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ABSTRACT
Environment depth estimation by fusing camera and radar enables
a broad spectrum of applications such as autonomous driving, en-
vironmental perception, context-aware localization and navigation.
Various pioneering approaches have been proposed to achieve ac-
curate and dense depth estimation by integrating vision and LiDAR
through deep learning. However, due to the challenges of sparse
sampling of in-vehicle LiDARs, high ground-truth annotation over-
head, and severe dynamics in real environments, existing solutions
have not yet achieved widespread deployment on commercial au-
tonomous vehicles. In this paper, we propose LeoVR, a visual-LiDAR
fusion based self-supervised approach that enables accurate envi-
ronment depth estimation. LeoVR digs into the vehicle’s motion
information and designs two effective system frameworks based
on it to (𝑖) optimize the depth estimation results, and (𝑖𝑖) provide
supervision signals to train a DNN. We fully implement LeoVR
on a robotic testbed and commercial vehicle to conduct extensive
experiments across 6 months. The results demonstrate that LeoVR
achieves remarkable performance with an average depth estimation
error of 0.17𝑚, outperforming existing state-of-the-art solutions
by > 43%. Besides, even cold-start in real environments by self-
supervised training, LeoVR still achieves an average error of 0.21𝑚,
outperforming the related works by > 45% and comparable to those
supervised training methods.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting.
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Table 1: Overall System Comparison

System Average Depth Estimation Accuracy Self-supervised
VLP-16 ($4,000) Mid-40 ($500)

DeepLiDAR[39] 0.24𝑚 0.41𝑚 %

DenseLiDAR[16] 0.19𝑚 0.32𝑚 %

Self-S2D[33] 0.33𝑚 0.54𝑚 "

LeoVR 0.15𝑚 0.18𝑚 "

1 INTRODUCTION
Environment depth estimation aims at obtaining geometric proper-
ties of surrounding 3D space from 2D images and associated sensor
inputs [7, 16, 39]. Typically, it generates a depth map1 for each input
image [9, 13, 14]. The benefit of depth estimation is to enhance the
environmental perception capability of intelligent machines (robots,
drones, vehicles, etc. ), which lies in the heart of numerous applica-
tions such as autonomous driving [19, 48, 54] and robotics [42]. For
instance, with accurate depth maps, vehicles and drones can realize
context-aware localization, navigation, intelligent interaction, and
obstacle avoidance [16, 17, 23]; and according to recent reports,
wrongly estimating the depth of ambient humans or objects causes
a majority of autonomous driving accidents in 2020 [10, 47].

Current environment depth estimation practice on autonomous
vehicles typically resorts to fusing camera and Laser radar (LiDAR).
Compared to visual stand-alone approaches [9, 58], LiDAR could
provide the accurate 3D location of essential reflection points in
the current scene using time-of-flight (TOF), thus significantly com-
pensating for the shortcomings of visual depth misestimation due
to the lack of scale information. The state-of-the-art (SOTA) visual-
LiDAR fusion approaches design Deep Neural Networks (DNNs)
as depth map generators that directly take 2D visual images and
associated 3D LiDAR point clouds as input and output the depth
maps of surroundings [21, 36, 63].

Albeit inspiring, according to our 6 months field study, we find
previous solutions face grand challenges deploying in real-world
environments. The crucial drawbacks are twofold:
• Degraded performance with commercial in-vehicle LiDAR.
Although current practice achieves remarkable depth mapping
performance, they primarily rely on sophisticated yet expensive
Velodyne 16-line (VLP-16) or 32-line (HDL-32E) LiDAR [44], which
1In this work, a depth map is an additional image channel that contains information
relating to the distance of the surfaces or objects from associated image pixels.
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Figure 1: A glimpse of depth estimation performance of LeoVR and existing solutions. (a) Visual images of the static and dynamic
scene. (b) Associated LiDAR point clouds sampled by Mid-40 (cheap yet sparse) and VLP-16 (dense yet expensive). (c)-(e) are the depth
map generated from state-of-the-art methods: DenseLiDAR [16] (a supervised learning-based solution), Self-S2D [33] (a self-supervised
learning-based solution), and LeoVR (our solution), respectively. (f) is the ground truth. The bluer represents closer while the redder indicates
further. The red dotted box in each picture bounds static figure sculptures or dynamic vehicles. And the value in the left-bottom corner is the
average estimation error of all pixels in the depth map.

