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Abstract—Among numerous indoor localization systems, WiFi
fingerprint-based localization has been one of the most attractive
solutions, which is known to be free of extra infrastructure
and specialized hardware. To push forward this approach for
wide deployment, three crucial goals on delightful deployment
ubiquity, high localization accuracy, and low maintenance cost
are desirable. However, due to severe challenges about signal
variation, device heterogeneity, and database degradation root in
environmental dynamics, pioneer works usually make a trade-off
among them. In this paper, we propose iToLoc, a deep learning
based localization system that achieves all three goals simulta-
neously. Once trained, iToLoc will provide accurate localization
service for everyone using different devices and under diverse
network conditions, and automatically update itself to maintain
reliable performance anytime. iToLoc is purely based on WiFi
fingerprints without relying on specific infrastructures. The core
components of iToLoc are a domain adversarial neural network
and a co-training based semi-supervised learning framework.
Extensive experiments across 7 months with 8 different devices
demonstrate that iToLoc achieves remarkable performance with
an accuracy of 1.92m and > 95% localization success rate. Even
7 months after the original fingerprint database was established,
the rate still maintains > 90%, which significantly outperforms
previous works.

I. INTRODUCTION

Accurate and stable Indoor Location Based Service (ILBS)
is a key enabler for many ubiquitous applications. To provide
ILBS, various wireless indoor localization techniques, such
as WiFi [1]–[6], RFID [7], [8], acoustic signals [9], visual
images [10], [11], etc. have been proposed in the past decade.
Among them, due to the wide deployment and availabil-
ity of WiFi infrastructure, WiFi Received Signal Strength
(RSS) fingerprint-based indoor localization has become one
of the most attractive solutions [12]–[15]. This approach
generally has a training stage, in which RSS fingerprints
with location labels are collected by manual site survey or
leveraging crowdsourcing scheme [12], [14] to automatic
form a fingerprint database (a.k.a. radio map). Then, users
are located by matching their fingerprint observation against
the fingerprint database. Such a method has attracted attention
from both academic and industrial communities. For instance,
Microsoft hosts indoor localization competitions based on
RSS fingerprints [16]; XiaoTianCai and HUAWEI develop
smartwatches integrated with such modules to locate and
protect children [17]; Baidu and Google deploy about 4,000
buildings to provide fingerprint-based ILBS.

Despite extensive research, RSS fingerprint-based indoor
localization frequently yields large localization errors and
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Fig. 1. A comparison of state-of-the-art works.

has not yet stepped in the prime time for wide deployment.
We evaluate the performance of the RSS fingerprint-based
localization system in real business environments across 7
months, and finally find that the primary hurdles are signal
variation, device heterogeneity and database deterioration
as illustrated in Fig. 2. On one hand, diverse RSS will be
encountered at different time by different devices, which will
lead to query fingerprint’s mismatch against the database.
Typically, location errors sometimes increase up to ten meters.
On the other hand, considering severe RSS variations and
environmental changes, an initial fingerprint database may
gradually deteriorate, leading to grossly inaccurate location
estimations. The fingerprint database may need to be periodi-
cally calibrated, even reconstructed, which induces expensive
maintenance costs.

Recent efforts attempt to overcome the above challenges
by leveraging: 1) robust fingerprint constructor and learning
based classifier: these works generate robust forms based on
multiple RSS fingerprints as new representations for each
location [2], [18], and further employ deep neural networks
for classification [19]. And 2) additional information: inertial
sensing [20], image matching [21], and even physical layer
Channel State Information (CSI) [22] have been recently
incorporated for improving performance. Additionally, some
recent approaches also leverage the extra geometry constraints
or user motion patterns provided by the above techniques to
occasionally update the fingerprint database [23], aiming to
ease the maintenance cost.

Albeit inspiring, previous works make a sacrifice to over-
come the above challenges and thus face severe limitations.
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Fig. 2. Illustration of three key reasons that lead to frequent large localization bias: signal variation, device heterogeneity, and database deterioration. (a) and
(b) show that RSS values is vulnerable to environment dynamics. In addition, automatic power adjustment strategy implemented in modern APs exaggerates
the RSS temporal fluctuations; Due to inherent hardware characteristics, different devices may encounter diverse RSSs of a specific AP under even identical
wireless conditions. (c) Because of environmental changes, an initial fingerprint database may gradually deteriorate, leading to inaccurate location estimations.

