
Edge Assisted Mobile Semantic Visual SLAM
Jingao Xu1, Hao Cao1, Danyang Li1, Kehong Huang1, Chen Qian2, Longfei Shangguan3, Zheng Yang1∗

1School of Software and BNRist, Tsinghua University
2Dalian University of Technology

3Microsoft
∗Corresponding author

{xujingao13, lidanyang1919, chen.cronus.qian, hmilyyz}@gmail.com
{caoh19, hkh18}@mails.tsinghua.edu.cn longfei.shangguan@microsoft.com

Abstract—Localization and navigation play a key role in many
location-based services and have attracted numerous research
efforts from both academic and industrial community. In re-
cent years, visual SLAM has been prevailing for robots and
autonomous driving cars. However, the ever-growing computa-
tion resource demanded by SLAM impedes its application to
resource-constrained mobile devices. In this paper we present
the design, implementation, and evaluation of edgeSLAM, an
edge assisted real-time semantic visual SLAM service running on
mobile devices. edgeSLAM leverages the state-of-the-art semantic
segmentation algorithm to enhance localization and mapping
accuracy, and speeds up the computation-intensive SLAM and se-
mantic segmentation algorithms by computation offloading. The
key innovations of edgeSLAM include an efficient computation
offloading strategy, an opportunistic data sharing mechanism,
and an adaptive task scheduling algorithm. We fully implement
edgeSLAM on an edge server and different types of mobile devices
(2 types of smartphones and a development board). Extensive
experiments are conducted under 3 data sets, and the results show
that edgeSLAM is able to run on mobile devices at 35fps frame
rate and achieves a 5cm localization accuracy, outperforming
existing solutions by more than 15%. We also demonstrate the
usability of edgeSLAM through 2 case studies of pedestrian
localization and robot navigation. To the best of our knowledge,
edgeSLAM is the first real-time semantic visual SLAM for mobile
devices.

I. INTRODUCTION

Indoor localization and navigation play a key role in many
location-based services. However, due to the excessive signal
attenuation and multi-path propagation [1]–[4], the Global
Positioning System (GPS) fails to achieve desirable accuracy
and thus cannot be adopted for this purpose in most indoor
scenarios. While the innovations on RF-based indoor localiza-
tion techniques (e.g., Wi-Fi, RFID and Bluetooth) are going
full steam ahead [5]–[10], few of these solutions are mature
for real-world deployment, either because of the low accuracy
or high infrastructure cost.

As another promising alternative, vision-based indoor local-
ization techniques, in particular visual simultaneous localiza-
tion and mapping (visual SLAM) attracts more attentions in
recent years [11], [12]. Visual SLAM utilizes a sequence of
images captured by a camera and inertial measurement unit
(IMU) readings to rebuild the map of ambient environment as
well as estimate the current location of the camera itself in a
local view. Compared with RF-based solutions, visual SLAM
achieves an order of magnitude higher localization accuracy
(5cm) at the minimal infrastructure cost as camera and IMU
units have become the standard components of mobile devices
on today’s market [13].

While the evolving hardware and software of mobile devices
(e.g., the latest Samsung Galaxy S10 smartphone is equipped
with three HD cameras) guarantees the image quality and IMU
sensor precision for fine-grained visual SLAM, the computa-
tional resource on mobile devices, unfortunately, is still insuf-
ficient to meet the visual SLAM’s ever-growing computation
demand. For example, as we experimentally demonstrated,
even ORB-SLAM [12], a light-weight, functional-constrained
visual SLAM algorithm, still cannot work in real-time (i.e.,
≤15 fps) on the latest smartphone (e.g., Galexy S10 and
Google Pixel 2). Blindly applying visual SLAM to mobile
scenarios, on the other hand, may not achieve good per-
formance because of highly dynamic envrionmental changes
(e.g., customs in a shopping mall).

Recently, two new opportunities have arisen in the design
of real-time Visual SLAM on mobile devices:

1) The emerging paradigm of edge computing [14], [15],
as well as advanced wireless technology (5G [16] and
Wi-Fi 802.11ad standard [17]), is powerful for solving
computation-intensive tasks locally and in real-time. It is
thus possible to speed up the visual SLAM by offloading
the workload to an edge sever.

2) The evolving computer vision (CV) techniques (e.g.,
Mask-RCNN [18]) now can recognize objects in an
image with very high accuracy. It is thus possible to
analyze semantic information from captured videos and
improve SLAM performance.

However, realizing these intuitions is non-trivial and faces
three significant challenges:

• Task decomposition. Simply transmitting all images
back to an edge server is not feasible since it will intro-
duces excessive bandwidth cost and transmission delays
(details in Section II-B). Partitioning both visual SLAM
algorithm and semantic segmentation algorithm into unit
tasks, however, is also non-trivial as both their functional
units are tightly coupled. As shown in Fig. 2, an improper
partition may result in redundant data storage, exchange,
and most importantly, system delay, which definitely in
turn increases the algorithm latency.

• Task cooperation. The visual SLAM and semantic seg-
mentation algorithms are generally regarded as two inde-
pendent tasks, without the reuse of intermediate results.
However, to achieve both low-latency and high accuracy,
it is beneficial to share the intermediate results between

Go Straight

Current Scene

Local Constructed Map

Current Location

Instruction

(a)

Non-rigid Context

ORB Feature Point

User’s Location

Global Optimized

Map

(b)

Fig. 1. User interface of edgeSLAM. (a) Mobile part: Navigation instruction and local constructed map are displayed on mobile device. 1 (b) Edge server
part: Optimized global map and user’s location are displayed.

these two algorithms so that redundant computations can
be eliminated or minimized.

• Task scheduling. The computation resource on mobile
device and edge server is highly unbalanced. Meanwhile
the wireless link between these two parts also varies from
time to time. Task scheduling strategy should be adaptive
to the dynamics in computation resource and wireless link
quality.

In this paper we present the design and implementation of
edgeSLAM, a real-time edge assisted semantic visual SLAM
service running on commercial mobile devices. edgeSLAM
leverages the state-of-the-art semantic segmentation algorithm
Mask-RCNN [18] to improve SLAM accuracy and speed up
the SLAM and semantic segmentation algorithm by efficient
computation offloading and data sharing, and adjust the of-
floading strategy automatically to adapt to the wireless link
conditions.

