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ABSTRACT
Fast and accurate obstacle avoidance is crucial to drone safety.
Yet existing on-board sensor modules such as frame cameras
and radars are ill-suited for doing so due to their low tem-
poral resolution or limited field of view. This paper presents
BioDrone, a new design paradigm for drone obstacle avoid-
ance using stereo event cameras. At the heart of BioDrone
is two simple yet effective system design inspired by the
mammalian visual system, namely, a chiasm-inspired sig-
nal processing pipeline for fast event filtering and obstacle
detection, and a lateral geniculate nucleus (LGN)-inspired
event matching algorithm for accurate obstacle localization.
To make BioDrone a practical solution, we further take sig-
nificant engineering efforts to deploy the software stack on
FPGA through software and hardware co-design. The per-
formance comparison with two state-of-the-art event-based
obstacle avoidance systems shows BioDrone achieves a con-
sistently high obstacle detection rate of 96.1%. The average
localization error of BioDrone is 6.8𝑐𝑚 with a 4.7𝑚𝑠 latency,
outperforming both baselines by over 40%.
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1 INTRODUCTION
Drones are among the most disruptive inventions in the
past few years, spawning many novel applications including
aerial imaging[7, 35, 37], last-mile delivery[47, 68, 71], sky
networking[15, 61], and industrial inspection[1, 13, 75]. De-
spite their huge market value, safety remains a crucial chal-
lenge for drones, particularly for those high-speed drones in
industrial and urban applications. For instance, DJI’s indus-
trial drones cruise at up to 25𝑚/𝑠[19], and the relative speed
between two Amazon delivery drones can reach 30𝑚/𝑠[4].
Drone collisions with obstacles (e.g., birds[48], drones[16])
will not only cause financial loss but also threaten human
safety[2, 27], which sets a strong barrier for drone adoption.

Fast and accurate obstacle detection and localization plays
a key role in drone obstacle avoidance – the lower the detec-
tion latency, the more time the drone could take to react; and
a higher localization accuracy increases the likelihood the
drone can dodge them. Existing solutions primarily rely on
frame-based cameras[22, 70] and radars[33, 45]. However,
the low spatial-temporal sampling resolution of these on-
board sensors makes it challenging for drones to perceive
obstacles timely or localize them accurately.
For instance, the sampling interval of a typical frame-

based camera varies from 20𝑚𝑠 to 50𝑚𝑠 , during which an
obstacle can move up to 40𝑐𝑚 (given a 20𝑚/𝑠 relative speed).
As a result, we are expected to see severe motion blurring on
each image (Fig.1c). Such motion blurring will fail the vision

https://github.com/MobiSense/BioDrone
https://doi.org/10.1145/3570361.3613269
https://doi.org/10.1145/3570361.3613269


ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Jingao Xu, Danyang Li and Zheng Yang, et al.

Drone

Obstacle

Stereo Event Camera

LiDAR

Depth 

Camera

Frame-based

Camera

Event Stream Gray Image

Obstacle

(a) (b)

(c) (d)

Obstacle

Drone

(a) An obstacle shows up

Drone

Obstacle

Stereo Event Camera

LiDAR

Depth 

Camera

Frame-based

Camera

Event Stream Gray Image

Obstacle

(a) (b)

(c) (d)

Obstacle

Drone

(b) The industrial drone platform

Drone

Obstacle

Stereo Event Camera

LiDAR

Depth 

Camera

Frame-based

Camera

Event Stream Gray Image

Obstacle

(a) (b)

(c) (d)

Obstacle

Drone

(c) A comparison of captured event stream and ordinary gray image
(without versus with obvious motion blur)
Figure 1: Snapshot of an obstacle avoidance maneuver.

algorithms, impairing both obstacle detection and localiza-
tion accuracy. The radar-based solutions, on the other hand,
suffer from high miss detection rates due to their limited
field of view (FoV)[24, 76].
Drone obstacle avoidance with event cameras. Event
cameras are novel bio-inspired sensors that report pixel-wise
intensity changes asynchronously. Endowed with microsec-
ond resolution, event cameras are able to capture high-speed
motions without blurring (Fig.1c). Hence event cameras are
envisioned to be an ideal solution to challenging vision tasks
such as high-speed feature tracking[85], motion tracking[39],
and simultaneous localization and mapping (SLAM)[26].
To better understand the potential of event cameras for

obstacle avoidance, we reimplement seven state-of-the-art
systems[10, 24, 29, 49, 52, 65, 84] (red circles in Fig.2, and
[29, 65] require multi-modal fusion) with stereo event cam-
era setup and evaluate their performance. Our benchmark
studies (§2.3) reveal that they face fundamental challenges
for high-speed drone adoption, as elaborated below.
• Event burst impairs drone obstacle detection. Event
cameras are hyper-sensitive to environmental change. For
instance, a slight change in lighting can lead to a remarkable
change in pixel-wise intensity, resulting in hundreds of event
reports. In practice, the scene in the camera’s view changes
rapidly due to drone movement; thus we will see an event
burst where thousands of events are reported within a short
time and those critical obstacle-triggered events are easily
buried by massive numbers of environment-triggered events.
• Event sticking delays drone obstacle localization.Con-
ventional vision algorithms are designed for frame-based
cameras and cannot be directly applied to event streams for
obstacle localization because the output of an event camera
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Figure 2: System performance comparison based on
our field studies (§2). A smaller circle size indicates a
more stable performance. The green area indicates a feasible
performance range for high-speed (i.e., 20𝑚/𝑠) drones (§2.2).
is not an image but a stream of asynchronous events. To ad-
dress this issue, the current practice periodically sticks a lot
of scattered events into a compact image and applies image-
based algorithms (e.g., stereo triangulation[28] or deep neu-
ral networks[10, 29, 52, 65]) that are both computationally
demanding. Repeating these operations would cause signifi-
cant delays in obstacle localization.
Although existing solutions (e.g., Baseline-I[24]) achieve

high obstacle detection accuracy by using a monocular event
camera. The obstacle localization performance, however,
drops significantly in high-speed scenarios (i.e., 20𝑚/𝑠) due
to the increasing task complexity and growing data volume.
Given that the event camera is a kind of bio-inspired vi-

sion sensor, we ask a question: Could we tackle the above
challenges by studying how animals process binocular vi-
sual signals for efficient obstacle localization? To answer
this question, we resort to bionics and take a comprehensive
study (§3.1) on (𝑖) how binocular visual signals are transmit-
ted from the retina to the visual cortex in the mammalian
visual system; and (𝑖𝑖) how they are rapidly filtered, matched,
and spatio-temporal corrected through the visual pathway.
Our Work. In this paper, we leverage the Biological lessons
learned from mammalian visual system and propose Bio-
Drone, a Drone-oriented obstacle avoidance system. Bio-
Drone features three key designs to fully unleash binocular
event cameras’ potential for obstacle localization and is im-
plemented on FPGA with software-hardware co-design by
embracing on-chip intelligence[6, 57], as elaborated below.
• On system architecture front, we imitate how mammal’s
visual pathway processes binocular visual signals and pro-
pose a visual-pathway-inspired signal processing pipeline for
binocular event streams. Unlike the current practice where
event streams are processed separately and not fused un-
til the final triangulation stage, BioDrone fuses binocular
event streams at an early stage, enabling the subsequent
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event filtering, matching, and localization modules to take
full advantage of binocular information (§3.3).
• On system algorithm front, we first introduce a Chiasm-
inspired Event Filtering (CEF) algorithm to quickly filter out
environment-triggered events from the massive amount of
events with a very low false positive rate (§4.1). We then
propose a Lateral Geniculate Nucleus (LGN)-inspired Event
Matching (LEM) algorithm to determine the spatial location
of obstacles directly on binocular event streams thus elimi-
nating cumbersome event sticking operations (§4.2).
• On system implementation front, we implement BioDrone
on a commercial Xilinx Zynq-7020[73] chip. We design ex-
clusive logic circuits, on FPGA, to parallelize the pixel-wise
event processing, expediting the whole software stack (§5).