First, the localization accuracy and cross-device robustness
remain low in practice because of severe environment dy-
namics and device heterogeneity [24]. Second, we find a
theoretical gap between reliable localization and radio-map
updates. A so-called chicken-egg problem can explain it:
reliable radio-map update depends on accurate localization of
unlabeled fingerprints. However, the localization performance
is exactly influenced by the quality of pre-updated radio-
map [12], [23]. As a consequence, maintenance overhead has
not been obviously reduced, and we still need to recollect
the radio map frequently. Last but not least, although some
works may achieve enhanced accuracy, they also degrade the
deployment ubiquity. For example, a user needs to placidly
hold smartphones horizontally or vertically for precisely col-
lecting inertial sensor data and images. However, the rationale
behind the requirement is impractical [21], [25]. It is also
required to deploy extra infrastructures, including surveillance
cameras, ultrasonic beacons, or specific WiFi devices to col-
lect CSI. Fig. 1 illustrates qualitative comparison of state-
of-the-art works. None of the previous localization systems
can simultaneously solve the above issues and achieve three
goals: high localization accuracy, low maintenance cost, and
delightful deployment ubiquity.

In this work, we aim to achieve all the above three goals
and propose iToLoc, a fine-grained deep learning based indoor
localization system that is able to Train once, update automat-
ically, Locate anytime for anyone. Specifically, once trained,
iToLoc will extract device-independent and environmental
dynamics-resistant features for accurate and robust localiza-
tion. In addition, iToLoc will automatically update itself, keep
delightful localization performance, and ease maintenance
costs for the long-term. Our design and implementation of
iToLoc excel in three unique aspects:

First, to achieve accurate and robust localization perfor-
mance, we design a deep learning based framework that
can remove the influence of signal variation and device
heterogeneity contained in collected RSS fingerprints and
extract device-independent and dynamics-resistant features.
The core of the framework is a Domain Adversarial Neural
Network (DANN) [26], [27], which consists of four main

components: fingerprint-image transformer, feature extractor,
location predictor, and domain discriminator. The feature
extractor, which is a Convolutional Neural Network (CNN),
cooperates with the enhanced location predictor to carry out
the major task of localization, and simultaneously, tries to fool
the domain discriminator to learn the dynamics-resistant and
device-independent representations.

Second, to ease the system maintenance cost, we design
a reliable model update framework, unlike the recent works
mentioned above. Our key insight is that query fingerprints
can seem as unlabeled data; hence, we can treat radio-map
adaption as model fine-tune on this unlabeled dataset, which
is a classical problem in the scope of semi-supervised learning.
In this work, we adopt the concept of co-training [28],
[29] to fill the gap between robust localization and reliable
model update. Specifically, the location predictor in the DANN
mentioned above is consists of three modules with diverse
network structures to enhance the diversity of classification
view. Upon receiving unlabeled fingerprints, three modules
will co-determine the localization result and co-refine the
network according to the confidence.

Third, to ensure the system ubiquity for wide deployment,
iToLoc is purely based on RSS fingerprints without inducing
additional costs or introducing extra information.

We have fully implemented iToLoc on six different types
of commodity smartphones and two types of smartwatches.
Comprehensive experiments are carried out in three buildings
with various conditions. We deploy iToLoc in real business en-
vironments, and continuously evaluate the system performance
across 7 months. The results demonstrate that iToLoc achieves
reliable performance with an average accuracy of 1.92m and a
95th percentile accuracy of 3.4m, outperforming even the best
among four comparative approaches by >30%. The localiza-
tion success rate of iToLoc is >95%. Even 7 months after the
fingerprint database is established, the localization success rate
still maintains >90%, outperforming other works by more than
20%. Achieving truly high precision, low maintenance cost,
and delightful deployment ubiquity, iToLoc takes an essential
step towards practical indoor localization for mobile users.

The core contributions are summarized as follows.



1) We design a novel adversarial network based localization
framework. Based on the in-depth understanding of
RSS fingerprints and efficient design of the network
model, the proposed framework is able to extract device-
independent and dynamics-resistant feature for robust
localization.

2) We provide a fresh perspective to solve the radio-map
automatic adaption problem based on semi-supervised
learning, which requires no additional hardware or extra
user intervention. Compared with existing methods, we
first fill the gap between robust localization and reliable
model update.

3) We prototype iToLoc on 8 different types of de-
vices (including 2 smartwatches) in real environments
for 7 months. Encouraging results demonstrate that
iToLoc makes a great progress towards fortifying WiFi
fingerprint-based localization to an entirely practical
service for wide deployment.

The rest of paper is organized as follows. We present an
overview in Section II and introduce adversarial learning
based robust localization in Section III. Co-training based
reliable model update is provided in Section IV, followed by
implementation experiments in Section V. We review related
works in Section VI and conclude this paper in Section VII.

II. SYSTEM OVERVIEW

As illustrated in Fig. 3, the design of iToLoc follows the
classical fingerprint framework, with no more inputs than any
existing fingerprint-based systems. Benefiting from this, we
retain the elegant ubiquity of WiFi fingerprinting. iToLoc con-
tains two unique modules: adversarial learning based robust
localization and co-training based reliable model update.