To find out the optimal task decomposition strategy, we
take the operation time, memory overhead and the transmis-
sion delay of each functional module into consideration and
conduct extensive experiments to profile the performance of
each module. We further analyze dependencies among these
functional module and determine the ”hourglass position” to
decompose the Visual SLAM and object detection algorithm.

To minimize the latency introduced by redundant data
transmission, we leverage the fact that the scene in most con-
secutive frames are similar. For example, the same billboard
tends to appear in multiple consecutive frames. edgeSLAM
avoids per-frame object segmentation operation and reuses
the previous result from the last object segmentation until a
significant frame change is detected on mobile devices.

To accommodate dynamic link conditions, we design a
probing-optimizing strategy that first probe the network con-
ditions and then leverages such information to optimize our
task scheduling mechanism.

We fully prototype edgeSLAM’s server side on an Ubuntu
edge server and the client side on three different types of
mobile devices including an Nvidia Jetson TX2 development
board, a Samsung Galaxy S10 and an Apple iPhone X. The

interface of edgeSLAM is shown in Fig. 1. Comprehensive
experiments are carried out under different network condi-
tions, such as WiFi-5G, WiFi-2.4G and Cellular-4G. We also
examine edgeSLAM on two official datasets (TUM [20] and
KITTI [21]) and a self-labeled dataset from three buildings.
The results demonstrate that edgeSLAM could achieve average
35fps frame rate with 5cm localization accuracy and 2%
relative mapping error in all scenarios, which outperforms
existing systems by more than 10%. Our two case studies
further demonstrates that edgeSLAM achieves outstanding per-
formance in pedestrian localization task with average 9.6cm
accuracy and robot navigation task with 92.3% navigation
success rate.

The key contributions are summarized as follows:

• We measured the operation time and memory overhead
of each function module in visual SLAM and semantic
segmentation, and ascertained the optimal decoupling
position and disassembly method.

• We designed the system architecture to make SLAM and
semantic segmentation deeply fused and determined task
assignment between mobile and edge. To the best of our
knowledge, this is the first time that mobile semantic
visual SLAM can work in real-time.

• We take network condition into consideration and adopt
an adaptive method to dynamically adjust system param-
eters.

• We implement a complete edge assisted real-time system
on smartphones and extensively evaluate the performance.
The results show that edgeSLAM achieves delightful
results in all scenarios.

The rest of this paper is organized as follows. We introduce
the background and motivation of our work in Section II.
Followed by an overview of edgeSLAM in Section III. Key
strategies and techniques are presented in Section IV, followed
by the dynamic design of self-adaptation strategy in Section V.
Related works are presented in Section VII. We finally con-
clude our work in Section VIII.

1The design of user interface for mobile part adapted from our previous
work Pair-Navi [19].

Loop Closing

Loop Detection

Loop Correction

Tracking

Frame

Pose

Map

Feature Points

Extraction

Feature Points

Matching
Pose Estimation Track Local Map

KeyFrame

Decision

Local Mapping

MapPoints

Creation

Pose

Optimization

Map Optimization

Local KeyFrame

Culling

MapPoint

KeyFrame

Fig. 2. Challenges of task assignment for semantic visual
SLAM, where function units are tightly coupled.

Visual SLAM Framework

Mask R-CNN Framework

Non-rigid

Context Culling

Tracking

L
o
c
a

l
M

a
p
p

in
g

L
o
o

p
 C

lo
s
in

g

Frame

Pose

Map

Optimized

Optimized

Fig. 3. System architecture of Semantic
Visual SLAM. Figure referred from [19].

Frame 1

Frame 2

Pose Transformation

: Calculated Camera Pose

 (Localization)

: 2D Feature Points

: Constructed 3D Map Points

(Mapping)

: Association between

 3D and 2D points

: Acquire Camera Pose by

 solving PnP problem

Fig. 4. Illustration of Visual SLAM

Cellular 4G WiFi 2.4G WiFi 5G
Wireless Connection

0

50

100

150

200

250

300

En
d-

to
-e

nd
 L

at
en

cy
 (m

s)

Upload
NRCC
Tracking
Local Mapping
Loop Closing
Download

(a)

5 10 15 20
End-to-end Latency (# of frame time)

40%

50%

60%

70%

80%

90%

100%

OK
S

Ac
cu

ra
cy

Segmentation

0.0

0.4

0.8

1.2

Lo
ca

liz
at

ion
 B

ias
(m

)

Localization

(b)

Fig. 5. Accuracy and Latency Analysis. (a) Localization and segmentation accuracy with respect to different end-to-end latency. (b) End-to-end latency with
different wireless connection link

II. BACKGROUND

A. Semantic Visual SLAM

Semantic visual SLAM consists of four components: track-
ing, local mapping, loop closing, and non-rigid context culling
(NRCC), as shown in Fig. 3. We briefly introduce each module.

• Tracking module estimates the coarse-grained pose of
the shooting camera based on the consecutive video
frames. When a new video frame arrives, the tracking
module will extract its 2D feature points and associate
them with 3D map points in storage. As illustrated in
Fig. 4, the 2D-to-3D feature points matching will give us
a rough camera pose on the current frame.

• Local mapping module then creates a new 3D
map points via triangulation between two consecutive
frames [22]. An optimized camera pose can be then
obtained by solving a Bundle Adjustment problem. This
modules runs repeatedly as the camera takes more photos,
resulting in a trajectory of the camera pose, a map of the
3D landmarks and the corresponding key frames.

• Loop closing module compares the features extracted
from a video frame with keyframes. If a keyframe is
found to be similar enough to the input video frame,
the loop closing module will then fine-tune the current
camera pose and optimize the map construction based on
the matching result.

• NRCC module extracts the temporal objects (such as
pedestrians) on each video frames to minimize their
negative effect on both localization and mapping.

