As our future work, we plan to optimize to a
complete standalone system on smartphones based on model
compressing.

6) Energy Consumption: We record the energy consump-
tion of the follower’s navigation app on the smartphones. On
the Huawei P10, the program ran 41 minutes and 48 seconds
and consumed 203.12mAh, while the battery level dropped
from 100% to 69%. On the Lenovo Phab2pro, the program
ran 44 minutes and 36 seconds and consumed 348mAh, while
the battery level dropped from 100% to 85%. Since indoor
pathways from one place to another are usually less than 15-
min walking distance, we consider the energy consumption of
Pair-Navi is acceptable.

VI. RELATED WORKS

Indoor P2P Navigation. Traditional indoor navigation
solutions require a global map of the indoor floor plan in
infrastructure-ready indoor environments (e.g., Wi-Fi [31],
[32], Bluetooth, RFID [5], etc.), and navigation instruction are
provided based upon the absolute position in the global map.
Recently, P2P navigation appears as another solution to indoor
navigation, which does not rely on a complete global map
and absolute localization in the map [8]–[10], [33]–[35]. In
[35], an electronic escort system was proposed by using crowd
encounter information and dead-reckoning techniques. The
most relevant works Travi-Navi [10], FollowMe [9] and ppNav
[8] all employ trace-driven navigation on smartphones. Travi-
Navi synthesized Wi-Fi and inertial measurement to boot-
strap navigation services without indoor floorplan. FollowMe
exploited magnetic sensing and dead-reckoning to achieve
lastmile navigation for smartphone users. ppNav utilized the
ubiquitous Wi-Fi fingerprints in a novel diagrammed form and
extract both radio and visual features of the diagram to track
relative locations. In contrast, Pair-Navi exploits the power
of vision, which is infrastructure-free and demonstrated to be
more efficient, precise and further beneficial to various vision-
based applications, such as indoor 3D-reconstruction, store
sign identification, etc.

Visual SLAM. The pioneer work of monocular vi-
sual SLAM [12] adopted a filtering-based approach. Later,
optimization-based methods [36] [13] came on stage and was
demonstrated more accurate [37]. In recent years, ORB-SLAM
[14], the state-of-the-art monocular visual SLAM work, used
DBoW2 [28] as the place recognition module, and g2o [38]
as the optimization framework. Latest researches [20], [21]
attempted to incorporate semantics into visual SLAM for
better robustness in time-varying environments. Being able
to compute the camera pose while generating the map and
environment, visual SLAM is a suitable technique for indoor
navigation.



Instance Segmentation. The Region-based CNN (R-CNN)
approach [17] leveraged candidate object regions [39] and
evaluated convolutional neural networks for each Region of
Interest (RoI) for object detection. R-CNN was extended to
allow RoI extraction on feature maps using RoIPool [40]
and then advanced to Faster R-CNN [18] by learning the
attention mechanism with a Region Proposal Network (RPN).
On this basis, Mask R-CNN [19] was proposed to use mask
predictions for classification and became the state-of-the-art
in instance segmentation. More specifically, Mask R-CNN
followed the idea of Fast R-CNN [40] that applies bounding-
box classification and regression in parallel. In addition, it
adopted a two-stage procedure like Faster R-CNN, with a first
stage of RPN and a second stage of outputing a binary mask
for each RoI.

VII. CONCLUSION

In this paper, we present Pair-Navi, a robust and real-
time P2P navigation system based on visual SLAM, requiring
no pre-installed infrastructure or pre-deployed localization
services. We implement Pair-Navi on commodity smartphones
and conduct experiments in multiple buildings over two weeks.
Experiment results show that our system outperforms existing
solutions in navigation success rate and robustness. We believe
Pair-Navi takes an promising step towards practical P2P
navigation. Our future works target at fusing crowdsourced
trajectories to generalize navigation routes to a larger scale
and make a global consistent map.
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