The adversarial network consists of four components:
fingerprint-image transformer, feature extractor, domain dis-
criminator, and location predictor (detailed design of the
adversarial network with four components will be described
in Section III). Same as traditional fingerprint-based systems,
in the offline training stage, the collected fingerprint database
is leveraged to train the network. Afterward, the adversarial
network is able to extract robust device-independent and
dynamics-resistant features based on original RSS fingerprints,
which improve the localization performance.

Upon receiving query fingerprints, location predictor will
finally calculate the localization results. In the meantime, the
co-training based reliable model update module will also
be triggered to fine-tune the pre-trained model leveraging
these unlabeled fingerprints. The design of this module is
followed by the concept of semi-supervised learning (detailed
description in Section IV). Based on this strategy, iToLoc
will automatically and reliably update the model. The updated
model, which has been adapted to the environmental changes,
is then used for online localization for further location queries.

III. ADVERSARIAL LEARNING BASED ROBUST
LOCALIZATION

An overview of the proposed adversarial learning model is
shown in Fig. 4. As aforementioned, the goal of the proposed
model is to extract device-independent and dynamics-resistant
representations based on original RSS fingerprints.

Co-training based reliable model update 
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Fig. 3. System overview

Towards this goal, the 1-D RSS fingerprint vectors are first
transformed into 2-D fingerprint images as the input data for-
mat by the component of fingerprint-image transformer for
better expressive ability, which will promote following com-
ponents to extract more robust and stable features. Afterward,
the input images are transformed into latent representations
by the component of feature extractor. Using the learned
feature representations, the location predictor is leveraged to
maximize the localization accuracy and obtain the location
predictions. To remove domain specific features, a domain
discriminator is designed to label each domain (specifically,
to identify when the fingerprints are collected by what type of
devices). The goal of domain discriminator is to maximize the
domain labeling accuracy, which seemingly contradicts with
our ultimate goal of extracting domain-independent features.
However, in our design, the feature extractor tries its best to
cheat the domain discriminator, and at the same time, boost
the accuracy of the localization results, which is termed as a
minimax game [30]. Through the game, the feature extractor
can finally learn the common domain-independent features for
all fingerprints. Besides, we design a spatial constraint that can
significantly reduce the appearance of large localization errors.
The details of our model will be elaborated in the rest of this
section.

A. Fingerprint-image Transformer

Suppose that each user receives the RSS values from
neighboring N APs, namely, the data f = {f1, f2, · · · , fN}
is a 1-D fingerprint vector of length N where fi denotes the
RSS value obtained from the APi. It is straightforward that we
can directly take the above 1-D fingerprint vector as the input,
just like recent CNN based localization systems [31], [32].
However, the adversarial network hardly achieves delightful
performance. The main reason is that the feature extractor
in mainstream domain adversarial networks is composed of
only a few layers (typically no more than three layers) for a
balance minimax game against domain discriminator without
overfitting [27], [30]. Further, the convolution kernel in CNN
is leveraged based on the assumption that adjacent elements
enjoy a certain spatial relationship (i.e., in an image, one
pixel’s color is relevant to its adjacent pixels) [33], [34]. To
this end, the original 1-D fingerprint vector, which is composed
of irrelevant RSS values, has limited information expressive
ability as network input and can not promote the adversarial
network to extract domain-independent features.
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To solve this drawback, we design a fingerprint-image
transformer to enhance the expressive ability of original RSS
fingerprints and fulfill the characteristics of adversarial net-
works. Specifically, we leverage image x (a 2-D N×N matrix)
as the input of the adversarial network,

x =


f∗1,1 f

∗
1,2 . . . f

∗
1,N

f∗2,1 f
∗
2,2 . . . f

∗
2,N

. . . . . . . . . . . .
f∗N,1 f

∗
N,2 . . .f

∗
N,N

 (1)

where f∗j,k = (fj − fk) ∗ 1
fk

. Compared with the 1-D fin-
gerprint vector, each element in x is relevant to neighboring
elements. In the meantime, all original RSS values can be re-
calculated from x without losing information. Effectiveness of
the proposed fingerprint-image transformer will be evaluated
in Section V-C.

We let the fingerprint image x be the input data of the
proposed model. Each xi has a corresponding domain label
di ∈ D, where D denotes the set of all the domains. Here,
we refer to the domains with and without label information
as the source and target domain. Each labeled fingerprint xi

also has a location label yi ∈ Y , where Y is the set of all
the location in the area of interests. Let d denotes the domain
label vector of x, and y be the ground truth vector of x. Thus,
the inputs of our model are the 2-D fingerprint image x, the
domain label vector d, and the ground truth location y.