costs around $4k and $20k respectively, to generate dense point
clouds. In contrast, due to the consideration of device cost, most
vehicles are merely equipped with lower-cost yet sparsely sampled
LiDARs (e.g., Livox Mid-40 costs $500 [29]). As illustrated in Fig. 1b,
Mid-40 generates merely one-third as many 3D points as VLP-16
LiDAR within a 0.1s laser scan cycle and suffers from a narrower
Field-of-View (FoV) coverage. With more sparse and irregular point
clouds, the depth estimation performance of existing works de-
grades. As shown in Fig. 1c-d, the estimation accuracy was reduced
by almost 50% when equipped with the sparsely sampled Mid-40.
We can also find that merely an accuracy drop of around 0.15𝑚 will
make it difficult to segment important objects in the current scene.
For instance, in Fig. 1c, the figure sculptures or vehicles become
blurred and indistinguishable with Mid-40.
•High ground-truth annotation overhead. These deep-learning-
based solutions typically need pixel-level depth ground truth anno-
tations to train depth map generators in advance. What’s worse, the
cumbersome training procedure needs to be repeated for different
environments, resulting in high labor cost and system overhead [16].
Although some recent works have proposed self-supervised train-
ing frameworks to deal with this issue [8, 27, 33], they extract train-
ing signals between consecutive frames and highly depend on the
static-rigid world assumption [20, 51, 64], which is unrealistic in real
complicated road conditions with reflections, shadows, and highly
dynamic humans or objects (the bottom picture in Fig. 1a). As a
consequence, the estimation performance of the self-trained model
degrades in real environments. As illustrated in Fig. 1d, compared to
the depth maps generated in the static scene, the depth estimation
error expands dramatically when the depth map generator cold
starts by self-supervised training in a complex environment.

In this work, we aim to solve the above two challenges and
propose LeoVR, a self-supervised solution that enables accurate
environment depth estimation by fusing camera and LiDAR. Com-
pared to current practice, LeoVR is profitable for generating depth
maps with low-cost in-vehicle LiDARs, and the depth generator
could be self-trained for cold starts even in real complicated en-
vironments. A comparison among LeoVR and related works are
recorded in Table 1, as well as an illustration in Fig. 1. As seen,
LeoVR achieves delightful performance even with the low-cost
LiDAR. Our key insight behind LeoVR is that a vehicle’s motion
information could provide additional spatio-temporal constraints
among successive depth maps generated by the vehicle (e.g., a depth
map of the current frame could also be partially inferred by that
of the previous frame and the inter-frame motion of the vehicle).
These spatio-temporal constraints could be served as prior informa-
tion to optimize the accuracy of depth maps (§3.1), and on the other
hand, provide guidance for extracting reliable pixel-level training
signals to train the depth map generator (§4.1). Embedding this
motion-aware information into the system framework, our design
of LeoVR excels in two unique aspects as follows.

First, to push forward the accuracy of depth maps generated by
fusing camera and low-cost LiDAR, at the core of LeoVR is a motion-
aware Learning-embedded optimization scheme for Visual-Radar
fusion. Specifically, we design a factor-graph-based optimization
framework which jointly optimizes: (i) the 3D locations of spatial
feature points extracted from LiDAR samples and 2D visual im-
ages; (ii) the vehicle’s motion and pose estimated by visual-LiDAR
odometry; and (iii) the depth maps generated by a DNN. Com-
pared to related works, we do not hastily take the output of a depth
map generator from DNN as the final depth map. On the contrary,



Motion Inspires Notion: Self-supervised Visual-LiDAR Fusion for Environment Depth Estimation MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

we extract the intermediate results of the generator as variable
nodes and refine the depth maps exploiting the spatio-temporal
constraints (i.e., associated factor nodes) imposed by the vehicle’s
motion information.

Second, to ease the burden of annotating ground truth for train-
ing the depth map generator, we propose a motion-optical flow
instructed self-supervised framework. In LeoVR, with the aware-
ness of vehicle motion, we exploit the pixel-level dense optical
flow between adjacent frames and select pixels whose optical flow
is consistent with the camera motion for training the DNN. The
motion-optical flow consistency constraint could filter out those
pixels whose photometric changes are disturbed by environmental
dynamics (e.g., reflections, shadows, or highly dynamic humans
or objects) rather than originating from camera’s movement. On
this basis, unlike previous solutions, LeoVR achieves effective self-
supervised training performance even in complicated real-world
environments.

We have fully implemented LeoVR on a robotic testbed and
intelligent vehicles with different types of cameras and LiDARs.
Comprehensive experiments are carried out in four (two indoor
and two outdoor) different scenarios across 6 months, collecting
3,203 trajectories with 961,175 frames. We compare the perfor-
mance of LeoVR with two learning-based depth estimation meth-
ods (DenseLiDAR and DeepLiDAR). The experiment results show
that LeoVR achieves an average depth estimation error of 0.15𝑚
and 0.18𝑚 when equipped with a Velodyne VLP-16 and Livox Mid-
40 LiDAR respectively, outperforming comparative approaches by
> 21% and > 43%. We further evaluate the effectiveness of the
proposed self-supervised framework with another two state-of-the-
art self-supervised visual-LiDAR fusion solutions, Self-S2D and
Self-VLO [27]. Without any pre-training and entirely based on
self-supervised training, LeoVR still achieves an average depth esti-
mation error of 0.21𝑚 when equipped with Livox Mid-40, which
outperforms related works by 45.4% and is comparable to those
supervised training methods.