B. Latency and Accuracy Analysis

Running semantic visual SLAM on mobile devices is chal-
lenging due to its extensive computation overhead. For exam-
ple, the classical visual SLAM algorithm ORB-SLAM [23]
along works in a rate of only 10fpswhen running on a
Samsung Galaxy S10 smartphone, far away from the real-
time requirement (≥ 30 fps [19], [24]). This frame rate will
drop further when the semantic segmentation algorithm (e.g.,
Mask-RCNN) runs in parallel to SLAM on mobile devices.
Offloading the entire computation to the powerful edge server,
on the other hand, may cause considerable latency. To better
understand this transmission latency and its impact on the
localization and object segmentation performance, we conduct
experiments detailed below.
Latency Analysis. We model the end-to-end latency (from
capturing a video frame until we obtain a camera pose) of a
semantic visual SLAM solution as follows:

te2e = tupload + tinfer + tdownload

tinfer = max(tNRCC , tT) + tLM + tLC
(1)

where tupload and tdownload represents the delay for uploading
an image to an edge server and downloading the result to
the mobile device, respectively. tinfer represents the delay of
running semantic visual SLAM on an edge server, which con-
sists of the time consumed for semantic segmentation tNRCC,
tracking tT, local mapping tLM, and loop closing module tLC,
respectively.

We measure the latency of each functional module in
various wireless link connections, and show the result in
Fig. 5a. From the result we can see that offloading the entire

Display Edge Optimization and SegmentationMobile Tracking and
Local Mapping

Dynamic Feature

Points Culling

Frame

Feature Points

Matching

Pose Estimation

Track Local Map

Pose

Map

KeyFrame

Decision

KeyFrame

Local

MapPoint

MapPoints

Creation

Pose

Optimization

Global Map

Optimization

Local KeyFrame

Culling

Loop Detection

Loop Correction

Feature Points

Extraction

Non-rigid Context

Detection

Semantic

Mask

Local MapPoints

Creation

Global

MapPoint

KeyFrame

Insertion

Local Map

Construction

Upload

Optimize

Wireless
Connection

Update

Fig. 6. edgeSLAM architecture

computation to an edge server introduces significant latency
(280ms on Cellular 4G link, 270ms on Wi-Fi 2.4G link,
and 260ms on Wi-Fi 5G link, respectively). In other words,
we deserve only 4fps over all three wireless links. While
SLAM and semantic segmentation can be further accelerated
by leveraging more advanced edge server, the uploading and
downloading latency, on the other hand, still takes 48ms,
which set an upper bound of the achievable frame rate (20fps
given the ignorable inference latency).
Accuracy Analysis. We further conduct experiment to un-
derstand the impact of different delays on the localization
accuracy and semantic segmentation accuracy. In this trail of
experiments, we record the 3-D position of the camera reported
by the visual SLAM algorithm, and calculate the distance
between the inference result and the ground-truth (measured
by a laser ranger) using bias Euler-distance metric. We also use
the Object Keypoint Similarity (OKS) [25] metric to measure
the accuracy of keypoints in each group in the object keypoint
segmentation task.

Fig. 5b shows the localization and semantic segmentation
accuracy as a function of end-to-end delay. We observe that the
localization error maintains in a very low level when the end-
to-end latency is low (i.e., five frames delay). The localization
error then jumps to over 1m as we increase the end-to-end
delay to 20 frames (about 666ms). The segmentation accuracy
shows the similar trend: it decreases from over 90% accuracy
to less than 15% accuracy as we increase the end-to-end delay
from 5 frames to 20 frames. This result clearly demonstrates
that the end-to-end latency has a significant impact on both
two algorithms’ performance.

III. SYSTEM ARCHITECTURE

To overcome these limitations, we propose a edgeSLAM,
a semantic visual SLAM system for mobiles, achieving both
accuracy and real-time simultaneously with the help of edge
computation resource. To hide the latency caused by offloading
the semantic SLAM task, edgeSLAM decouples the integrated
visual SLAM process into two separate pipelines. At a high
level, as shown in Fig. 6, these two parts are connected through
a wireless link: Mobile tracking and Local Mapping part
on a mobile device (smartphone for people or development
board for robots) and Edge Optimization and Segmentation

part on edge side. The former pipeline starts to simultaneously
track the pose of a camera and construct a local map, while
the later pipeline segments image frames at the pixel level,
optimizes the rough pose, and further maintains a global map.
Communications between two sides occur when keyframes are
selected by mobile pipeline. Keyframes will be uploaded to
edge side. Then, the edge server will send the optimized pose
and map back to mobile side, as well as the segmentation result
of the keyframe, which will be further used for semantic mask
transfer among video clips. Once the optimization information
is received by the mobile client, current camera pose and the
local map will be calibrated and shown in current scene. The
procedure is executed in parallel with mobile pipeline. In this
way, the mobile client is capable of continuously tracking and
displaying the accurate camera pose and constructed map in
real-time.

In a nutshell, edgeSLAM is a real-time mobile semantic
visual SLAM system. The elaborate design of edgeSLAM lies
in three-fold:

• We decouple the whole visual SLAM into fine-grained
modules, and re-assign these modules between mobile
device and edge server, such that mobile pipeline can be
executed in real-time.

• We design a Parallel Local Tracking and Global Op-
timization workflow. The time-consuming and complex
optimization procedure is hidden by mobile local tracking
and mapping pipeline, meanwhile ensuring the accuracy.

• We adopt a Semantic Mask Transfer Strategy. The pixel-
level semantic information of a keyframe will be trans-
ferred to related non-keyframes, which will dramatically
reduce the infer latency and make semantic segmentation
task fulfilled on mobile devices.

In the following sections, we will present the details of these
strategies.

IV. REAL-TIME MOBILE SEMANTIC VISUAL SLAM
A. Decoupling and Task Re-assignment of Visual SLAM

In ORB-SLAM, pose estimation and tracking in Tracking
thread, as well as optimization-related function modules in
Local Mapping and Loop Closing threads contribute most
of the computation latency. On mobile devices, both pose
estimation and mappoints creation require more than 33.3ms,

Feat
ure

 Poin
ts

 Extra
ctio

n

Feat
ure

 Poin
ts

 Matc
hin

g

Pose
 Estim

atio
n

Trac
k

 Lo
cal

 Map

KeyF
ram

e

 Deci
sio

n

MapP
oin

ts

 Crea
tion Pose

 Optim
iza

tion
Map

 Optim
iza

tion

Loc
al K

eyF
ram

e

 Culli
ng Loo

p

 Dete
ctio

n
Loo

p

 Corr
ect

ion
0

10

20

30

40
La

te
nc

y (
m

s)
Mobile Device
Edge Server

Fig. 7. Operation latency of each function unit in visual SLAM

which makes visual SLAM insuperable to run at >30fps.
Moreover, they all rely on MapPoint and KeyFrame databased
for global optimization. These are exemplified in Fig. 7, which
breaks down the execution latency of the ORB-SLAM task.