B. Feature Extractor
In the feature extractor, we employ a two-layer CNN

module ME to extract latent features. Let ΘME
be the set

of parameters of ME . Given the input data x, we can obtain
the latent feature Z as follows:

Z = ME(x; ΘME
) (2)

C. Location Predictor
We design three different CNN modules M1, M2, M3 and

integrate them into a location predictor. These three modules
are used to learn three different representations V M1

i ,V M2
i

and V M3
i of xi based on Zi:

V Mk
i = Mk(Zi; ΘMk

); k = 1, 2, 3 (3)

where ΘMk
are the parameters of Mk to be learned. In order

to predict the labels, we map the feature representation V i to
the latent space RC , where C is the number of locations in the
area of interests. Moreover, a softmax layer is used to obtain
the probability vector as follows:

ŷMk
i = Softmax

(
WMk

v V Mk
i + bMk

v

)
; k = 1, 2, 3 (4)

where WMk
v and bMk

v are the parameters. ŷMk
i denotes the

predicted probabilities of labeled data by module Mk. The loss
of the location predictor, La, is defined as the cross-entropy
as follows:

La = − 1

|X|

|X|∑
i=1

3∑
k=1

C∑
c=1

yic log
(
ŷMk
ic

)
(5)

where |X| is the number of fingerprints in the training set.
During the training, the feature extractor and location predictor
play a cooperative game to minimize the La.

D. Domain Discriminator
In our adversarial network, the domain is defined as a pair

of device and time. The rationale behind making this definition
are two-folds: on one hand, mobile devices with diverse types
of wireless cards have distinct capacities of sensing Wi-Fi
signals, some are especially sensitive but some are not. Taking
device variety into consideration will help adversarial network
learn device-independent representations. On the other hand,
RSS values are very noisy and fluctuant due to multi-path and
shadow fading effects. Superadded with the affection to signal
propagation caused by temperature, humidity, and movement
of people, the distributions of RSS values of different time
periods vary a lot. Given the difficulty to accurately profile
environmental dynamics or RSS variance, it is of great help to
treat time as another attribute to enable the adversarial network
to extract dynamics-resistant features [35].

In order for the domain discriminator to identify the domain
labels of the input fingerprints, we design a CNN module MD

to learn the representation U i of xi based on Zi:

U i = MD (Zi; ΘMD
) (6)



and map U i into domain distribution d̂i:

d̂i = Softmax (WuUi + bu) (7)

We define the loss as the cross-entropy between the domain
distribution and true domain labels:

Ld = − 1

|X|

|X|∑
i=1

|D|∑
j=1

dij log
(
d̂ij

)
(8)

where di is the one-hot vector of true domain labels. The
goal of the domain discriminator is to minimize Ld so as to
maximize the performance of domain prediction, which con-
tradicts with our ultimate goal of learning domain-independent
features. To address this contradiction, we maximize the
domain discriminator loss Ld in final objective function. Based
on Eq. 5 and Eq. 8, we can obtain the loss function as follows:

L = La − λLd (λ > 0) (9)

Through this minimax game, we can learn the common
domain-independent features for all the fingerprints.

E. Spatial Constraint
We design a spatial constraint on the estimated location ŷi,

which penalizes ŷi when it is inconsistent with and far away
from the ground truth yi. The loss of the spatial constraint is
defined as follows:

Ls =
1

|X|

|X|∑
i=1

C∑
c=1

wyicŷic (10)

where wyic is the weight representing the physical distance
between the c-th location and ground truth yi. In most existing
localization applications, the physical coordinates of each sam-
pling location are carefully recorded during the fingerprints
collection stage, therefore wyic can be obtained without any
extra consumption.

F. Objective and Training
With the spatial constraint, we can finally give the overall

loss function as follows:

L = La + γLs − λLd (γ, λ > 0) (11)

Following the training process of DANN [26], we iteratively
update the parameters. Let Ω = {∆,Γ} be the set of all the
parameters, where ∆ denotes the parameters in the domain
discriminator. We first fix ∆ and update the remaining param-
eters Γ = Ω−∆, and then fix Γ to update ∆.

The ultimate goal of the proposed adversarial learning
based framework is to learn device-independent and dynamics-
resistant representations of locations. To qualitatively evaluate
the learned representations, we conduct the following exper-
iment. We first select fingerprints collected at two different
locations under two different domains (when to collect and
by which device), i.e., four location and domain pairs. Then
we randomly select 30 fingerprint samples for each pair
and extract features according to Eq. 2 by baseline CNN
frameworks and iToLoc, respectively. Finally, we plot the
learned representations of these samples on a 2-D space with
a manifold learning algorithm t-SNE [36]. In Fig. 5, we use

Source 
Domain

Target
Domain

Location Confusion

(a)

Location 1

Location 2

(b)
Fig. 5. Learned representations by different frameworks: (a) in baseline CNN
framework, the features are separated according to different domains, however
mixed under different locations, which will lead to localization bias. (b) In
iToLoc, features are clustered corresponding to different locations, and mixed
under different domains, which will increase localization robustness.