We deploy BioDrone on a drone testbed and further inte-
grate it into ArduPilot[5], a widely-used open-source drone
flight controller. We conduct extensive experiments with
various types of obstacles and in different flying speed set-
tings both indoors and outdoors. We compare the end-to-end
obstacle localization accuracy and latency of BioDrone with
two state-of-the-art (SOTA) event camera-based drone obsta-
cle avoidance systems Baseline-I[24] (Science Robotics’20)
and Baseline-II[49] (IROS’18). Evaluation results show that
BioDrone achieves 96.1% obstacle detection rate, outperform-
ing both baselines by >10%. BioDrone further achieves 6.8𝑐𝑚
obstacle localization accuracy with 4.7𝑚𝑠 latency, outper-
forming baselines by >40%.

In summary, this paper makes following contributions.
(1) We systematically study both the conventional sensor-
and event camera-based drone obstacle avoidance systems,
and reveal the fundamental limitations of these solutions.
(2) We demonstrate that bio-inspired designs can effectively
improve drone obstacle detection and localization accuracy
with a stereo event camera setup. As biology progresses and
the future grasp of the visual system deepens, we believe this
bio-inspired design will spawn new ideas in this domain.
(3)We fully implement BioDrone through software-hardware
co-design and deploy it on an industrial drone, conducting
a head-to-head comparison with two SOTA systems. The
evaluation results show BioDrone’s efficacy.

2 BACKGROUND AND MOTIVATION
2.1 Drone Obstacle Avoidance Primer
As illustrated in Fig.3a, obstacle avoidance consists of local-
ization and action two phases. During the localization phase,
suppose an obstacle shows up abruptly at 𝑡0 and is perceived
by a drone at 𝑡1 after a perception delay Δ𝑡𝑝 . Upon detecting
the obstacle, the drone takes Δ𝑡𝑐 to localize the obstacle. Not-
ing that the drone still follows its planned trajectory to move
before localizing the obstacle at 𝑡2. Afterward, the on-board

(a) (b)
Figure 3: (a) Relative distance changes in an avoidance
maneuver. (b) Illustration of the event stream.
flight controller changes the drone’s trajectory to dodge the
obstacle (i.e., keep a safe distance from it) in the action phase.
Both the localization delay (Δ𝑡𝑙 = Δ𝑡𝑝 + Δ𝑡𝑐 ) and local-

ization error (Δ𝑥 = 𝑥𝑙 − 𝑥𝑙 ) are crucial to drone obstacle
avoidance. A long delay Δ𝑡𝑙 leaves the drone very short time
to react, and a large localization error Δ𝑥 misleads the flight
controller to execute a wrong obstacle avoidance maneuver.

2.2 Limitations of the Current Practice
Existing radar-based (e.g., LiDAR[31, 33, 43], mmWave[21,
46, 76], or ultrasound[80]) and camera-based solutions (e.g.,
monocular[30, 70], stereo[22, 77], or depth[60]) are ill-suited
for drone obstacle avoidance due to their high perception
delay (high Δ𝑡𝑝 ) or low localization accuracy (high Δ𝑥 ). Take
DJI Matrice 200 v2, the most advanced industrial drone, as
an example. Its cruising speed can reach 𝑣𝑐 = 20𝑚/𝑠 in a
wide range of applications such as urgent package delivery,
emergency services, and rapid terrain mapping. Based on
the manufacturer’s safety guideline[20], the safety distance
between the drone and obstacle should be no less than 𝑙𝑠 =
60𝑐𝑚, with an emergency braking distance at 𝑙𝑏 = 50𝑐𝑚.
What is a feasible solution? Let 𝑙 be the distance between
the drone and the obstacle. To ensure the drone can suc-
cessfully evade the obstacle, the localization delay Δ𝑡𝑙 and
accuracy Δ𝑥 should satisfy the following equation:

𝑣𝑐 × Δ𝑡𝑙 + 𝑙𝑏 + Δ𝑥 ≤ 𝑙 − 𝑙𝑠 . (1)

Now assuming an obstacle shows up 1.5𝑚 (i.e., 𝑙 = 1.5𝑚)
away from the drone. Based on Eq.1, we can draw a feasible
area (the triangle area in green) in Fig.2 where each point
within this area represents an acceptable localization latency
and accuracy. Any point outside this feasible area would lead
to a failure in drone obstacle avoidance maneuvers.
Examining the current practice. We build a drone testbed
by integrating five types of sensor units, including a LiDAR,
a mmWave radar, a depth radar, a monocular camera, and
a stereo camera, into an industrial drone (Fig.1b). We then
re-implement seven obstacle avoidance solutions [21, 22,
33, 43, 45, 70, 77] and evaluate their performance in high-
speed scenarios by conducting over 1,500 obstacle avoidance
tests (§6). Fig.2 depicts their obstacle detection rate, average
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Figure 4: Performance of existing event-based solutions at different translation and rotation speed settings.

localization accuracy (Δ𝑥) and delay (Δ𝑡𝑙 ). As seen, frame
camera-based solutions (i.e., blue circles) suffer from long
localization delays due to their long frame exposure time
(around 20𝑚𝑠) and excessive image processing delay (adding
another 10-20𝑚𝑠). Worse still, the motion blurring shown in
each frame would confuse the obstacle detection and local-
ization algorithm, exacerbating both misdetection rate and
localization errors. On the other hand, LiDAR and mmWave
radar-based solutions (i.e., purple circles) suffer from low
detection rate (i.e., ≤ 40%) due to their limited field of view.

2.3 Event Camera for Obstacle Avoidance:
Opportunities and Challenges

Event cameras are bio-inspired sensors that work differently
from frame-based cameras. Instead of capturing images at
a fixed rate, an event camera measures per-pixel brightness
changes asynchronously, resulting in a stream of events at
microsecond resolution[26]. Specifically, an event camera has
smart pixels (similar to the photoreceptor cells on retinas)
that trigger events independently of each other: as shown in
Fig.3b, once a pixel detects a change of intensity in the scene,
it will instantly output an event 𝑒𝑘 = (𝒙, 𝑡𝑘 , 𝑝𝑘 ), encoding
the occurrence time 𝑡𝑘 (at microsecond resolution), pixel
location 𝒙 = (𝑢, 𝑣), and polarity 𝑝𝑘 (blue for +1 𝑣𝑠. red for -1
in Fig.3b) of the intensity changes (i.e., brighter or darker).