We think the decoupling and task re-assignment method
should fulfill three principles: First, mobile client can execute
tasks assigned to itself in real-time, which means the total
latency of these tasks is less than 33.3ms. Second, func-
tion modules that will interact with KeyFrame or MapPoint
database for further optimization should be executed on edge
server. Breaking the data dependency will also lead to high
data transmission latency. Last but not the least, same as
unmodified visual SLAM, both localization (tracking camera
pose) and mapping (creating mappoints) tasks are required to
be implemented on mobile devices.

The task assignment strategy in edgeSLAM fulfill above
principles. As shown in Fig. 6, mobile client will estimate
the relative rough camera pose from feature points extraction
and matching modules. It will also maintain a local mappoint
database, which is only used to construct the local map. In
general, the volume of local mappoint database is about 10%
of global mappoint database. Meanwhile, edge server will exe-
cute the time-consuming and resource-awareness optimization
procedure, including optimizing pose and map, and maintain-
ing global mappoint and keyframe databases. When receiving
a keyframe, the edge side will send the optimized pose and
updated mappoints’ information back to the mobile side; and
the mobile side will accordingly calibrate the accumulative
tracking and mapping error.

B. Parallel Local Tracking and Global Optimization

The server performs complete optimization-related modules
in parallel with the Mobile tracking process on the mobile
client. We further design a method to update local constructed
map on client with server optimized map, as illustrated in
Fig. 8. Transferring the enormous volume of the entire op-
timized globle map will increase the transmission latency as
well as data serialization time dramatically. Thus, we monitor
the modification of the MapPoint database updated by the
keyframe and generate a map slice, which records the creation,
deletion, and calibration of each mappoint by their unique ID
as a primary key. Then, we send the map slice rather than
entire global optimized map to client for updating. The up-
dating procedure is also executed synchronously with mobile
tracking process. By doing so, we can achieve incremental

(a) (b)

(c) (d)

Fig. 8. Illustrations of optimization of local constructed map. A complex
local constructed map (a) before optimization on mobile device, in which the
camera poses of some frames in the red circle are deviated from the original
path, and (c) after optimization, in which the camera poses are correct and
smooth. Similarly, (b) and (d) show a simple trajectory on mobile device
before and after optimization, respectively.

Reference KeyFrame Non-keyframe

: Matches between feature points from rigid contexts

: Matches between feature points from non-rigid contexts

Fig. 9. Illustration of semantic mask transfer strategy

client map optimization, meanwhile decrease the transmission
latency and serialization/deserialization time.

C. Semantic Mask Transfer Strategy

Same as many recent works, we adapt Mask R-CNN for
NRCC. Mask R-CNN is a famous framework for instance seg-
mentation. It aims to separate different instances in an image
via a segmentation mask for each instance. However, despite
high accuracy, it’s time-consuming and resource-awareness.
As shown in Fig. 5a, it results in more than 150ms latency
to infer a video frame, which is the bottle-neck of semantic
visual SLAM.

In edgeSLAM, we design a semantic mask transfer strategy,
which can obtain the segmentation information on mobile
in real-time. More specifically, as illustrated in Fig.9, only
keyframe selected by mobile pipeline will be uploaded to
the edge cloud and calculated semantic mask. As for non-
keyframe, the pixel level semantic information will be trans-
ferred from the latest keyframe according to feature points
matching. The rationale behind the transfer strategy is: First,
feature points matched between two consecutive frames enjoy
larger probability of belonging to the same object categories
according to the matching algorithm (DBoW2) in ORB-
SLAM. Second, a user (or robot) will move less than 4cm dur-
ing the 33.3ms (30fps) time-window, assuming that a typical
walking speed is 1m/s. Therefore the potential scene changes

(a) Frame# 360 (b) Frame# 375 (c) Frame# 390

Fig. 10. Illustration of keyframe selection strategy. (a) A reference Keyframe. (b) A non-keyframe, more than 90% of the extracted feature points are matched
with (a) previous Keyframe. (c) A new keyframe, whose associating rate with (a) is less than 80%.

TABLE I
DIFFERENT CONFIGURATION TUPLES IN SELF-ADAPTATION STRATEGY

Configuration# fmin fmax α β nl nm N (ms)
1 10 40 0.3 0.9 8 0.8 (0, 10]
2 20 50 0.3 0.9 6 0.8 (10, 15]
3 20 60 0.4 0.9 6 0.8 (15, 35]
4 30 70 0.5 0.8 4 0.7 (35, 50]
5 40 80 0.5 0.7 4 0.6 (50, 300)

in two consecutive frames will not be exceedingly significant.
Only inferring keyframes whose scene have changed a lot
compared with the previous keyframe, is a more effective way.
Semantic information will be updated once the mobile client
receives a fresh semantic mask.

V. SELF-ADAPTATION STRATEGY DESIGN

For better adaptation to diverse environments, we consid-
ered the mobile pipeline of edgeSLAM and found that there
are several parameters available for adjustment in the keyframe
selection function. By adjusting these parameters dynamically,
edgeSLAM will achieve relatively optimal results under various
computing power restrictions and network conditions.

The basis of keyframe selection is the extraction of feature
points, which leverage Gaussian Pyramid to ensure the scale
invariance. Different Gaussian Pyramid layers (nl, nlevels)
will lead to diverse ranges of corner point search. With more
layers, the computing power consumption will also increase.
Thus, the corresponding adjustments is required when the end
device has limited computing power.

After extraction of feature points, we design following rules
in edgeSLAM as principles for keyframe selection:

1) More than fmin (mMinFrames, 20 by default) frames
have passsed from the last keyframe selection on mobile
device, or the number of keyframes in the map is less
than fmin frames.

2) Less than fmax (mMaxFrames, 60 by default) frames
have passed from the last optimization for local con-
structed map.

3) The ratio of extracted feature points in current frame
compared with previous keyframe should be at least α
(0.4 by default).

4) The ratio of matched feature points in current frame
compared with previous keyframe cannot exceed β (0.9
by default).