orange and purple colors to represent different locations where
the fingerprints are collected, circle and triangle markers to
represent source domain (time and device labels are known)
and target domain (unknown time and device), respectively.
As shown in Fig. 5a, the features learned from the baseline
method are clustered according to different domains. What’s
worse, in the target domain (triangle markers), the features
corresponding to different locations are mixed together, which
will lead to various localization bias. In contrast, as shown in
Fig. 5b, features extracted by iToLoc can form two clearly sep-
arate clusters, where each cluster corresponds to the different
locations. Moreover, we can observe that within each loca-
tion cluster, samples from different domains have almost the
same distribution. This result demonstrates the effectiveness
of the proposed domain adversarial training to learn device-
independent and dynamics-resistant localization features.

IV. CO-TRAINING BASED RELIABLE MODEL UPDATE

The training process of model update is shown in Fig. 6.
ME denotes the well-trained feature extractor, M1, M2 and
M3 are the three modules in the location predictor. During the
model update, a part of unlabeled fingerprints will be labeled
and added to the training set. With three different modules
M1, M2 and M3, if two modules agree on the prediction of
unlabeled fingerprint and the prediction is confident and stable,
this reliable fingerprint with the pseudo-label predicted by the
two modules is added into the training sets of the third module.
The third module is refined with the augmented training set.
The details of fingerprint selection will be presented in Section
IV-A. However, the three modules will be more similar since
they augment the training sets of one another. To tackle this
problem, we fine-tune the modules by smearing labeled data
to augment the diversity among them in some specific rounds.
The details of diversity augmentation will be presented in
Section IV-B. With the above techniques for the model update,
iToLoc can adapt to the unpredictable environmental dynamic
and provide long-term services.

A. Reliable Fingerprint Selection

The pseudo-labels of the newly labeled fingerprints may
be incorrect, and these incorrect pseudo-labels will degenerate
the performance. Therefore, we must carefully select confident
and stable fingerprints. Here, confident prediction means that
the average maximum posterior probability of the two modules
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is larger than a threshold σ. Stable prediction means that
the pseudo-label should not change much when the modules
predict the fingerprint repeatedly. We leverage a data-editing
method [29] with dropout to determine the stability of the
selected fingerprints. Generally, dropout works in two modes:
at training mode, the connections of the network are different
in every forward pass; at test mode, the connections are fixed.
This means that the prediction for dropout working in training
mode may change. For each (xi, ȳi), ȳi is the pseudo-label
predicted by the modules working in test mode. And we use
dropout working in train mode to measure the stability of
the pseudo-labeled data, i.e., we use the modules to predict
the label of xi for K times in training mode and record the
frequency k that the prediction is different from ȳi. If k > K

3 ,
we regard the pseudo-label ȳi of xi as an unstable pseudo-
label. For these unstable pseudo labels, we will eliminate them.

B. Diversity Augmentation
Diversity among the three modules plays a vital role in the

training process of model update. Although we use different
network structures to enhance the diversity of classification
views, when three modules label unlabeled data to augment
the training sets of one another, they become more and more
similar. In order to maintain the diversity, we use output
smearing to generate three different labeled data sets (i.e.,
D1, D2, and D3) from the labeled training set D. Here,
output smearing constructs diverse training sets by injecting
random noise into true labels and generating modules from
the diverse training sets. We apply this technique to fine-tune
our modules M1, M2 and M3. For example (xi,yi), where
yi = (yi1,yi2, . . . ,yic) ,yic = 1 if the example belongs to
the c-th class otherwise yic = 0. In output smearing, we add
noise into every component of yi.

y′ic = yic + ReLU (zic × std) (12)

where zic is sampled independently from the standard normal
distribution, std is the standard deviation, ReLU is a function
to ensure y′ic non-negative. And normalize y′ic as follows:

y′i = (y′i1,y
′
i2, . . . ,y

′
ic) /

C∑
c=1

y′ic (13)

With output smearing, we construct three diverse training
sets D1, D2 and D3. Then we fine-tune three modules M1,
M2, and M3 on the diverse training set in specific rounds.

C. Rationale Behind Reliable Model Update

In this subsection, we explain the rationale behind the
proposed strategy for the reliable model update. First, the
fundamental of the strategy is the disagreement based semi-
supervised learning whose basic idea is to train multiple
learners for the same task but exploit the disagreements during
the learning process. Many theoretical studies have explained
why unlabeled data can improve learning performance and
efficiently fine-tune models based on such strategy [37]–
[40]. In our proposed co-training based model update, the
disagreement is exactly reflected in different views: three
modules are constructed from different network structures, and
the diversity augmentation method is leveraged to enhance di-
versity among different training data for each module. Second,
unlike previous works that the original unlabeled fingerprints
are directly leveraged to update radio-map based on local-
ization results, iToLoc first removes the device-associated and
dynamics-influenced noises contained in unlabeled fingerprints
and focuses on the essential information to simultaneously
predict locations and update the model. Compared with related
works, our model update strategy is more reliable and can
further ease the system maintenance for the long term.