The high temporal resolution empowers the event camera
to detect environment changes promptly. However, leverag-
ing event cameras to detect obstacles for high-speed drones
is facing two fundamental challenges, as elaborated below.
• C1: Event burst impairs drone obstacle detection.
Events captured by an event camera can be classified into two
categories: environment-triggered and obstacle-triggered
events. The former is generated due to the ego-motion of the
event camera, while the latter is caused by the appearance
of obstacles. To detect and further localize an obstacle, a sys-
tem needs to identify obstacle events from massive events.
To this end, existing solutions apply IMU-based ego-motion
compensation algorithms to filter out environment-triggered
events[24, 26, 49]. However, as shown in Fig.4a, the num-
ber of events generated per millisecond surged from around
300 to 1,500 and the new additions are mainly environment

events. Such a burst of environmental events overwhelm ob-
stacle events and degrade existing algorithms’ performance.
To validate the above analysis, we conduct an obstacle

detection experiment under different flight modes. As shown
in Fig.4b, the detection rate of two SOTA solutions, Baseline-
I[24] and -II[49], drops to < 60%. To better understand the
reasons for failure cases, we further examine the event filter-
ing performance of these two baselines in two high-speed
flight modes (i.e., mode 2 and mode 3). We observe that both
systems achieve a very low event filtering rate (recall and
precision < 60% in Fig.4c), which confirms our analysis.
• C2: Event sticking delays drone obstacle localization.
Once the obstacle is detected, the drone has to localize it in
3D space. Typically, localization is more time-consuming
than detection due to the additional operations involved. For
instance, Baseline-I requires binocular parallax optimization,
matching, and triangulation after detection, which is more
computationally intensive as outlined in [24].
Moreover, conventional vision algorithms (e.g., stereo

triangulation[28]) or DNNs cannot be directly applied as
the output of an event camera is not fix-rate frames but a
stream of asynchronous events. To solve this issue, the cur-
rent practice proposes to (𝑖) stick all generated events within
a time window (e.g., < 1𝑚𝑠) into an image and then apply
image-based algorithms (Fig.5c); or (𝑖𝑖) design event data-
oriented DNNs (e.g., spiking neural networks[63]) for object
localization. However, as depicted in Fig.4d, although the lo-
calization accuracy is boosted, either the sticking operations,
the stereo visual algorithms, or DNN inference introduces
significant delays, leaving the drone no time to react.

In summary, although event cameras hold great potential
for delay-sensitive tasks such as drone obstacle avoidance,
there still lack effective algorithms and system support to
fully unleash their potential, especially with a stereo setup
for localization tasks.

3 BIO-INSPIRED ARCHITECTURE
Our system architecture and algorithms are inspired by the
biological visual pathway. In this section, we first introduce
the biological visual pathway in mammalian visual system
and describe how visual information is filtered, processed,
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Figure 5: System architecture comparison. (a) Human binocular visual pathway. (b) BioDrone’s architecture inspired by (a).
(c) System architecture of conventional event-based systems[24, 49, 50], where binocular event streams are processed separately
and follow traditional visual localization workflow (i.e., from feature extraction to matching and then stereo triangulation).
and transmitted from retina to brain through the pathway.
We then present the lessons learned and explain how we
leverage these insights to design BioDrone.

3.1 Biological Visual Pathway
As illustrated in Fig.5a, light entering eyes is refracted by the
cornea and lens and then simulates photoreceptor cells on the
retina to produce visual signals. The optic nerves carrying
those visual signals from both eyes cross at the optic chi-
asm, which localizes at the base of the hypothalamus of the
brain[36]. Additionally, the vestibular nerves that transmit hu-
manmotion information, interact with the optic nerves at the
optic chiasm and select which necessary visual signals will
be further carried forward to the thalamus for subsequent
processing[17]. Afterwards, the filtered visual signals enter
the lateral geniculate nucleus (LGN) are re-organized and
spatio-temporally correlated to achieve a 3D representation
of environment[62]. Finally, the correlated visual representa-
tions reach the visual cortex via optic radiations, and complex
visual perception tasks will be accomplished here.

3.2 Bio-lessons
We have learned two biological lessons from visual pathway:
•L1: Early integration of binocular visual signals.Binoc-
ular visual signals are integrated at an early stage (i.e., at
optic chiasm instead of brain). This allows visual signal fil-
tering and matching to take full advantage of the binocular
information. In contrast, current practice[24, 49] process,
filter, and extract visual features from each event stream
independently, as illustrated in Fig.5c.
• L2: Fast processing of low-level visual tasks. The low-
level visual tasks (e.g., object detection and localization) are
rapidly accomplished along with the signal transmission
through the visual pathway (i.e., the binocular visual signals

are filtered at optical chiasm and then matched at LGN). The
visual cortex, on the contrary, focuses on high-level visual
tasks (e.g., object recognition or segmentation).

While the mechanisms of the optic chiasm and LGN han-
dle visual signals are still being explored, the above early
integration and collaborative signal-processing architecture
inspires our design for handling binocular event streams. Our
work aims to provide initial proof that bio-inspired designs
can heighten the performance of corresponding bio-inspired
sensors. Future designs, which rely on the latest research,
are subject to evolution as new discoveries emerge.

3.3 Overview of BioDrone
BioDrone shares a similar architecture with the biological
visual pathway to unleash the potential of event cameras, as
shown in Fig.5b. We explain the functional units below.
• From the architecture perspective, following lesson-L1,
BioDrone features a visual-pathway-inspired signal process-
ing pipeline, fusing binocular event streams at an early stage,
which allows the obstacle detection and localization tasks to
combine and fully leverage the binocular event information.
• From the algorithm perspective, following lesson-L2, Bio-
Drone attempts to mimic how optical chiasm and LGN pro-
cess binocular visual signals and designs two heuristic algo-
rithms. Specifically, BioDrone proposes a Chiasm-inspired
Event Filtering (CEF) mechanism for event filtering and ob-
stacle detection, and an LGN-inspired Event Matching (LEM)
module to localize obstacles from the integrated event stream.

Finally, the obstacle localization results from LEM will be
used to guide the flight controller to execute desirable evasive
operations. By optimizing the algorithms to parallelize event
processing, we accelerate the entire software stack on FPGA.
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Figure 6: Illustration of the chiasm-inspired event fil-
tering scheme. Left: the distinction between environment-
and obstacle-events under ego-motion instruction; Right: the
binocular constraint that an obstacle event should satisfy.

4 BIO-INSPIRED ALGORITHM DESIGN
In this section, we describe two bio-inspired algorithms for
event filtering (§4.1) and obstacle localization (§4.2).