Condition 1 ensures a good optimization and condition 3 a
good tracking. They enhance the quality of selected keyframes.

Condition 2 and 4 reduce the redundancy of keyframes and
ensure representativeness of them.

Considering the principles above, we can appropriately
increase fmax and fmin or reduce α and β under poor network
conditions.

Apart from variables we mentioned above, non maximum
suppression parameter nm in Mask R-CNN framework is
also an essential parameter, which makes trade-off between
segmentation accuracy and latency. We will also adjust it to
adapt different requirements in diverse environments.

Similar to DeepDecision [26], our self-adaptation strategy
takes environment measurements (network bandwith B and
network latency L) as inputs and defines the network condition
N as:

N = L+
M

B
(2)

where M is the data size for each frame (1280 × 720 pixels in
edgeSLAM). Furthermore, edgeSLAM outputs the optimization
strategy tuple (fmin, fmax, α, β, nl, nm). Specifically, we set
5 configuration tuples to make edgeSLAM adapt to various
network conditions, which can be seen in Table I.

VI. EXPERIMENTS AND EVALUATION

A. Implementation

Client. The implementation edgeSLAM follows the system
workflow in Fig. 6. We implement the client part of edgeSLAM
on mobile devices (Nvidia Jetson TX2, Apple iPad mini 5,
iPhone X and Galaxy S10). To begin with, we continuously
capture video frame by camera on devices using OpenCV [27]
API and JetPack Camera API and feed it to mobile track-
ing and local mapping thread. ORBextractor() function
will extract ORB feature points. Meanwhile, CUDA (only
on the development board) will accelerate the process [28].
This process is followed by featurePointsMatching()
function to calculate associations between extracted fea-
ture points. Furthermore, featureCulling() takes over

the procedure, which leverages semantic mask to ensure
the rigidity of environment. Keyframe decision function
isKeyFrame() will be finally performed according to prin-
ciples described in Section V. It determines whether or not
the new created frame is a keyframe. Keyframe will be
uploaded to edge server. Meanwhile, poseEstimation()
and localMapGeneration() will estimate the coarse-
grained camera pose and construct a map. Once client receives
a map slice sent from edge server, Update() function will
optimize pose and map.

Server. The server’s SLAM program is developed on ORB-
SLAM [29], and we develop the system visualization upon
the visualization of ORB-SLAM, with some modifications via
OpenCV. The server is equipped with Intel(R) Xeon(R) CPU
E5-2620v4 of 2.10GHz main frequency and 256G RAM,
running the Ubuntu 16.0.4 operating system. For Mask R-
CNN, the GPU we use is TITAN V with cuda version 9.1.85
and cudnn-7.05. We apply our Mask R-CNN models with the
ResNet-FPN-50 backbone and the network parameters are pre-
trained on COCO image Dateset [30]. The Mask R-CNN code
is implemented in python-3.6.5 with pytorch-0.4.0 [31].

Remote Data Interaction. The Remote Procedure Call
(RPC) refers to the form of inter-process communication
(IPC), however different processes have distinct address space.
The RPC model helps procedures executed in local in-
voke remote messages and functions. It is perfectly suitable
for Keyframe uploading and optimized map slice updating
in edgeSLAM. By applying a widely-used RPC framework
gRPC [32] developed by Google, we achieve efficient data
transmission and remote function invocation. We also leverage
the boost serialization library [33], which can be used to
reconstitute an equivalent structure in another program context.
Moreover, the strategy can also help to encode the structure
to binary stream and embed it in Protobuf [34] package
as the RPC arguments, thus, saving network bandwidth and
accelerating the data transmission rate.

B. Experiment Setup

We have performed an extensive experimental validation of
our system in two standard SLAM datasets: TUM [20] and
KITTI [21]. The TUM benchmark is an excellent dataset to
evaluate the accuracy of camera localization as it provides
several sequences with accurate ground truth obtained with
an external motion capture system. The odometry benchmark
from the KITTI dataset contains 11 sequences from a car
driven around a residential area with accurate ground truth
from GPS and a Velodyne laser scanner. This is a exceedingly
challenging dataset for monocular vision due to fast rotations
and areas with lot of foliage, which make data association
more difficult.

We evaluate the general localization accuracy of edgeS-
LAM, in 16 hand-held indoor sequences of the TUM RGB-
Monocular benchmark. Moreover, in 5 sequences from the
KITTI dataset, we evaluate the tracking accuracy of camera
pose and efficiency of the constructed map optimization. We
have carried out all experiments with an Nvidia Jetson TX2
development as mobile device and a desktop computer as edge
server. The configuration of them has been shown above. In

our experiments, we feed the image from datasets at 30 fps
into mobile device. edgeSLAM runs in real time and processes
the images exactly at the frame rate they acquired.

Furthermore, to extensively evaluate the performance of the
edge-assisted design of edgeSLAM, we compare edgeSLAM
with ORB-SLAM and Mask-SLAM. The former one is
the original baseline of our edgeSLAM without edge-assisted
method and NRCC. The latter is the system used in recent
works [19], [35]. They execute NRCC for each video clip and
fuse the semantic information with ORB-SLAM. However,
neither of these comparative methods can work on mobile
devices in real-time. Thus, entire task are offloaded to edge
server once mobile device captures a frame.

C. Performance Comparison
1) Localization Accuracy in TUM Dataset: We first exam-

ine the localization accuracy of edgeSLAM. Fig. 11 depicts
the performance of the proposed edgeSLAM as well as two
other comparative systems in indoor localization scenarios. As
shown, the average localization accuracy of edgeSLAM, ORB-
SLAM, and Mask-SLAM is 0.83cm, 1.24cm and 1.97cm,
respectively. edgeSLAM outperforms the other two approaches
by more than 30%. Moreover, our edgeSLAM can work on
the mobile device in real-time, which is the unqiue advantage
among these approaches. The delightful result comes from the
low end-to-end latency, which is ensured in edgeSLAM by
edge-assisted method and task assignment strategy.

2) Pose Tracking Accuracy in KITTI Dataset: We further
examine the camera pose tracking accuracy of edgeSLAM in
KITTI camera rotation dataset. We calculate the Relative Ro-
tation Error (RRE, an essential evaluation indicator in KITTI
dataset) of the tracking result compared with the ground truth.
The performance of edgeSLAM as well as two comparative
methods are depicted in Fig. 12. The tracking accumulative
bias of edgeSLAM is within 0.22 degree for one meter length
traces, which outperforms ORB-SLAM and Mask-SLAM by
5.1% and 17.6%.