V. IMPLEMENTATION AND EVALUATION

A. Experimental Methodology

We prototype iToLoc on the popular Android OS and
conduct experiments using 8 different devices over various
scenarios. Furthermore, we deploy iToLoc in real business
environments, and continuously evaluate the system perfor-
mance across 7 months. In this section, we first introduce the
experimental settings and then present the detailed evaluation.

1) Experimental Scenarios & Datasets: We carry out ex-
periments in three different buildings with various floor layouts
and diverse wireless environments. Fig. 7 shows the floor
plans of experimental areas. The wireless conditions and
environmental dynamism are pretty different in the three
buildings. Office building enjoys the most stable wireless
environment; the classroom building is crowded or empty to
different extents depending on the course schedule, which
influence the wireless condition. As for the shopping mall,
both the wireless condition and environmental layout change
frequently, which may lead to short life cycles of the collected
fingerprint database.
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Fig. 7. Experimental areas

TABLE I
DATA COLLECTION IN DIFFERENT SCENARIOS

# Building type (Areas) Size(m2) Density Devices Region Samples Duration
1 Office (Whole floor) 600 1m × 1m HUAWEI P10 * 2, Phab2, Nexus 6p * 2/7, Millet 6/9 13 72K 2 weeks
2 Classroom (Whole floor) 1,360 1.5m × 1.5m HUAWEI P10 * 2, Phab2, Nexus 6p * 2/7, Millet 6/9 18 96K 2 weeks
3 Shopping mall (Public areas) 2,130 —— HUAWEI P10 * 2, Phab2, Nexus 6p * 2/7, Millet 6/9, 30 288K 7 months

imoo Z5/Z6

Residual block

Conv
axaxh
Pad n

Conv
axaxh
Pad n

Feature Extractor (ME)

Conv block
3x3x32
Pad 1

Location Predictor (M1)

Conv block
3x3x32
Pad 1

Max-
pooling

2x2
2x2 stride

Conv block
3x3x64
Pad 1

Average-
pooling

FC

Conv block
5x5x32
Pad 2

Max-
pooling

2x2
2x2 stride

Conv block
5x5x64
Pad 2

Average-
pooling

FC

Residual 
block

3x3x32
Pad 1

Max-
pooling

2x2
2x2 stride

Average-
pooling

FC

Residual 
block

3x3x32
Pad 1

Domain Discriminator (MD)

Conv block
3x3x32
Pad 1

Max-
pooling

2x2
2x2 stride

Conv block
3x3x64
Pad 1

Average-
pooling

FC

Location Predictor (M2)

Location Predictor (M3)

Max-
pooling

2x2
2x2 stride

Conv block

Conv
axaxh
Pad n

Conv
axaxh
Pad n

Fig. 8. The architecture of iToLoc

The data collection details are summarized in Table I.
The training samples are collected once at the beginning,
while test samples are collected multiple times at intervals.
When collecting fingerprints for training, we employ a typical
sampling frequency of around 1Hz. We employ 8 phones of 6
different models that are manufactured by different companies
for data collection, including two HUAWEI P10, one Lenovo
Phab2 pro, two Google Nexus 6p, one Google Nexus 7,
one Millet 6 and one Millet 9, which are equipped with
different WiFi chips. To further evaluate the robustness of
iToLoc in device diversity, we additionally employ two kinds
of smartwatches, imoo Z5 and imoo Z6, to collect wireless
fingerprints during the testing process.

2) Network Architectures & Parameters: The network ar-
chitecture of iToLoc is illustrated in Fig. 8. Different convo-
lution kernel sizes and network units (with/without residual
block) are integrated into M1, M2 and M3 to enhance the
diversity of the learned views among the three modules. The
backbone network structure of iToLoc is consistent in all
scenarios. However, the size of the input layer varies according
to the number of APs in the fingerprint.

We use dropout (p = 0.5) after each max-pooling layer
with Leaky-ReLU (α = 0.1) as activate function except the
FC layer, which is soft-max. Batch-Normalization is equipped
for all layers. The learning rate starts from 0.1 in adversarial
training (0.01 in model update) and is divided by 10 when

the error plateaus. We maintain a batch size of 32 across the
whole set of experiments. We use SGD optimizer schedule for
gradient descent optimizer with weight decay of 0.0001 and a
momentum of 0.9.