4.1 Chiasm-Inspired Event Filtering
Optic nerves carrying visual signals from eyes and vestibular
nerves carrying motion signals from cochleas cross at optic
chiasm. Like a busy intersection, optic chiasm is the ren-
dezvous point where binocular visual information gets fused
and filtered under the guidance of proprioceptive motion
information. Typically, about 1,200,000 photoreceptors on
human retina generate visual signals per second, yet merely
around 1,700 of them would pass through optic chiasm[23].
Motivated by the chiasm’s ultra-efficient signal filtering

performance, we design a chiasm-inspired event filter that
leverages the drone’s IMU perception data (simulating the
vestibular motion signals) to pick up obstacle events in binoc-
ular event streams. The insight behind this mechanism lies
in two-fold: (𝑖) IMU could be leveraged to infer the ego-
motion of event cameras, which provides a priori knowledge
to cull environment-triggered events. Just like in our daily
life, when your head is turning right, your righter visual
field becomes clear while the lefter blurs, and vice-versa; and
(𝑖𝑖) the collaborative use of binocular event streams would
further improve the filtering performance as the spatial rela-
tionship (i.e., pose transformation) between the stereo event
cameras provides an additional constraint. For instance, a
single eye is less sensitive to the depth change of a moving
object compared to two eyes.

4.1.1 Event Filtering Based On Ego-motion Instruc-
tion. We first explain howwe filter events based on IMU sen-
sor readings. As illustrated in both Fig.6 and Fig.7b, suppose
we collect a batch of events E and IMU data I within a short
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Figure 7: Step-by-step event filtering performance.

time window [𝑡0, 𝑡0 +𝛿𝑡], and each dot in these figures repre-
sents an event and the color of this dot shows its polarity (red
for -1 while blue for +1). The high-end IMU sensors on the
drone can provide motion tracking results[24, 58]. Given an
arbitrary event shows up in this window, say, 𝑒𝑖 = (𝒙 𝒊, 𝑡𝑖 , 𝑝𝑖 )
where 𝒙 𝒊, 𝑝𝑖 represents the event’s pixel-wise location and
polarity at timestamp 𝑡𝑖 , we can estimate the event’s past
location 𝒙0 at 𝑡0 based on drone motions. There are two cases:
(𝑖) If 𝑒𝑖 is an environment-triggered event, its estimated
location 𝒙0 at 𝑡0 should match its real location 𝒙0 captured at
timestamp 𝑡0 because the environment change is only caused
by the drone movement.
(𝑖𝑖) Conversely, if 𝑒𝑖 is an obstacle-triggered event, its esti-
mated location 𝒙0 at 𝑡0 should not match 𝒙0 since the obstacle
moves yet our event location prediction does not take into
account the obstacle movement.

Based on the above analysis, we project all events captured
within the time window [𝑡0, 𝑡0 + 𝛿𝑡] to the timestamp 𝑡0
and obtain a 2D map, as shown in Fig.6. The environment-
triggered events (denoted by green rectangles) are aligned
when being projected to this 2D map, whereas the obstacle-
triggered events (denoted by red rectangles) are scattered due
to obstacle movement. BioDrone explores this opportunity
to filter out the former. We model this process in §A.1 and
present the algorithm in §4.1.3. We further design circuits on
FPGA to parallelize the projection process, as the operations
for each event are independent (§5).

4.1.2 Event Filtering Based On Binocular Consistency.
Over 70% of environmental events are successfully filtered
out with ego-motion instruction (Fig.7c). However, there are
still stubborn residues since: (𝑖) event cameras also suffer
from sampling noise, and the firing time of those noisy events
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Algorithm 1: Chiasm-Inspired Event Filtering
Input: Raw Event Stream: E𝑙 = {𝑒𝑙𝑖 }, E𝑟 = {𝑒𝑟𝑖 }
Output: Obstacle-triggered events:

E𝑙
𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

, E𝑟
𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

1 for each E in {E𝑙 , E𝑟 } do
2 for each 𝑒𝑖 in E do
3 𝒙 = EventWarp(𝑒𝑖 );
4 𝐷 [𝒙].append(𝑒𝑖 );
5 end
6 for each 𝒙 in 𝐷 .key() do
7 𝜌𝑖𝑚𝑢 (𝒙) = ObstacleCheck

(
𝐷 [𝒙], E

)
;

8 if 𝜌𝑖𝑚𝑢 (𝒙) > 𝜏threshold then
9 E𝐼𝑀𝑈 .extend

(
𝐷 [𝒙]

)
;

10 end
11 end
12 end
13 𝑑 = DepthEstimate

(
E𝑙
𝐼𝑀𝑈

, E𝑟
𝐼𝑀𝑈

)
;

14 for each 𝑒𝑙𝑖 in E𝑙 do
15 𝑒𝑟𝑖 = EventDiscover

(
𝑒𝑙𝑖 , 𝑑

)
;

16 if 𝑒𝑟𝑖 ≠ Null then
17 E𝑙

𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒
.append

(
𝑒𝑙𝑖
)
; E𝑟

𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒
.append

(
𝑒𝑟𝑖
)
;

18 end
19 end

is random; and (𝑖𝑖) due to the bias of projection view, dif-
ferent events may be accidentally mapped to the same pixel
areas. Accordingly, it’s challenging to find an optimal thresh-
old to distinguish the different events in ego-motion instruc-
tion. This is also the reason why the current practice[24, 49]
fails to achieve reliable event filtering performance.
To address this issue, we first cluster events and obtain

the obstacle’s counter, as shown in the top-right corner of
Fig.7c. The events outside the contour can be safely filtered
out. However, since the contour estimated by clustering is
less accurate, we are expected to see plenty of environment-
triggered events around the obstacle. To filter out these
events, we are inspired by binocular consistency. As illus-
trated in the bottom right of Fig.6, let 𝑒𝑙 and 𝑒𝑟 be an event
reported by the left event camera and right event camera,
respectively. We first estimate a rough depth of the obstacle
by triangulating the center of contour[24]. If 𝑒𝑙 is triggered
by an obstacle, then according to the Epipolar constraint[82],
𝑒𝑟 should show up on a specific area which can be estimated
by the pixel location of 𝑒𝑙 and the depth of the obstacle (esti-
mated by triangulation). Otherwise, if 𝑒𝑟 is not found in this
specific area, both 𝑒𝑟 and 𝑒𝑙 should be environment-triggered
event. We model this process in §A.2.
Finally, we remove the salt-and-pepper noise using mor-

phological algorithm[24]. Compared to the original event

= −1

= +1

(a) Event Stacking (b) Polarity Time-Surface(a) Event Sticking
= −1

= +1

(a) Event Stacking (b) Polarity Time-Surface(b) Polarity Time-surface
Figure 8: Event representation method comparison.
stream (Fig.7b), the obstacle is well separated after these two
steps filtering, presenting a sharp and clear contour (Fig.7d).
4.1.3 Putting Them Together. Algorithm 1 shows how we
practice these two steps filtering. Line 1–12 and Line 13–
19 represents event filtering based on ego-motion instruc-
tion (first step) and binocular consistency (second step), re-
spectively. Specifically, given input event streams E𝑙 and E𝑟

within the time window [𝑡0, 𝑡0 + 𝛿𝑡], function EventWarp
first predicts each event’s past location at timestamp 𝑡0. The
algorithm then runs function ObstacleCheck on each pixel
to decide whether the events are triggered by environment
or an obstacle. Only those obstacle-triggered events (termed
as E𝐼𝑀𝑈 ) are fed into the second-step where EventDiscover
function leverages the binocular consistency to eventually
obtain obstacle-triggered events E𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 .