3) Mapping Precision in KITTI Dataset: Finally, we eval-
uate the mapping precision of edgeSLAM in KITTI Dataset.
We calculate the Relative Translation Error (RTE, another
fundamental evaluation indicator in KITTI dataset) of the
constructed map compared with ground truth. In this experi-
ment, we compared the global optimized map stored in edge
server in edgeSLAM with maps constructed by other two
systems. As shown in Fig. 13, in all five image sequences,
edgeSLAM outperforms ORB-SLAM by more than 12% and
the performance gap between edgeSLAM and Mask-SLAM
is within 10%, which demonstrate that edgeSLAM achieves
competitive performance.

In summary, real-time edgeSLAM achieves enhanced lo-
calization accuracy and competitive mapping performance
with state-of-the-art offline frameworks in all evaluations. The
grateful performance comes from not only the efficient design
of edge assisted method, but also the adaption of semantic
mask transfer strategy.

D. End-to-end Latency
Our system is able to achieve an end-to-end latency within

33.3ms inter-frame time at 30fps to ensure a smooth local-

0 2 4 6 8
Location Error (cm)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

edgeSLAM
ORB-SLAM
Mask-SLAM

Fig. 11. Localization accuracy on TUM dataset

1 2 3 4 5
Dataset Label

0.0

0.1

0.2

0.3

0.4

Re
lat

ive
 R

ot
at

e
Er

ro
r (

de
g/

10
0c

m
)

edgeSLAM
Mask SLAM
ORB SLAM

Fig. 12. Tracking accuracy on KITTI dataset

1 2 3 4 5
Dataset Label

0%

1%

2%

3%

Re
lat

ive
 T

ra
ns

lat
ion

 E
rro

r

edgeSLAM
Mask SLAM
ORB SLAM

Fig. 13. Mapping accuracy on KITTI dataset

WiFi-5G WiFi-2.4G Cellular-4G
Different Wireless Connection

0

10

20

30

La
te

nc
y(

m
s)

Without NRCC
With NRCC

Fig. 14. End-to-end latency comparison

0 1 2 3 4 5
Location Error (cm)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

WiFi-5G
WiFi-2.4G
Cellular-4G

Fig. 15. Localization accuracy comparison

WiFi-5G WiFi-2.4G Cellular-4G
Different Wireless Connection

0

10

20

30

40

50

La
te

nc
y(

m
s)

With Self-adaptation Strategy
Without Self-adaptation Strategy

Fig. 16. Impact of self-adaptation on latency

0 1 2 3 4 5 6
Location Error (cm)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Without Adaptation Strategy
With Adaptation Strategy

Fig. 17. Impact of self-adaptation on accuracy

0 5 10 15 20 25 30
Location Error (cm)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Laboratory
Shopping Mall

Fig. 18. Pedestrian tracking accuracy

Classroom Gymnasium Shopping Mall
Area

80%

85%

90%

95%

100%

Na
vig

at
ion

 S
uc

ce
ss

 R
at

e Success Rate

10

20

30

40

En
d-

to
-e

nd
 L

at
en

cy
(m

s)

Latency

Fig. 19. Robot navigation success rate

ization and mapping experience. To validate this, we run
edgeSLAM under differnet network connections and calculate
the average end-to-end latency for each frame in Fig. 14.
The red dashed line in the figure is the 33.3ms deadline for
30fps SLAM devices. We can find that our system is able to
finish the entire task within 33.3ms under the majority wireless
connection conditions (34.1ms under 4G wireless connection
with NRCC). Moreover, the average frame latency increase
merely < 4ms if NRCC is involved in edgeSLAM, which is
the bottle-neck in most systems as aforementioned.

Furthermore, we evaluate the robustness of edgeSLAM
under different network conditions. As shown in Fig. 15,
edgeSLAM can reach an average accuracy of 0.7cm, 0.9cm,
and 1.3cm under different wireless connections, respectively.
The drift of accuracy influenced by network condition is within
0.5cm.

E. Impact of Self Adaptation Strategy

To demonstrate the effectiveness of designed self-adaptation
strategy. We evaluate the averge frame latency and system
localization accuracy with abd without leveraging the strategy.
edgeSLAM will upload each frame once mobile client receives
the optimization result of previous uploaded frame if without
self-adaptation strategy. As shown in Fig. 16, after bringing
in the adaptation strategy, the average frame latency decreases
more than 5ms, especially >10ms under Celluar-4G wireless
connection. The result reflects that the designed self-adaptation
strategy plays an important role in ensuring edgeSLAM runs
in real-time, especially under negative network condition.
Fig. 17 shows the performance of edgeSLAM with and without

adpatation strategy. As seen, the average localization accuracy
are 1.03cm and 0.93m, respectively. The precision difference is
within 10%. In a nutshell, above results show that the leverage
of self-adaptation startegy effectively decreases the end-to-end
latency while yields similar performance.

F. Case Study

1) Pedestrian Localization and Tracking: We conducted
experiments in a laboratory and 1st floor of a shopping mall.
These two areas have different floor layouts, diverse wireless
environments, and distinct user behavior patterns. In particular,
the crowded shopping mall is the most dynamic. While there
are a reasonable number of users in the laboratory most of the
time.

Setup. In this case, client side of edgeSLAM is implemented
on an iOS platform (Apple iPhone X). The server we use is a
Lenovo IdeaPad-Y700 with i7-6700HQ CPU of 2.6GHz main
frequency and 16G RAM, running the Ubuntu 16.0.4 operating
system. For Mask R-CNN, the GPU we used is TITAN V with
Cuda version 9.1.85 and cudnn-7.05.

Ground Truth Acquisition. In order to obtain the ground
truth, which is the accurate location of pedestrian, we recruited
a volunteer to watch surveillance videos, artificially differen-
tiate and track pedestrian and manually mark their locations
on the 2D indoor map.