The key contributions are summarized as follows:

• We propose LeoVR, as far as we are aware of, the first self-
supervised solution that enables commercial autonomous ve-
hicles to generate accurate depth maps by fusing vision and
low-cost LiDAR. LeoVR pushes forward depth estimation tech-
niques for on-vehicle, low-cost, and large-scale deployments in
real environments.

• We provide a fresh perspective to embed a vehicle’s motion infor-
mation into the system framework design. Based on an in-depth
exploration of the spatio-temporal constraints behind motion
information, we design a motion-aware fusion framework to
boost the depth estimation accuracy and a motion-instructed
self-supervised paradigm to ease the pixel-level ground truth
annotation burden.

• We extensively evaluate the performance of LeoVR with 4 com-
parison works in 4 different real scenarios across 6 months. The
results demonstrate that LeoVR could greatly broaden the capa-
bilities of LiDAR-based mapping, especially realizing remarkable
depth estimation and self-supervised training performance even
with low-cost LiDARs.
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Figure 2: System architecture of LeoVR.

2 SYSTEM OVERVIEW
Fig. 2 sketches the system architecture of LeoVR. From the top per-
spective, LeoVR consists of two components: a learning-embedded
motion-aware optimization scheme (§3) and a motion-optical flow
instructed self-supervised framework (§4). The former part aims for
visual-LiDAR fusion and resulting accurate depth maps estimation.
The latter supports the self-supervised training of the depth map
generator in a DNN and reduces the ground truth annotation costs.

Specifically, LeoVR takes consecutive time-synchronized monoc-
ular RGB images and low-cost LiDAR measurements as inputs.
Then, a DNN, named depth map generator, generates initial dense
maps which will be further extracted as depth variable nodes with
prior depth information in a factor graph. Thereafter, the factor
graph leverages visual and radar inputs as well as the depth vari-
able nodes to joint optimize (i) the vehicle’s motion; (ii) 3D point
clouds; and (iii) acquire refined dense depth maps. Furthermore,
these optimized results will be exploited as an instructor to select
which pixels could be used for training the model. Based on this
two-way promotion process, LeoVR achieves a delightful depth
estimation performance through a self-supervised training manner.

3 LEARNING-EMBEDDED MOTION AWARE
OPTIMIZATION SCHEME

In this section, we present the design of the motion-aware learning-
embedded optimization scheme for visual-LiDAR fusion that en-
ables LeoVR to achieve an accurate depth estimation performance.
In LeoVR, we use a similar DNN proposed in [56] as the initial depth
map generator (implementation detailed in §5.1), which takes a 2D
RGB image and 3D LiDAR point clouds as input and outputs a depth
map of the current scene. However, instead of directly treating the
outputs of the depth generator as the final depth maps, LeoVR lever-
age a factor-graph based optimization framework exploiting these
intermediate results to jointly optimize the point clouds, vehicle
(i.e., camera and attached LiDAR’s) motion, and depth maps within
a time window. Briefly, an optimization takes consecutive visual
images, corresponding LiDAR samples, and intermediate depth in-
formation extracted from a depth map generator as inputs and then
refines the depth of each pixel in the images. In what follows, we
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Figure 3: Illustration of some essential variables and their
spatial relationships.

first describe and illustrate some essential variables and definitions
of the optimization problem, as well as analyze the rationale be-
hind our insight that joint optimization could improve the depth
estimation accuracy (§3.1). Further, we present how to formulate
the factor graph with associated factor nodes and variable nodes to
solve the optimization problem (§3.2).

3.1 Optimization Problem Statement
We first briefly describe and illustrate some essential definitions
in our factor graph based optimization. There are three relevant
reference systems in LeoVR: camera reference system C, LiDAR ref-
erence system L, and world reference system W. Therein, C and L are
rigidly attached on a vehicle, and thus we omit the fixed transforms
between them for simplicity. The ultimate goal of optimization is
to obtain the refined depth map 𝑫𝑖 with the initial value provided
by the depth map generator. To fully exploit the spatial correlation
between consecutive depth maps, we also continuously estimate
the pose of the vehicle. Here, we denote the vehicle’s 6 degrees of
freedom (6-DoF) pose as a transformation from W to C. Specifically,
the pose at the frame 𝑖 is defined as follows:

𝜽 𝑖 ≜
{
𝑹𝑖 , 𝒕𝑖

}
∈ SE(3), (1)

where 𝑹𝑖 and 𝒕𝑖 are rotation and translation, respectively. In addi-
tion to the depth map and vehicle’s pose, we also optimize the 3D
feature point 𝑷𝑘 extracted from multi-view visual images.
Rationale behind the joint optimization: As illustrated in Fig. 3,
the spatial location of a 3D feature point 𝑷𝑘 and its associated 2D
pixel location 𝒑𝑖