During the offline stage, all modules ME , M1, M2, M3

and MD are trained for 200 epochs. During the model update,
in order to prevent the network from overfitting, the reliable
unlabeled fingerprints are selected from a pool, and we grad-
ually increase the pool size N = 60 × 2t up to the size of
the unlabeled dataset U [41], where t denotes the learning
round. We further fine-tune three modules M1, M2 and M3

on the diverse training sets D1, D2 and D3 every 3 rounds
after N = |U | to maintain the diversity. As aforementioned,
since D1, D2 and D3 are artificially fused with random noise,
the confidence threshold σ is decreased by σos. Specifically,
we set σ0 = 0.96 and σos = 0.1 in shopping mall dataset;
σ0 = 0.98 and σos = 0.05 in office and classroom building
dataset.

3) Comparative Methods: To extensively evaluate the per-
formance of iToLoc, we implement seven state-of-the-art ap-
proaches for comparison. We compare the localization ac-
curacy and robustness of iToLoc without model update for
short-term (within 2 weeks) with ViViPlus [18], WiDeep [19],
CNNLoc [31], and GIFT [42]. And we further evaluate the
automatic maintainability of iToLoc as well as AcMu [23],
Chameleon [43], and WILL [20], with model update for long-
term (across 7 month).

4) Evaluation Metrics: Similar to existing works, we adopt
two methods to evaluate the localization performance: 1)
Distance-level localization bias, which is a fine-grained evalu-
ating indicator. The Euler-distance between localization result
and ground truth is defined as localization bias. 2) Room
(region)-level localization success rate, which is a relatively
coarse-grained but intuitive and meaningful indicator. We
count the rate that a system locates a user in the correct room
or region we segmented. Both two indicators are leveraged
in experiments in the office and classroom buildings. And
only the localization success rate is used in the shopping mall
because of the large fingerprints sampling density and irregular
shape of public areas.
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B. Performance Evaluation

1) Overall Performance Comparison: We first evaluate the
performance of iToLoc without the model update in short-term
localization scenarios. Fig. 9 depicts the performance of the
proposed iToLoc as well as three other comparative systems.
As shown, iToLoc achieves the best performance among all
comparative systems. The average accuracy of iToLoc is
1.92m, which outperforms CNNLoc by 32.1%, WiDeep by
51.7%, and ViViPlus by 52.1%. The 95th percentile accuracy
of iToLoc outperforms these systems by 24.6%, 40.2%, and
29.5%, respectively. The results demonstrate iToLoc achieves
remarkable performance based on only RSS fingerprints with-
out introducing extra information or constraints.

2) Performance Comparison with Different Time Interval:
We also examine localization robustness in terms of temporal
stability. We recollect fingerprints during the different time
intervals and use the original fingerprint database without
update for localization. Fig. 10 depicts the performance of
iToLoc as well as the three approaches. iToLoc yields a
similar success rate of more than 95% even after two weeks.
Compared with related works where the success rates decrease
more than 9%, the decrease in success rate for iToLoc is within
1%. The results demonstrate that based on pure RSS finger-
prints, iToLoc extracts robust features to resist the fingerprint
temporal instability caused by wireless signal fluctuation.

3) Performance Comparison with Device Diversity: We
evaluate the cross-device robustness of iToLoc by involving
various devices in training and testing stages. In the training

stage, we use the fingerprints collected by five different
devices, including Phab2 pro, Nexus 6p, Nexus 7, Millet 6, and
Millet 9. And five other devices are used in the test stage. As
shown in Fig. 11, all comparative approaches severely suffer
from device heterogeneity. Compared with these works, the
variety of localization success rate of iToLoc is within 1%.
Note that the WiFi chips for imoo Z5 and Z6 smartwatches
vary considerably from those for the above smartphones.
iToLoc still achieves delightful performance under such a
strict condition, demonstrating that iToLoc can tolerate device
diversity much better than comparative methods.

4) Long-term Performance Comparison: We finally com-
pare iToLoc with related systems equipped with radio-map
automatic update algorithms to verify the effectiveness of the
proposed semi-supervised learning based model update frame-
work. We continuously collect RSS fingerprints and evaluate
the performance of systems over 7 months. Fig. 12 records
performance variation during such a long period. As shown,
iToLoc achieves the best performance among all comparative
systems at any given time. Even after seven months, the
localization success rate of iToLoc still maintains 91%, which
only decreases by 5.8% compared with other systems by at
least 17%. Comparing the solid red line and dotted line, we can
find that the proposed co-training based reliable model update
framework efficiently maintains the system performance. It
is worth mentioning that in the 18th week, due to the re-
decoration of the shopping mall, the performance of three
comparative works reduces sharply. However, there is merely



a negligible effect on the performance of the proposed iToLoc.
The above remarkable results demonstrate that the proposed
iToLoc is qualified for locating in dynamic environments, and
the semi-supervised learning based model update framework
is able to maintain the system’s performance for a long
time. In addition, unlike AcMu and WILL, iToLoc does not
incorporate extra information (IMU, floor plan, etc.). Thus,
the ubiquitousness of iToLoc retains the potential for wide
deployment in practical service.