Localization Result Analysis. Fig.18 shows the perfor-
mance of edgeSLAM for pedestrian localization in different
areas. As seen, edgeSLAM yields an average accuracy of
7.6cm in the laboratory, and 9.9cm in the shopping mall.
The corresponding 95th percentile location errors in these two

buildings are 9.9cm, 11.4cm, respectively. The result shows
that edgeSLAM can locate a pedestrian at fine-grained in real-
time (40fps in this case study), outperforming state-of-the-
art RF-based and vision-based localization systems. Moreover,
edgeSLAM yields similar performance (accuracy difference <
20%) regardless of the environmental difference because of
semantic mask transfer strategy.

2) Robot Mapping and Navigation: We conducted exten-
sive experiments in an office building, a gymnasium and
the 1st-3rd floor of a shopping mall, with area sizes of
about 400m2, 1,000m2 and 4,000m2, respectively. Overall, we
design 17 navigation paths, including 4 short paths (≤ 100m),
6 medium paths (100m− 200m) and 7 long paths (≥ 200m),
covering all the main pathways of the testing areas.

Setup. In this test scenario, client side of edgeSLAM is
a robot implemented with an Nvidia Jetson TX2. The edge
server has been mentioned above.

Evaluation Metrics. Similar to some existing works like
Travi-Navi and Pair-Navi, we set checkpoints at turns, esca-
lators and some landmarks on each trajectory. In total, we
set 274 checkpoints for the 21 navigation paths. Navigation
success rate is defined as the rate of successful arrival at each
checkpoint.

Navigation Performance. The performance of edgeSLAM
is depicted in Fig. 19. The average navigation success rates
(with NRCC) by edgeSLAM in classroom building, gymna-
sium and shopping mall are 97%, 94% and 90%, respectively.

Additionally, the wireless connections are different in three
areas. In classroom building, client are connected to edge
server under WiFi-5G link, while in gymnasium and shopping
mall are WiFi-2.4G and Cellular-4G, respectively. The average
end-to-end latency for each frame is also shown in Fig. 19.
The result demonstrates that in classroom and gymnasium,
edgeSLAM can run in real-time (> 30fps) meanwhile about
25fps in shopping mall. The rationale behind that is the
network suffering severe fluctuation in crowded shopping
mall.

VII. RELATED WORK

Visual SLAM. Simultaneous Localization And Mapping
(SLAM) consists of the concurrent construction of a model
and the estimation of the state of the robot moving within
it. SLAM has made astonishing progress over the last 30
years, which enables large-scale real-world applications. The
pioneering work of monocular visual SLAM [36] adopted a
filtering-based approach. Later, optimization-based methods
[37] [38] came on stage and were turned out to be more
accurate [39]. In recent years, ORB-SLAM [23], the state-of-
the-art monocular visual SLAM work, used DBoW2 [40] as
the place recognition module, and g2o [41] as the optimization
framework. Latest researches [42], [43] attempted to incorpo-
rate semantics into visual SLAM for better robustness in time-
varying environments. Being able to compute the camera pose
while generating the map and environment, visual SLAM is a
suitable technique for robotic intelligence-based applications.

Semantic Segmentation. In recent years, Convolutional
Neural Network (CNN) has been proven to achieve better
performance than traditional hand-crafted feature approaches

on various detection tasks. Faster R-CNN [44], R-FCN [45],
YOLO [46] and SSD [47], etc., are mature systems to infer
object detection and classification in image or video. Further-
more, algorithms have been proposed to achieve segmentation
on semantic and instance level . The prior work [48] task
uses R-CNN [49] to classify region proposals, which were
then refined by category-specific coarse mask predictions.
FCIS [50] performs object segmentation and detection sub-
tasks jointly and exploits the strong correlation between the
two sub-tasks with shared score maps. Mask R-CNN [18],
which is the state-of-the-art work for semantic segmentation,
extends Faster R-CNN by adding a branch for predicting an
object mask in parallel with the existing branch for bounding
box recognition.

Edge Assisted strategy. Partially offloading computation-
intensive tasks to cloud or edge cloud infrastructures is a
feasible way to enable continuous vision analytics or vision
based applications like VR/MR. Chen et al. [51] evaluate
the performance of seven edge computing applications in
terms of latency. DeepDecision [26] designs a framework to
decide whether to offload the object detection task to the edge
cloud or do local inference based on the network conditions.
VideoStrom [52] and Chameleon [53] achieve higher accuracy
video analytics with the same amount of computational re-
sources on the cloud by adapting the video configurations. Liu
et al. [24] design an edge assisted system which achieves high
accuracy object detection on existing AR/MR system running
at 60fps for both the object detection and human keypoint
detection task. Most of these works leverage the edge assisted
strategy to only focus on the relative facile object detection
task. While we are riveted to semantic visual SLAM, either
segmentation or localization task is insuperable on mobile
devices and demonstrated more complicated than detection
task.

VIII. CONCLUSION

In this work, we propose a edgeSLAM, a semantic visual
SLAM system for mobile devices, achieving both accuracy and
real-time simultaneously with the help of edge computation
resource. The core technology of our design lies in: 1, the
decomposition of computation modules of SLAM and seman-
tic segmentation; 2, avoidance of redundent computation by
reuse imtermediate results; 3, adaption of system parameters
to various conditions of network bandwidth and latency. We
fully implement edgeSLAM and extensively evaluate the per-
formance on three datasets, under different network conditions.
The results show that edgeSLAM achieves delightful results in
all scenarios. Being truly real-time, edgeSLAM sheds lights
on practical localization and mapping for mobile users and
robots.

ACKNOWLEDGMENT

We sincerely thank the anonymous reviewers for their
helpful comments and advices. This work is supported in part
by the NSFC under grant 61832010, 61632008, 61672319,
61872081, 61632013, 61672240, Microsoft Research Asia.

REFERENCES

[1] C. Wu, J. Xu, Z. Yang, N. D. Lane, and Z. Yin, “Gain without pain:
Accurate wifi-based localization with fingerprint spatial gradient,” in
PACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
Sep 11-15 2017.

[2] J. Wang and D. Katabi, “Dude, where’s my card? RFID positioning that
works with multipath and non-line of sight,” in Proceedings of the ACM
SIGCOMM, 2013.

[3] Z. Yang, C. Wu, and Y. Liu, “Locating in Fingerprint Space: Wireless
Indoor Localization with Little Human Intervention,” in Proceedings of
the ACM MobiCom, 2012.