𝑘
, 𝒑 𝑗

𝑘
on visual images 𝑰 𝑖 , 𝑰 𝑗 at timestamp 𝑡𝑖 and

𝑡 𝑗 are relevant to the LiDAR samples and camera’s motion (i.e.,
pose transformation 𝑻 𝑖 𝑗 ). Further, the depth value of pixels 𝒑𝑖

𝑘
and

𝒑 𝑗

𝑘
on depth maps, 𝑫𝑖 (𝒑𝑖𝑘 ) and 𝑫 𝑗 (𝒑 𝑗

𝑘
), in addition to acquiring

through the depth generator, could also be determined by the spatial
location of 𝑷𝑘 and camera’s motion 𝑻 𝑖 𝑗 . In a nutshell, for each pixel
on the depth map, we have two independent yet complementary
ways to estimate its depth. Intuitively, we could integrate these two
different approaches to achieve higher depth estimation accuracy.
To this end, LeoVR proposes a joint optimization framework based
on the probabilistic characteristics of these two depth estimation
methods.
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Figure 4: Overview of the factor graph in LeoVR.

Optimization goals: The overall optimization objective is to cal-
culate the scene depths, poses, and feature points visible up to the
current time 𝑡𝑐 :

X𝑐 ≜
⋃
𝑖∈F𝑐

{
𝑫𝑖 , 𝜽 𝑖

} ⋃
𝑘∈P𝑐

{
𝑷𝑘

}
, (2)

where F𝑐 is a list of frames within a fixed lag smoothing window,
and P𝑐 is a set of feature points observed by those frames.

DenoteZ𝑐 as the full set of measurements from monocular cam-
era C, LiDAR L, and depth map generator G received within the
smoothing window. We maximize the likelihood of the measure-
mentsZ𝑐 , given the history of states X𝑐 :

X∗
𝑐 = argmax

X𝑐

𝑝 (X𝑐 | Z𝑐 ) ∝ 𝑝 (X0) 𝑝 (Z𝑐 | X𝑐 ) , (3)

which can be formulated as the following nonlinear least squares
problem:

X∗
𝑐 = argmin

X𝑐

∑︁
𝑖∈F𝑐

( ∑︁
𝑘∈P𝑖

∥𝑬𝑣𝑖𝑠𝑖𝑜𝑛 (𝜽 𝑖 , 𝑷𝑘 )∥2Σ𝑣

+
∑︁
𝑘∈P𝑖

∥𝑬𝑙𝑖𝑑𝑎𝑟 (𝜽 𝑖 , 𝑷𝑘 )∥2Σ𝑙 +
∑︁
𝑗 ∈N𝑖

𝑬𝑑𝑒𝑝𝑡ℎ (𝑫𝑖 ,𝑫 𝑗 )
2
Σ𝑑

)
,

(4)

where N𝑖 are nearby frames of frame 𝑖 . Each term is the residual
associated to a factor type, weighted by the information matrix
Σ (i.e., inverse of the covariance matrix, where ∥𝑬 ∥2Σ = 𝑬TΣ𝑬 ).
𝑬𝑣𝑖𝑠𝑖𝑜𝑛 and 𝑬𝑙𝑖𝑑𝑎𝑟 are two types of feature point residuals, and
𝑬𝑑𝑒𝑝𝑡ℎ is depth map residual.

3.2 Factor Graph Formulation
The structure of the factor graph is shown in Fig. 4. The factor graph
consists of two types of nodes: variable nodes indicate the values to
be optimized (i.e., depth maps 𝑫𝑖 , poses 𝜽 𝑖 , and feature points 𝑷𝑘 ),
while factor nodes represent the probability relationship between
two variable nodes (i.e., point factor associating pose with feature
point, and depth factor associating adjacent poses and depth maps).
We optimize all variable nodes simultaneously to obtain globally
optimal results. We describe the measurements and residuals of
two types of point factors, followed by depth factor.

3.2.1 Point Factor with Visual Reprojection Error. To op-
timize the vehicle’s poses and feature points, we first analyze
the observation of environment by the camera. We consider a
conventional pinhole camera model with a projection function
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Figure 5: Workflow of themotion-optical flow instructed self-supervised framework in LeoVR.

𝝅 : SE(3) × R3 → R2, which transforms a 3D point 𝑷 in world
reference W to the image plane given a vehicle’s pose 𝜽 :

𝝅 (𝜽 , 𝑷 ) = 1
𝑍
𝑲𝜽𝑷 , 𝑷 = [𝑋,𝑌, 𝑍 ]𝑇 , (5)

where 𝑲 is the camera intrinsic matrix. Let 𝑷𝑘 ∈ R3 denote a 3D
feature point and 𝒑𝑖

𝑘
∈ R2 denote the corresponding detection on

the image plane 𝑰 𝑖 . The residual at pose 𝜽 𝑖 for feature point 𝑷𝑘 can
be formulated as:

𝑬𝑣𝑖𝑠𝑖𝑜𝑛 (𝜽 𝑖 , 𝑷𝑘 ) = 𝝅 (𝜽 𝑖 , 𝑷𝑘 ) − 𝒑𝑖
𝑘
. (6)

This point factor measures the difference between the pixel lo-
cation of the observed feature point and the re-projection location
of the estimated 3D feature point due to the unknown pose and
noises of measurements. We use ORB [40] to detect and describe
visual feature points in images.