4.2 LGN-Inspired Event Matching
Visual signals passing through the optic chiasm are spatio-
temporally correlated at LGN in order to obtain a 3D repre-
sentation of the object. As shown in Fig.9, the architecture
of LGN is characterized by six distinctive layers. The inner
two layers are magnocellular layers that are responsible for
detecting object motion and size (i.e., coarse feature), while
the outer four layers are parvocellular layers for detecting
the object’s color and contour (i.e., fine details)[62]. Such a
six-layer folding architecture supports a plethora of anatom-
ical calculations without involving those computationally
intensive spatial and temporal correlations.
Inspired by this elegant structure, we propose a neural-

enhanced event matching algorithm, as elaborated below.
• First, we propose a novel event stream representation,
namely polarity time-surface (§4.2.1), that maps the 3D event
stream to the 2D space without sacrificing the valuable event
features. Such a design can expedite feature matching with-
out hurting the matching accuracy.
• Second, similar to LGN, we propose a six-layer hierarchical
event feature extraction and matching algorithm (§4.2.2) that
can localize the obstacle based on the binocular polarity time-
surface timely and accurately.

4.2.1 Spatio-Temporal Representation of Events. To lo-
calize the obstacle, we have to extract reliable event features
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Figure 9: Illustration of our proposed LEM algorithm.
of the obstacle from the binaural event streams. Although
it is viable to exact event features from the 3D meta event
streams, this solution is time-consuming since there are hun-
dreds of events stacking together within a short period.
In BioDrone, we propose a lightweight representation of

event streams, namely, Polarity Time-Surface (P-TS), that
can well retain rich spatio-temporal information. P-TS is a
2D map where each pixel value represents both the polarity
and timestamp of the event. For instance, as shown in Fig.8b,
the red and blue color indicates two different polarities of
the event while the darkness of the color shows the time
this event being captured. We leverage an exponential decay
kernel[40] to prioritize the latest event over past events,
emulating how LGN prioritizes the latest visual signals over
the old ones[62]. For each pixel 𝒙 = (𝑢, 𝑣)𝑇 , its polarity time-
surface presentation is formally defined as:

T (𝒙, 𝑡) = 𝜌last (𝑥) · exp
(
−𝑡 − 𝑡last (𝒙)

𝜂

)
, (2)

where 𝑡last (𝒙) and 𝜌last (𝑥) are the timestamp and polarity
of the event showing up at pixel 𝒙 ; 𝜂 is the decay rate. The
parameter 𝜌last (𝑥) provides an additional polarity constraint
for event matching. Compared to the sticked event image
(Fig.8a), the proposed P-TS presentation retains the fine-
grained texture of the obstacle, making it easily distinguish-
able. Generating a P-TS for each event stream takes 𝑂 (𝑛)
time since only a one-shot traversal of events is needed. Ad-
ditionally, the process will be further accelerated on FPGA
(§5) as each pixel could infer Eq.2 in parallel, superior to
those event sticking-based solutions[52, 65] where periodi-
cally intensive memory access is unavoidable.

4.2.2 Fast Event Feature Matching. Next, we run a fea-
ture extraction and matching on the binocular P-TS maps
for obstacle localization. However, sweeping the entire P-TS
maps for feature extraction and matching would consume
significant amount of time. We thus resort to the lessons

learned from LGN and design a pyramidal P-TS hierarchy to
expedite feature extraction and matching.

On a high level, we build two 3-layer P-TS pyramids based
on the P-TS map obtained from the left event stream and
right event stream, respectively, as shown in Fig.9. In the P-
TS pyramid, the bottom layer T0 (i.e., the original P-TS map)
is subsampled by a factor of 𝑘 to obtain the next pyramid
level T1. T1 is then filtered in the same way and subsampled
to obtain T2. We are expected to see a sequence of reduced
resolution P-TS map on the pyramidal P-TS hierarchy, with
a growing reception field. Each pixel on the top layer T2
corresponds to a reception field of 𝑘2×𝑘2. By sweeping the
T2 map, we can essentially reduce the searching space by 𝑘4.
Pyramidal P-TS hierarchy generation. Let T 𝑙

0 and T 𝑟
0 be

the left and right P-TS map, respectively. Without losing gen-
erality, we take the left P-TS map for algorithm description.
We down-sample T0 by a factor of 𝑘 :

T𝑖+1 (𝒙, 𝑡) = T𝑖 (𝑘𝒙 − 𝑘

2 [1, 1]
𝑇 , 𝑡), (3)

where T𝑖+1 (𝑖 ∈ {0, 1}) is the down-sampled P-TS. Each pixel
in T𝑖+1 represents a 𝑘 × 𝑘 region in previous P-TS. The pixel
value is defined as that of the center pixel in the region.
Feature matching. We run feature matching on T2. For
instance, given an event 𝑒𝑙 in the left view, we leverage the
following constraints to find its matched event 𝑒𝑟 :

𝜎𝑒 = | (𝒙𝑙 )𝑇 𝑭𝒙𝑟 | < 𝜖𝑒 , (4)

𝜎𝑝 = |T 𝑟
2 (𝒙𝑟 , 𝑡) − T 𝑙

2 (𝒙𝑙 , 𝑡) | < 𝜖𝑝 , (5)

where Eq.4 is the epipolar constraint (i.e., similar to §4.1.2, the
matched events should on the same epipolar line[41]) and 𝑭
is the fundamental matrix obtained from camera calibration.
Eq.5 indicates the timestamp and polarity of these two events
should be the same (i.e., difference within threshold 𝜖𝑝 ). If
no events on T 𝑟

2 satisfy Eq.4-5, we will down search the
𝑘 × 𝑘 region on T 𝑟

1 , associated to the event with minimal
𝜎𝑒 and 𝜎𝑝 , to find the matched event; and further repeat the
procedure on T 𝑟

0 if required. Once we find the matched 𝑒𝑙
and 𝑒𝑟 , the spatial location of the event with depth 𝑑 is:

𝑑 =
𝑓 ∗ 𝑏

| |𝒙𝑙 − 𝒙𝑟 | |
, (6)

where 𝑓 is the focal length and 𝑏 is the baseline distance
between two optical centers.
We further propose a cell-matching operator to enhance

Eq.4-5. As shown in Fig.9, each cell is a segment of pixels
centered at the candidate pixel with a certain direction. We
apply a horizontal, a vertical, and two diagonal cells, as LGN
does, for aggregating scores (i.e., 𝜎𝑒 and 𝜎𝑝 ). That is, the
matching relationship of two events is not only determined
by themselves, but also by their neighboring events. The op-
erator makes the algorithm more sensitive to moving edges,
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Figure 10: Implementation of BioDrone on a Zynq chip.
which fits the nature of event camera. Finally, the average 3D
location of all events on the obstacle’s contour is the result.