[4] C. Wu, Z. Yang, and Y. Liu, “Smartphones based crowdsourcing for
indoor localization,” IEEE Transactions on Mobile Computing, vol. 14,
no. 2, pp. 444–457, Feb 2015.

[5] J. Xu, H. Chen, K. Qian, E. Dong, M. Sun, C. Wu, L. Zhang, and
Z. Yang, “ivr: Integrated vision and radio localization with zero human
effort,” in PACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, Sep 2019.

[6] J. Xu, Z. Yang, H. Chen, Y. Liu, X. Zhou, J. Li, and N. Lane, “Embracing
spatial awareness for reliable wifi-based indoor location systems,” in
Proceedings of the IEEE MASS, 2018.

[7] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu, “Tagoram: Real-
time tracking of mobile rfid tags to high precision using cots devices,”
in Proceedings of the ACM MobiCom, 2014.

[8] L. Shangguan, Z. Yang, A. X. Liu, Z. Zhou, and Y. Liu, “Stpp: Spatial-
temporal phase profiling-based method for relative rfid tag localization,”
IEEE/ACM Transactions on Networking, vol. 25, no. 1, pp. 596–609,
2016.

[9] C. Wu, Z. Yang, and C. Xiao, “Automatic radio map adaptation for
indoor localization using smartphones,” IEEE Transactions on Mobile
Computing, vol. 17, no. 3, pp. 517–528, March 2018.

[10] L. Li, P. Xie, and J. Wang, “Rainbowlight: Towards low cost ambient
light positioning with mobile phones,” in Proceedings of the ACM
Mobicom, 2018.

[11] H. Abdelnasser, R. Mohamed, A. Elgohary, M. F. Alzantot, H. Wang,
S. Sen, R. R. Choudhury, and M. Youssef, “Semanticslam: Using
environment landmarks for unsupervised indoor localization,” IEEE
Transactions on Mobile Computing, vol. 15, no. 7, pp. 1770–1782, July
2016.

[12] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[13] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[14] X. Zhang, Z. Yang, Y. Liu, and S. Tang, “On reliable task assignment
for spatial crowdsourcing,” IEEE Transactions on Emerging Topics in
Computing, vol. 7, no. 1, pp. 174–186, 2016.

[15] L. Cheng and J. Wang, “Vitrack: Efficient tracking on the edge for
commodity video surveillance systems,” in Proceedings of the IEEE
INFOCOM, 2018.

[16] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong,
and J. C. Zhang, “What will 5g be?” IEEE Journal on selected areas
in communications, vol. 32, no. 6, pp. 1065–1082, 2014.

[17] I. C. S. L. S. Committee et al., “Ieee standard for informa-
tion technology-telecommunications and information exchange between
systems-local and metropolitan area networks-specific requirements part
11: Wireless lan medium access control (mac) and physical layer (phy)
specifications,” IEEE Std 802.11ˆ, 2007.

[18] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE ICCV, 2017.

[19] E. Dong, J. Xu, C. Wu, Z. Yang, and Y. Liu, “Pair-navi: Peer to peer
indoor navigation with mobile visual slam,” in Proceedings of the IEEE
INFOCOM, 2019.

[20] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in Proceedings of
the IEEE IROS, 2012.

[21] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Proceedings of the IEEE
CVPR, 2012.

[22] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge university press, 2003.

[23] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[24] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection
for mobile augmented reality,” in Proceedings of the ACM Mobicom,
2019.

[25] “Object keypoint similarity (oks),” 2017, http://cocodataset.org/
#keypoints-eval.

[26] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in Proceedings of
the IEEE INFOCOM, 2018.

[27] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[28] J. Sanders and E. Kandrot, CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional,
2010.

[29] “Orb-slam2,” 2016, https://github.com/raulmur/ORB SLAM2.
[30] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014.

[31] “Pytorch mask r-cnn,” 2017, https://github.com/multimodallearning/
pytorch-mask-rcnn.

[32] “Grpc,” 2017, https://grpc.io/.
[33] “Boost serialization,” 2015, https://www.boost.org/doc/libs/1 70 0/libs/

serialization/doc/index.html.
[34] “Protocol buffers,” 2015, https://developers.google.com/

protocol-buffers/.
[35] I. A. Bârsan, P. Liu, M. Pollefeys, and A. Geiger, “Robust dense mapping

for large-scale dynamic environments,” in Proceedings of the IEEE
ICRA, 2018.

[36] A. J. Davison, “Real-time simultaneous localisation and mapping with
a single camera,” in Proceedings of the IEEE ICCV, 2003.

[37] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd, “Real
time localization and 3d reconstruction,” in Proceedings of the IEEE
CVPR, 2006.

[38] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in Proceedings of the IEEE ISMAR, 2007.

[39] H. Strasdat, J. M. Montiel, and A. J. Davison, “Visual slam: why filter?”
Image and Vision Computing, vol. 30, no. 2, pp. 65–77, 2012.

[40] D. Gálvez-López and J. D. Tardos, “Bags of binary words for fast
place recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188–1197, 2012.

[41] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proceedings of
the IEEE ICRA, 2011.

[42] S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas, “Proba-
bilistic data association for semantic slam,” in Proceedings of the IEEE
ICRA, 2017.

[43] J. Civera, D. Gálvez-López, L. Riazuelo, J. D. Tardós, and J. Montiel,
“Towards semantic slam using a monocular camera,” in Proceedings of
the IEEE IROS, 2011.

[44] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015.

[45] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-
based fully convolutional networks,” in Advances in neural information
processing systems, 2016.

[46] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
CVPR, 2016.

[47] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in ECCV. Springer,
2016.

[48] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Simultaneous
detection and segmentation,” in ECCV. Springer, 2014.

[49] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE CVPR, 2014.

[50] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolutional instance-
aware semantic segmentation,” in Proceedings of the IEEE CVPR, 2017.

[51] Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, G. Wu, K. Ha, K. Elgazzar,
P. Pillai, R. Klatzky et al., “An empirical study of latency in an emerging
class of edge computing applications for wearable cognitive assistance,”
in Proceedings of the ACM/IEEE Symposium on Edge Computing, 2017.

[52] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
delay-tolerance,” in Proceedings of the {USENIX} NSDI, 2017.

[53] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proceedings of
the ACM SIGCOMM, 2018.