3.2.2 Point Factor with LiDAR Constraint. To take full advan-
tage of the fusion of vision and LiDAR sensing modalities, we also
optimize the feature points using LiDAR’s overlapping field-of-view
to provide depth estimates. We first project all the 3D LiDAR points
𝑳 ∈ L𝑐 in reference L between time 𝑡𝑐 and 𝑡𝑐+1 onto the image
plane:

𝝅 (𝑳) = 1
𝑍
𝑲𝑳, 𝑳 = [𝑋,𝑌, 𝑍 ]𝑇 . (7)

For a 3D feature point 𝑷𝑘 in reference W with the corresponding
pixel 𝒑𝑖

𝑘
on the current image plane 𝑰𝒊 , we find the projected LiDAR

point 𝝅 (𝑳𝑘 ) that is closest to 𝒑𝑖𝑘 within a neighborhood of 5 pixels.
Finally, the residual is computed as:

𝑬𝑙𝑖𝑑𝑎𝑟 (𝜽 𝑖 , 𝑷𝑘 ) = 𝜽 𝑖𝑷𝑘 − 𝑳𝑘 . (8)
This point factor punishes deviation of the feature point’s depth

from the LiDAR observation, optimizing the feature points and
vehicle’s pose while applying scale to visual measurements. As a
reminder, we use only 𝑬𝑣𝑖𝑠𝑖𝑜𝑛 as the point factor when we cannot
associate any LiDAR depth to a feature point due to the sparse
resolution of the input LiDAR samples.

3.2.3 Depth Factors with Geometric Consistency. To fully
exploit the capabilities of the depth map from the generator and
further optimize the scene depth in a fine-grained manner, we adopt
the geometric consistency of the scene depth from different views
as a constraint. Given two consecutive depth maps 𝑫𝑖 and 𝑫 𝑗 ,

we can project 𝑫 𝑗 to the view of 𝑫𝑖 based on the relative pose
transformation 𝑻 𝑖 𝑗 = 𝜽 𝑗𝜽

−1
𝑖 . First, let 𝒑𝑖

𝑘
denote the coordinates of

a pixel in 𝑫𝑖 , and the corresponding 3D location is:

𝑷𝑘 = 𝑫𝑖 (𝒑𝑖𝑘 )𝑲
−1𝒑𝑖

𝑘
. (9)

Then, we project 𝑷𝑘 to the image plane of 𝑫 𝑗 with 𝝅 (𝑻 𝑖 𝑗 , 𝑷𝑘 ).
Therefore, we can obtain a depth map which is projected from 𝑫 𝑗

to the view of 𝑫𝑖 :

𝑫 𝑗→𝑖 (𝒑𝑖𝑘 ) = 𝑫 𝑗

(
𝝅
(
𝑻 𝑖 𝑗 , 𝑷𝑘

) )
. (10)

When the sampling interval between two consecutive frames is
short, the observations of the scene from different views should be
consistent. Consequently, the residual between depth maps can be
formulated as:

𝑬𝑑𝑒𝑝𝑡ℎ (𝑫𝑖 ,𝑫 𝑗 ) =
∑︁
𝑘∈Ω

𝑫𝑖 (𝒑𝑖𝑘 ) − 𝑫 𝑗→𝑖 (𝒑𝑖𝑘 )
2 . (11)

This depth factor constraints the depth map of adjacent frames
based on the consistency of the scene geometry in different views,
ensuring the continuity and consistency of the depth maps esti-
mated from moving vehicle. For faster convergence, we sample a
different set of pixels at each iteration to stochastically optimize the
residual over the whole depth map. Furthermore, while this depth
factor can offer effective optimization in most cases, we should
notice that the constraint breaks down when the target object is
moving fast and close to the vehicle. As a result, we consider mask-
ing the invalid correspondences caused by the above dynamics
for stable optimization, i.e., only pixels of objects within a trusted
region are available for optimization, which is defined as the con-
vex hull on the pixel space formed by the stable 3D feature points
extracted and triangulated from visual odometry.

4 MOTION-OPTICAL FLOW INSTRUCTED
SELF-SUPERVISED FRAMEWORK

To ease the ground truth annotation costs for training the depthmap
generator, we design a self-supervised framework. Our solution
could automatically extract supervision signals to train the DNN
by leveraging the camera’s motion information. The basic idea
behind the framework is illustrated in the left part of Fig. 5. As seen,
given the current image 𝑰 𝑖 , the nearby image 𝑰 𝑗 , the depth map �̂�𝑖

output from the DNN generator, as well as the inter-frame camera’s
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motion 𝑻 𝑖 𝑗 acquired from the previous optimization scheme, we
can inversely wrap 𝑰 𝑗 to the view of current image and generate
a warped image 𝑰 𝑗→𝑖 . The pixel-level photometric differences
between the current image 𝑰 𝑖 and the warped image 𝑰 𝑗→𝑖 could be
served as supervision signals [33]. In this section, we first present
how to implement this basic idea (§4.1), followed by additionally
introducing a motion-optical flow consistency constraint to improve
the robustness of this framework in real complicated environments
(§4.2). We further provide another two constraints that could be
put together for a better training performance (§4.3).