5 IMPLEMENTATION
We fully implement BioDrone on a Xilinx Zynq-7020 (the
highlighted chip in Fig.10) through software-hardware co-
design. It consists of a processing system (PS) and a pro-
grammable logic (PL) two modules. The PS features a dual-
core ARM Cortex-A9 processor (i.e., #A1 and #A2), while PL
is for hardware acceleration through FPGA.We alsomanufac-
ture a baseboard for data input/output and voltage adaption.
• PL: We design exclusive logic circuits on FPGA to acceler-
ate those event operations suitable for parallel and pipeline
execution, i.e., data denoising, ego-motion-based filtering
(§4.1.1), and P-TS generation (§4.2.1), on PL.
• PS: Before loading specific tasks, we first exploit a core-
isolation strategy to isolate the computing resources of #A1
from PS, reducing the impact of CPU scheduling on task
execution to better match the PL pipelines. We realize it by
building a Linux OS with boot parameter isolcpus=<cpu
#A1>. We execute the binocular-based filtering (§4.1.2) which
requires frequent memory access and cannot be easily im-
plemented through FPGA, on #A1. The final obstacle local-
ization and command planning tasks are executed on #A2.
• Data flow in-between: We further leverage the physical-
level direct memory access (DMA) technique[72] to transmit
intermediate data among PL, #A1, and #A2. Compared with
network-level solutions such as PL-PS ethernet interface[34]
and OpenAMP[55], DMA ensures data interaction processes
would not be interrupted by CPU scheduling.

We integrate BioDrone into an ArduPliot APM flight con-
troller and deploy it on an AMOVLAB P450-NX drone. Im-
plementation details can be found at the project repository.

6 EVALUATION
6.1 Experimental Methodology
Field studies. We conduct field studies both indoors and
outdoors as shown in Fig.11. The performance is evaluated

Table 1: Different Drone Flight Mode Configurations
Flight Mode*
(Trajectory)

Speed Event Generating
Speed (e/ms)Translation (m/s) Rotation (◦/s)

1 (𝐴 → 𝐵 → 𝐶1 → 𝐷1) 2.0–6.0 0–10.0 100–400
2 (𝐴 ⇒ 𝐵 → 𝐶1 ⇒ 𝐷1) 15.0–26.5 0–10.0 350–1200
3 (𝐴 → 𝐵 ↬ 𝐶2 → 𝐷2) 2.0–6.0 20–100 900–2100

* →: acceleration; →: uniformity;→: deceleration.

in three flight modes, as defined in Table 1. The drone fol-
lows planned trajectories to move; Four volunteers throw
six different types of obstacles toward the drone during the
drone’s movement.
Repeatability. Before conducting experiments under each
flight mode, we program a series of pre-determined flight
commands into the on-board APM flight controller, enabling
the drone to follow the planned trajectory, speed, and accel-
eration, to make our experiments repeatable.
Metrics and Ground truth. The drone logs its localiza-
tion results with timestamps. We download these logs and
evaluate end-to-end (E2E) localization latency Δ𝑡𝑙 and error
Δ𝑥 (defined in §2). Indoors, an OptiTrack motion capture
system could provide <1𝑚𝑚 localization ground truth. Out-
doors, since we cannot deploy OptiTrack to obtain ground
truth, we collect event streams and run an advanced yet
heavy event-based object localization and segmentation neu-
ral network[3] offline. The results are taken as ground truth.
We also log event classification results reported by it to ex-
amine BioDrone’s event filtering performance.
Baselines. We compare the accuracy and latency of Bio-
Drone with Baseline-I[24] and -II[49]. We also compare the
LEM module in BioDrone with ESVO[84]. As these baselines
are not implemented on FPGA, we thus implement BioDrone
on the drone’s onboard Nvidia Jetson TX2 for a fair compar-
ison with them.

6.2 Overall Performance
Obstacle detection and localization. Fig.12a depicts the
localization performance of BioDrone and two comparative
systems. The average E2E location error of BioDrone is 7.5𝑐𝑚,
outperforming Baseline-I and Baseline-II, of which the aver-
age location errors are 15.9𝑐𝑚 and 20.4𝑐𝑚, respectively. We
then compare the three systems under different flight modes.
Fig.12b shows that BioDrone achieves the lowest average lo-
cation error across all three flight modes, outperforming both
baselines by >60% in all flight modes. Moreover, as shown in
Fig.12c, the obstacle detection rate of BioDrone under three
flight modes are 96.1%, 87.9% and 92.6%, outperforming base-
lines by over 10% in low-speed (mode 1) and over 40% in high-
speed scenarios (flight mode 2 & 3), respectively. Unlike the
two related works that depend solely on ego-motion instruc-
tion for event filtering, BioDrone incorporates a binocular
constraint to upgrade the framework, improving obstacle
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Figure 11: Experimental scenarios of BioDrone. The red lines show the drone’s movement trajectory.
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Figure 12: Overall Performance Comparison
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Figure 13: System Robustness Evaluation

detection performance. Additionally, BioDrone’s LEM mod-
ule optimizes stereo event matching, resulting in increased
spatial localization accuracy.
End-to-end latency. We further evaluate the E2E latency,
including the obstacle detection and localization two phases.
As depicted in Fig.12d, the E2E latency of BioDrone is 5.2𝑚𝑠

in flight mode 1, outperforming both baselines (6.1𝑚𝑠 and
6.3𝑚𝑠 , respectively). As the flight speed grows (i.e., mode
2&3), the E2E latency of Baseline-I and -II grows rapidly,
making these two solutions fail in obstacle avoidance. In con-
trast, BioDrone maintains the lowest E2E latency (i.e., within
6𝑚𝑠) in all scenarios. Typically, related works encounter an
inherent increase in system latency due to the simultane-
ous processing of binocular event streams. The subsequent
steps – binocular parallax optimization, matching, and tri-
angulation – for obstacle localization post-detection further
delay the system. In contrast, BioDrone introduces the LEM
module, which directly localizes objects from event streams,
thereby reducing end-to-end latency.

FPGA acceleration. As shown in Fig.12a and Fig.12d, com-
pared to a pure software implementation on Jetson, the
software-hardware co-design of BioDrone on Zynq further
reduces the localization bias by 9.3% (6.8𝑐𝑚 𝑣𝑠. 7.5𝑐𝑚) and
latency by 22.9% (4.7𝑚𝑠 𝑣𝑠. 6.1𝑚𝑠). Our hardware design on
FPGA (𝑖) realizes the parallel and pipeline execution among
operations for different events, reducing the E2E latency;
and (𝑖𝑖) enables the system to select a shorter time window
Δ𝑡 (§4.1), which improves the event filtering performance
for better localization accuracy.
6.3 System Robustness Evaluation
Impact of obstacle type. We evaluate the impact of differ-
ent types of obstacles (Fig.11c, in terms of form factor and
miscellaneous texture). The results are shown in Fig.13a. As
seen, textured obstacles like badminton, pen and cup have
lower average localization errors of 7.2𝑐𝑚, 5.0𝑐𝑚 and 7.5𝑐𝑚,
respectively. In contrast, obstacles with relatively large size
and weak texture (e.g., basketball) lead to larger localization
errors. Further scrutiny reveals that the event cameras are