C. Study of Core Components
1) Impact of Robust Feature Extractor: We quantitatively

analyze the performance of the DANN based robust feature
extractor with the baseline method without domain adversarial
training strategy. We divide the training dataset into 22 source
domains (5 devices with 6 time periods) and test set into 25
target domains (5 devices with 5 time periods) for evaluation.
Fig. 13 shows the accuracy on each target domain. The
standard deviation of the localization success rate using the
robust feature extractor is only 0.24%, while the baseline
method is up to 1.62%. The average accuracy of our approach
is also higher than the baseline by 4.9%. The above remarkable
performance indicates that our model is capable of extracting
device-independent and dynamics-resistant features.

2) Impact of Fingerprint-image Transformer: In this ex-
periment, we aim to validate the advantages of the proposed
fingerprint-image transformer. We focus on the relative ac-
curacy other than the absolute improvement achieved by our
approach. In each experimental scenario, we use the 2-D
fingerprint image and 1-D fingerprint vector as their inputs,
respectively. As shown in Fig. 14, by leveraging the generated
image as input, the performance gain is 2.3%, 2.8%, and
4.3% in the office building, classroom building, and shopping
mall, respectively. The delightful results demonstrate that the
proposed fingerprint-image transformer will further promote
iToLoc to extract domain-independent robust features.

3) Impact of Spatial Constraint: We further evaluate the
spatial constraint, which is proposed to solve the frequent
significant localization bias. As shown in Fig. 15, the average
accuracy outperforms the method without spatial constraint
by 18.3%, and the improvement of 95th percentile location
error is 32.4%, achieving a mean accuracy of 1.86m and 95th
percentile accuracy of 5.41m. The results demonstrate that
the spatial constraint can effectively reduce large errors and
improve overall localization performance.

VI. RELATED WORK

Indoor localization has attracted vast research efforts during
the past decades. We briefly review the most related latest
works in the following.

Robust wireless fingerprint extractor. To enhance the lo-
calization robustness without degrading the delightful ubiquity
of fingerprint based approaches. Various subsequent works
tend to seek for robust expressive form of RSS fingerprints
[13], [44]–[47]. In particular, recent innovations explore the
spatial/temporal properties of fingerprints for localization.
GIFT [42] defines a metric of binary differential value between
RSS observed at two adjacent locations as replacements to the
original RSS values as fingerprints; ViVi [2] and ViViPlus [18]

explore the spatial gradient of selected multiple neighboring
fingerprints to deal with the device heterogeneity as well
as spatial ambiguity. However, the localization accuracy and
cross-device robustness still remain low in practice due to fre-
quent environmental changes and device heterogeneity. Com-
pared with these works, iToLoc extracts device-independent
and dynamics-resistant features, which have been demon-
strated to be more robustness.

Deep learning assisted localization. Some works are also
equipped with deep learning models to enhance fingerprint
matching. In [31] and [32], a CNN-based WiFi fingerprint-
ing method was presented to pursue better performance.
WiDeep [19] integrates a stacked auto-encoders deep learning
model with a probabilistic framework to handle the noise
and capture the complex relationship between the WiFi APs
signals. Previous approaches [48] and [35] demonstrate that
conclude fingerprint collection time and device as domain and
leverage domain-adaptive transfer learning based frameworks
will further boost the localization accuracy. Inspired by recent
works, iToLoc leverages adversarial network to extract robust
domain-independent representations.

Fingerprint database automatic update. Considering en-
vironmental dynamics, pioneer works including LiFs [12], Un-
Loc [49], WILL [20], AcMu [23], leverage the various built-
in sensors in smartphones to provide extra range constraints
for accurate localization results, and further conditionally
update the fingerprint database. However, they induce extra
constraints to user behaviors and degrade the system ubiquity.
Some recent transfer learning based techniques such as mani-
fold alignment are also applied to correct RSS measurements
and update radio-map over time [43], [50]. However, the
fingerprint database will also gradually deteriorate because
there is still a gap between reliable adaption and robust
localization. In contrast, iToLoc treats the radio-map adaption
problem as a semi-supervised learning task, and leverage co-
training based framework to automatically update the model,
which has been demonstrated more effective to underpin a
long-term localization service.

VII. CONCLUSION

In this paper, we propose iToLoc, a deep learning based
localization system that achieves all three goals on delightful
deployment ubiquity, high localization accuracy and robust-
ness, and low maintenance overhead simultaneously. We pro-
totype iToLoc and evaluate it by extensive experiments across
7 months and by 8 different devices. The results demonstrate
its superior performance over previous schemes. Trained once,
locate anytime for anyone: iToLoc makes a great process
towards fortifying WiFi fingerprint-based localization to a fully
practical service for wide deployment.
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