4.1 The Basic Idea: Photometric Loss
As mentioned above, the basic and essential supervision signal
for training the depth map generator comes from the photometric
consistency. Similar to the formulation in Section 3.2.3, let 𝒑𝑖

𝑘
de-

note the coordinates of a pixel in image 𝑰 𝑖 , and any 𝒑𝑖
𝑘
having the

corresponding projection in 𝑰 𝑗 as:

𝒑 𝑗

𝑘
= 𝝅

(
𝑻 𝑖 𝑗 , �̂�𝑖

(
𝒑𝑖
𝑘

)
𝑲−1𝒑𝑖

𝑘

)
. (12)

Consequently, we can create a warped image 𝑰 𝑗→𝑖 by:

𝑰 𝑗→𝑖

(
𝒑𝑖
𝑘

)
= 𝑰 𝑗 ⟨𝒑 𝑗

𝑘
⟩, (13)

where ⟨·⟩ is the differentiable bilinear sampler [24] that interpolates
around the four immediate neighbours of 𝒑 𝑗

𝑘
. Then, we train the

model to predict a depth map �̂�𝑖 by minimizing the difference
between 𝑰 𝑖 and 𝑰 𝑗→𝑖 and define the photometric loss as follows:

𝐿𝑝 =
∑︁
𝑗 ∈N𝑖

𝑝𝑒
(
𝑰 𝑖 , 𝑰 𝑗→𝑖

)
, (14)

where N𝑖 is the set of image that nearby the current view. To
prevent the noise from large differences in geometric views, only the
previous and next one of the current frame are used as reference in
practical. We using a combination of the average pixel reprojection
residual with an 𝐿1 penalty and 𝑆𝑆𝐼𝑀[49] to obtain the photometric
error (i.e., 𝑝𝑒 in Eq. 14), a perceptual metric that is invariant to local
illumination changes:

𝑝𝑒 (𝑰𝑎, 𝑰𝑏 ) =
𝛼

2

(
1 − SSIM (𝑰𝑎, 𝑰𝑏 )

)
+ (1 − 𝛼) ∥𝑰𝑎 − 𝑰𝑏 ∥1 .

(15)

where 𝛼 is the parameter that regulates the sensitivity to local
illumination changes, and we set 𝛼 = 0.8 to balance the training.

4.2 Motion-Optical Flow Constraint
Although one can leverage Eq. 14 to train the depth map generator
from continuous video frames, the above photometric reprojection
formulation implies the static-rigid world assumption, where the
current scene is: (𝑖) static without moving objects; (𝑖𝑖) no occlu-
sion/disocclusion between current and nearby view; and (𝑖𝑖𝑖) a
Lambertian surface2 to ensure the photometric invariance assump-
tion holds [64]. Briefly, the basic idea assumes the photometric
variation of pixels between adjacent images primarily depends on
the motion of the vehicle itself. However, the real environments
with high dynamics (e.g., reflections, shadows, moving objects)
2The apparent brightness of a Lambertian surface to an observer is the same regardless
of the observer’s angle of view.

Occlusion Moving Objects Non-Lambertian Surface

Figure 6: Qualitative results of motion-optical flow consis-
tency constraint. We show two complicated real-world scenarios
from the KITTI dataset [26] that severely impact self-supervised
training. The first and second rows show consecutive RGB frames
collected during the vehicle’s movement. The third row shows the
visualized dense optical flow between two frames. The last row
depicts the generated confidence masks. Pixels that lie in the darker
region will be filtered out and not be leveraged to train the DNN.

hardly satisfy the above assumption, resulting in a higher penalty
and corrupted gradients even if the DNN predicts a correct depth for
each pixel, which eventually degrades the self-supervised training
performance.

To improve the robustness of self-supervised training with pho-
tometric consistency, we propose anmotion-optical flow consistency
constraint. The key idea behind this constraint is to select pixels
whose associated spatial points meet the static-rigid world assump-
tion for training. Our insight is based on two observations: (i) the
motion of ideal points (i.e., static and non-occluded spatial points)
relative to the camera is exactly opposite to the motion of the
camera itself; and (ii) the optical flow of spatial points on a non-
Lambertian surface is not consistent with its actual motion. In a
nutshell, merely those pixels whose optical flow is consistent with
the camera’s motion could be exploited to extract supervision sig-
nals. Here, optical flow is the motion pattern of image objects
between two consecutive frames caused by the movement of object
or camera. It is a 2D vector field in which each vector represents
the displacement of points from one frame to the next [12].