Taming Event Cameras with Bio-Inspired Architecture and Algorithm:
A Case for Drone Obstacle Avoidance ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

likely to generate more events for larger obstacles, and these
events are on the vicinity of the obstacle and thus are likely
to distort the obstacle localization. Nevertheless, the localiza-
tion error is still within the acceptable range, which makes
BioDrone a feasible solution for drone obstacle avoidance.
Impact of obstacle quantity. In this experiment, two volun-
teers are asked to throw multiple (2-3) obstacles toward the
drone; we examine the detection and localization results for
each obstacle individually. As depicted in Fig.14b, BioDrone
outperforms Baseline-I by > 40% in all settings. As the num-
ber of obstacles grows, we observe a slight increase (around
3𝑐𝑚) in BioDrone’s localization error. In contrast, the local-
ization error of Baseline-I grows dramatically to 24.68 𝑐𝑚.
The results demonstrate that the LEM module could effec-
tively extract spatio-temporal features of different obstacles
and thus distinguish them from each other. On the contrary,
Baseline-I simply clusters events for triangulation, making
it difficult to separate obstacles close to each other.
Impact of obstacle distance As shown in Fig.13c, when
the obstacle appears at around 1.0-2.0𝑚, BioDrone achieves
the highest localization accuracy where the average location
error is 6.58𝑐𝑚, and the average location error will slightly
increase (within 9.5𝑐𝑚 though) as the distance increases.
Generally, a longer distance fails to generate sufficient events,
making the feature matching more challenging.
Impact of environmental dynamic.We further evaluate
BioDrone’s effectiveness in low-light (i.e., dark) and noisy
environments (i.e., with high background dynamics), respec-
tively. The results are shown in Fig.13d. As seen, even in low-
light conditions, the average localization accuracy remains
consistent (a minor decrease within 10%), due to the HDR of
event camera that still manages to capture sufficient events in
dark environments. However, in noisy environments, there is
a noticeable 33% decrease in average localization accuracy be-
cause BioDrone sometimes interprets dynamic background
objects as foreground obstacles. A potential solution to this
problem could be the integration of depth-based filtering
algorithms, which is left as a future work.

6.4 Ablation Study
Contributions of each module.We examine how CEF and
LEM contribute to BioDrone. We gradually embed CEF and
LEM into the baseline system (i.e., Baseline-I) and repeatedly
examine the localization accuracy and end-to-end latency.
As shown in Fig.15a, without applying these two modules,
Baseline-I achieves a localization error and latency of 15.9𝑐𝑚
and 10.4𝑚𝑠 . As we integrate CEF module into Baseline-I, we
observe the localization error declines to 12.1𝑐𝑚 and the
latency drops to 6.3𝑚𝑠 . We then integrate LEM into Baseline-
I and observe that the localization error drops remarkably
to 8.8𝑐𝑚. However, the delay grows due to the lack of an
efficient event-filtering mechanism. Finally, we integrate

both CEF and LEM into Baseline-I. As expected, both the
localization error and latency reach the minimum.
Performance of CEF.We compare CEF with the filtering
module of Baseline-I in high-speed mode (flight modes 2 and
3). We denote CEF in mode 2 and mode 3 as B-2 and B-3,
respectively. Likewise, the filtering module of Baseline-I as
I-2 and I-3, respectively. In Fig.14b, a higher recall means
more obstacle-triggered events are preserved while a higher
precision indicates more background events are removed.
As seen, the recall of CEF is ≥ 81% and its precision is ≥
82%. In contrast, the filter module of Baseline-I achieves an
inferior recall of 43% under flight mode 3. Even worse, the
precision further drops to 28% under flight mode 2. This
result demonstrates the efficacy of CEF in event filtering.
Performance of LEM.We also evaluate the performance
of LEM by comparing it with the localization module in
ESVO[84] and Baseline-I. As shown in Fig.14c, LEM reduces
localization error by 23.8% compared to ESVO where event
features are matched using naive block-matching operations.
Besides, compared with Baseline-I, which exploits event clus-
tering and triangulates the spatial location of an object at
cluster-level, LEM reduces the localization error by 55.1%.
6.5 System Efficiency Study
We select a typical 120𝑚𝑠 obstacle avoidance example and
log the system latency, CPU workload, and memory usage
in Fig.15. The drone perceives the obstacle at 24𝑚𝑠 , followed
instantly by performing an avoidancemaneuver. After 110𝑚𝑠 ,
the obstacle disappears from the drone’s view.
• At the beginning 24𝑚𝑠 , LEM is not triggered, and the la-
tency of CEF stays <0.07𝑚𝑠 with CPU workload <9%.
• Then, during the 24-110𝑚𝑠 , the drone detects an obstacle
and adjusts its own trajectory. CEF introduces a relatively
higher computing latency and more CPU workload due to
the larger number of events. However, the computing latency
of CEF maintains at a low level (i.e., 2.73𝑚𝑠) with occupying
the CPUworkload below 14%. Meanwhile, LEM continuously
localizes the obstacle, introducing an additional 2.45𝑚𝑠 com-
puting latency and around 27% CPU workload.
• Finally, after 110𝑚𝑠 when the drone has successfully flied
away from the obstacle, states of the two modules return
to the way it was before 24𝑚𝑠 in terms of latency and CPU
workload. Throughout the obstacle avoidance process, the
memory resources occupied by the CEF and LEM are within
5.8 MB and 4.9 MB, respectively.

During the whole avoidance procedure, BioDrone reserves
>60% CPU computational resources for upper-layer tasks.
7 RELATEDWORK
Object/Obstacle localization. Object localization and track-
ing attract broad interest within the mobile computing com-
munity, with various systems designed around diverse sen-
sors likeWiFi [42, 79], CSI [14], acoustic signals [44], RFID [54,
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67], IMU [11, 74], camera [75], radar [43], etc.. For the drone
obstacle localization task, camera- and radar-based solutions
are often preferred in both academia and industry due to
their accuracy and widespread implementation[25, 32].

The existing literature relies on frame-based cameras (e.g.,
monocular [83], stereo [38]), depth cameras [66], millimeter-
wave radar [81], LiDAR [8], or VIO [64, 78]. However, these
works require the obstacles to be either static or quasistatic.
According to our measurements (§2.2), existing solutions
are not competent for high-speed drones (i.e., relative speed
>20𝑚/𝑠). The limitation comes from the sensors’ physical
nature and cannot be easily solved with algorithms.
Event-based algorithms and systems. Event cameras of-
fer numerous potential advantages over conventional frame-
based cameras, including high temporal resolution, low la-
tency, and high dynamic range[10, 26, 29, 52, 65]. Recent
systems use them for scene reconstruction [84], SLAM[59],
object tracking[24, 49], and HDR image reconstruction [51].

Among these systems, Baseline-I[24] presents a notable ob-
stacle avoidance solution for drones. It utilizes IMU readings
to filter out background events, further assisting in obstacle
detection, and is most closely related to our work. However,
Baseline-I is primarily oriented towards obstacle detection
tasks using a monocular event camera setup, whereas our
system, BioDrone, aims at obstacle localization leveraging a
binocular configuration. This shift in task focus, from detec-
tion to localization, combined with the change in hardware
configuration, introduces new challenges to fully harness
event camera’s potential for drone obstacle avoidance, as

elaborated in §2.3. In this work, we introduce a novel binocu-
lar signal processing pipeline, inspired by the visual pathway,
featuring two new modules, CEF and LEM. Our design aims
to enhance the accuracy and efficiency of event-based sys-
tems, with particular benefits for high-speed drones.
Bio-inspired design for event-based vision. Biological
principles drive the design of event camera pixels and some
event processing algorithms, such as spiking neural networks
(SNN[63]), spatiotemporal oriented filters (STOF[56]), and
spike-timing dependent plasticity (STDP[12]). In general,
current innovations mainly mimic the working principles of
the human visual cortex and design sophisticated algorithms
for high-level object recognition[53], segmentation[50], and
understanding[9]. Albeit inspiring, these bio-inspired sys-
tems are not the optimal solution for obstacle avoidance-
related tasks due to the large computational overhead. In
BioDrone, we find those delay-sensitive tasks are not exe-
cuted at the visual cortex but exactly at the earlier binocular
visual pathway. We take the bio-lessons learned from it and
design BioDrone for fast obstacle detection and localization.