To select the motion-optical flow consistent pixels, we first com-
pute the optical flow vector for each pixel between the current
frame 𝑰 𝑖 and its nearby frame 𝑰 𝑗 based on the photometric invari-
ance assumption [11]. Thus, given a 3D spatial point with pixel
coordinates 𝒑𝑖

𝑘
in 𝑰 𝑖 , we can find the corresponding pixel 𝒑 𝑗

𝑘
in

𝑰 𝑗 according to the optical flow vector. Then, we analyze the geo-
metric relationship between camera motion and spatial point, as
shown in Fig. 3. The optical centers 𝑶𝑖 and 𝑶 𝑗 can determine an
epipolar plane with the 3D point 𝑷𝑘 . The intersection line between
the epipolar plane and the image plane is the epipolar line (i.e., 𝒍𝑖



Motion Inspires Notion: Self-supervised Visual-LiDAR Fusion for Environment Depth Estimation MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

Figure 7: The scanning principles and basic specifications of
Mid-40 and VLP-16

and 𝒍 𝑗 ). When the camera motion is determined, the ray 𝑶𝑖𝒑𝑖𝑘 is
the possible location of 𝑷𝑘 , and 𝒍 𝑗 is the corresponding potential
projection location on the image 𝑰 𝑗 . Therefore, if 𝒑𝑖𝑘 is consistent
with the camera motion, 𝒑 𝑗

𝑘
calculated by optical flow should fall

on 𝒍 𝑗 . The epipolar constraint [62] can be applied to verify whether
the point satisfy the above property:

(𝒑 𝑗

𝑘
)𝑇 𝑭𝒑𝑖

𝑘
= 0, (16)

which evaluates the distance from the projection point to the epipo-
lar line. And the fundamental matrix 𝑭 can be calculated from the
camera motion. The above equation holds strictly when the optical
flow is completely consistent with the motion. Based on this con-
straint, we compute confidence mask ` for loss 𝐿𝑝 , which filters
out pixels that violate motion-optical flow consistency:

` =

[ ��(𝒑 𝑗

𝑘
)𝑇 𝑭𝒑𝑖

𝑘

�� < _

]
, (17)

where [·] is the Iverson bracket, and _ is the constraint threshold.
As shown in Fig. 6, we qualitatively demonstrate the effectiveness
of motion-optical flow consistency constraint. In both complicated
scenes, the generated per-pixel confidence mask can accurately fil-
ter the invalid pixels from occlusion, dynamics, and non-Lambertian
surfaces. We also experimentally show that the proposed constraint
can solve these factors and bring significant improvements for the
self-supervised training (§5.4.2).

4.3 Additional Constraints
In addition to the vehicle (i.e., camera’s) motion information, we
also take full advantage of the output of the optimization framework
(§3.2), including the optimized 3D feature points and refined depth
maps. Further, we introduce two additional constraints to facilitate
the training of the depth map generator. The training performance
gain will be demonstrated in §5.4.3.
Feature Points Constraint. As described in Section 3, in addition
to optimizing the depth maps and poses, we also track all 3D feature
points in the global trajectory. We project the feature points which
are visible in the current frame 𝑰 𝑖 onto the image plane and form a
sparse depth map 𝑫

𝑓

𝑖
. The feature points supervised depth loss is

defined as:
𝐿𝑓 =

(�̂�𝑖 − 𝑫
𝑓

𝑖

)
⊙
[
𝑫
𝑓

𝑖
> 0

]2 , (18)

RGB Image

LiDAR Points

Depth Map

Residual Block

Skip Connection

Channel
Concatenation

Transposed Convolution

Figure 8: Network architecture of the proposed depth map
generator

where ⊙ is an element-wise multiplication. Since 𝑫
𝑓

𝑖
is sparse

and contains invalid pixels, we only consider those are having
valid depth values. This supervision signal delivers higher accuracy,
better stability, and faster convergence during model initialization
for self-supervised training.
Refined Depth Guidance. In the refinement stage of model train-
ing, the factor graph based optimization refines each depth map
predicted by the generator. With the guidance from the refined
depth 𝑫𝑟

𝑖
, the loss is defined as follows:

𝐿𝑟 =
�̂�𝑖 − 𝑫𝑟

𝑖

2 . (19)

In practice, introducing 𝐿𝑟 in the fine-tuning stage can effec-
tively improve the accuracy, but still a small number of incorrect
refined depth maps can cause model training instability. For stable
training, we only select those refined depth maps that are geomet-
rically consistent with the optimized feature point cloud for further
guidance.

4.4 Put Together
For the smoothness of generated depth maps, we further use edge-
aware smoothness loss 𝐿𝑠 to minimize the 𝐿1 norm of the second-
order gradient for the depth prediction, and the form of 𝐿𝑠 is similar
to [14, 33]. Putting these constraints together, our final objective
for the entire self-supervised training is:

𝐿 = `𝐿𝑝 + _𝑓 𝐿𝑓 + _𝑟𝐿𝑟 + _𝑠𝐿𝑠 , (20)

where _𝑓 , _𝑠 , and _𝑟 are the relative weightings to balance the
terms. We will describe the training details in Section 5.1.