8 LIMITATION AND FUTUREWORK
• Bio-inspired design. In this study, we leverage biologi-
cal concepts from the visual pathway to architect a unique
signal-processing pipeline for binocular event cameras. We
extrapolate the mechanisms of Chiasm and LGN to devise
corresponding event filtering and localization algorithms.
Note that the understanding of physiological visual percep-
tion, including stereoscopic vision, is an ongoing issue, with
future findings potentially reshaping our current knowledge.
Future designs will evolve based on new research progress.
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• Software-hardware co-design. In this work, we deploy
BioDrone on a commercial Zynq computing platform. By
jointly scheduling computational resources of both PL and
PS, wemanage to boost system accuracy and real-time perfor-
mance as related works[57, 69]. However, due to implemen-
tation complexities, operations related to binocular matching
– which require frequent memory access – are still processed
in software on the PS, and cannot yet be accelerated by the
FPGA. This leaves room for future enhancements.
• Event camera upgrade. Event cameras, while promising,
are still in their early stages of development and have certain
limitations. For instance, their resolution is lower compared
to standard cameras (QVGA 𝑣𝑠. 1080p), restricting the usable
FoV and effective observation distance for obstacle avoid-
ance. Also, current event cameras do not support dynamic
adjustment of aperture and focus. This limitation necessi-
tates manual calibration during transitions between various
work environments to avoid event sampling failure from
overexposure or insufficient lighting. However, we expect
these issues will be mitigated as event cameras continue to
evolve and become integrated into next-generation devices.

9 CONCLUSIONS
We have presented the design and implementation of Bio-
Drone, a software solution to support fast and accurate
drone obstacle detection and localization using event cam-
eras. BioDrone exploits biological knowledge behind human
visual systems and designs a visual pathway-inspired archi-
tecture, a chiasm-inspired event filtering module, and an
LGN-inspired event matching mechanism to unleash the full
potential of event cameras. Extensive evaluations conducted
on an industrial drone demonstrate its superior performance.
Through BioDrone, we present that the bio-inspired design
paradigm produces simple yet effective solutions to poten-
tially replace heavy-weight ones, adding a new solution di-
mension for sensing problems with strict restrictions on
accuracy, time delay, computation, and energy.
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A APPENDIX
A.1 Modeling of Ego-motion Instruction
Generally, a camera’s rotation produces a major number of
events than translation in a very short time period 𝛿𝑡[24].
Therefore, we focus on estimating the ego-rotation as IMU
average angular velocities, 𝜔 =

∑
𝛿𝑡 𝜔𝑡/𝛿𝑡 . Event 𝑒𝑖 could be

warped into the frame coordinate at 𝑡0 by 𝝓 : R3 → R3:
𝝓 (𝒙, 𝑡) = 𝑲𝑹𝑡𝑲

−1𝒙, 𝒙 = [𝑢, 𝑣]𝑇 , (7)
where𝑲 is the camera’s intrinsicmatrix and 𝑹𝑡 is the rotation
matrix corresponding to 𝜔𝑡 given by Rodrigues’ rotation
formula[18]. We further exploit a projection 𝚷 : R3 → R2
to project events onto image coordinates and define the set
of wrapped events at 𝑡0 as:

E ′ = {(𝚷(𝝓 (𝒙, 𝑡𝑖 − 𝑡0)), 𝑡𝑖 , 𝑝𝑖 ) : (𝒙, 𝑡𝑖 , 𝑝𝑖 ) ∈ E}. (8)
Those corresponding events re-projected at pixel (𝑢, 𝑣) are:

E ′
𝑢𝑣 = {(𝒙, 𝑡, 𝑝) ∈ E ′ : 𝒙 = (𝑢, 𝑣)}. (9)

We further examine the event distribution to distinguish
different types of events using a time-based solution. Specifi-
cally, the more uniformly the generation time of all events in
E ′
𝑢𝑣 , the more likely these events are environment-triggered

events, as only moving obstacles will bring an additional
time-cluttered event burst on specific pixels. We calculate:

𝑇𝑢𝑣 =
1

|E ′
𝑢𝑣 |

∑︁
𝑡, (𝒙, 𝑡, 𝑝) ∈ E ′

𝑢𝑣 , (10)

To eventually separate environment and obstacle events, for
each pixel 𝑥 = (𝑢, 𝑣), we calculate a score for it as:

𝜌𝑖𝑚𝑢 (𝒙) =
𝑇𝑢𝑣 −𝑇

𝛿𝑡
∈ [−1, 1], (11)

where𝑇 is the average time of all events in E. A higher score
indicates a more misaligned generation time of E ′

𝑢𝑣 , and
hence the more likely associated events are from an obstacle.

A.2 Modeling of Binocular Constraint
Given an event 𝒆𝑙 = (𝒙𝑙 , 𝑡𝑙 , 𝑝𝑙 ) from the left event stream, if
it is triggered by the movement of 𝑷 on the obstacle, there
must be a twin event 𝒆𝑟 in the right stream with 𝒙𝑟 :

𝒙𝑟 = 𝝅 (𝑻𝑟𝑙 , 𝑷 ), 𝑷 = 𝑍𝑲−1𝒙𝑙 , (12)
where𝑍 is the estimated depth of the obstacle, 𝑻𝑟𝑙 is the trans-
formation from left to right camera (obtained by calibration),
and 𝝅 (·, ·) is the 3D-2D projection model.
As the estimation of 𝑍 by clustering and triangulation is

inaccurate, we have to examine a few more pixels centered
at 𝒙𝑟 and along the epipolar line[82]. The candidate region
C (the gray dotted area in the right event stream of Fig.6) is:

C = {(𝒙, 𝑡, 𝑝) : 𝒙 ∈ 𝒙𝑟 ± [𝛿𝑥, 0]𝑇 , 𝑡 ∈ [𝑡0, 𝑡0 + 𝛿𝑡]}. (13)
where 𝛿𝑥 denotes is set as 5 pixels in practice. We examine
all events in C and define the matching score of 𝑒𝑙 as:

𝜌𝑏 (𝒙𝑙 ) = min
𝑒𝑟 ∈C

|𝑡𝑙 − 𝑒𝑟 (𝑡) |, (14)

where 𝑒𝑟 (𝑡) is the timestamp of an event in the right stream,
and 𝜌𝑏 (𝒙𝑙 ) is set as ∞ if C is empty. Therein, a small 𝜌𝑏 (𝒙𝑙 )
indicates we could find a matched event associated to 𝑷 and
thus 𝑒𝑙 is more likely to be an obstacle-triggered event.
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