5 IMPLEMENTATION AND EVALUATION
We first present the experimental methodology (§5.1), followed by
the overall performance of LeoVR compared against SOTA systems
(§5.2). We then conduct experiments under different conditions
to evaluate the robustness of LeoVR (§5.3) Finally, we conduct
an ablation study to understand each framework module or self-
supervised constraint in LeoVR (§5.4).
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Table 2: Details of Data Collection in Different Scenarios

# Scene type Sensors for data collection No. of frames Trajectory length No. of trajectories No. of trajectories
(Camera, LiDAR) (km) for training for evaluation

1 City Road Ladybug5+, Mid-40 & VLP-16 822,856 295.6 488 2164
2 Campus Ladybug5+, Mid-40 & VLP-16 49,879 8.76 88 100
3 Classroom Building Logitech C920E, Mid-40 47,064 2.37 87 79
4 Office Building Logitech C920E, Mid-40 41,376 1.97 92 105

RGB Image Ground TruthLeoVRLiDAR Points

Figure 9: Generated depth maps from LeoVR. From top to
bottom are examples from city road, campus, classroom, and office
building scenarios, respectively.

5.1 Experimental Methodology
Device Setup.We prototype LeoVR on a robotic testbed (indoor
experimental scenarios) and commercial vehicle (outdoor scenar-
ios) with different cameras and LiDARs. The robot and vehicle are
equipped with a Logitech C920E (1080p, 30Hz) and Ladybug5+ (2k,
30Hz) RGB camera for capturing images respectively. We also equip
both VLP-16 ($4,000) and Mid-40 ($500) LiDARs on each device to
compare LeoVR with related works under different LiDAR settings.
As shown in Fig. 7, Mid-40 is a solid-state LiDAR with Risley prism
that adopts non-repetitive scanning (rosette-like scanning pattern),
and the scanning trajectory never repeats. Mid-40 has a front facing,
conical shaped, 38.4 degree FoV with a sampling rate of 100,000
points/s [28]. VLP-16 is a conventional mechanical spinning LiDAR,
which rotates 16 uniformly distributed lasers simultaneously for
scanning with a rotation frequency of 5-20Hz. VLP-16 has a 360
degree horizontal and 30 degree vertical FoV with a sampling rate
of 300,000 points/s [46]. In brief, for the same detection area, VLP-
16 can acquire denser point clouds with higher FoV coverage at
a faster rate (the FoV coverage of Mid-40 is 20% in 0.1s [34]). For
the optimization module of LeoVR, the server is equipped with
Intel(R) Xeon(R) CPU E5-2620 v4 of 2.10GHz main frequency and
256G RAM, running the Ubuntu 18.0.4 operating system. For the
model training and inference, the GPUs we use are two GeForce

Table 3: Motion Tracking Performance Comparison

System Absolute Trajectory Error (cm)
City Road Campus Classroom Office Building

V-LOAM 5.1 3.9 3.4 3.2
LeoVR 4.2 3.3 3.1 2.9

RTX 2080ti with CUDA version 10.1 and cuDNN v7.6.2. We contin-
uously evaluate the system performance across 6 months, collecting
3203 trajectories with 961,175 frames.
Metrics and Ground Truth. For each generated depth map, we
use the Mean Absolute depth Error (MAE) of all pixels in the image
to measure the depth estimation performance, which is a golden
indicator adopted by related works [16, 39]. To obtain the ground
truth, we use a high-precision LiDAR (an 80-lines RoboSense Ruby
Lite with $15,800) to run a LiDAR-based environmental mapping
algorithm (LOAM [60]) to generate dense depth maps.
Dataset. As summarized in Table 2. We build datasets using the
collected RGB images and LiDAR samples for further reuse. We
conduct experiments in four representative scenarios: city road
and campus as outdoor scenarios, while classroom building and
office building as indoor scenarios. These scenes enjoy diverse
spatial geometric layouts and environmental dynamics and thus
provide different challenges for environment depth estimation. In
the classroom and office buildings, there is only a small amount
of pedestrian dynamic interference, the scene geometry is regular,
and the distance between the target object and the sensing device
is close. However, in the city road and campus, there are many
moving vehicles and a variety of target objects (e.g., buildings,
pedestrians, vegetation, road signs), and the perceived distance is
relatively long compared to the indoor environment. The dataset
of city road contains an extra four times the frames for model
training and further analysis of the impact of training data number
on the self-supervised training (Section 5.5.2). In our experiments,
different models are trained for different scenarios. The training
and evaluation data are taken from different regions in the same
scenario, rather than uniformly extracted from the dataset, which
helps to verify the generalizability of the model.
Comparative Methods. To extensively evaluate the performance
of LeoVR, we additionally implement 4 state-of-the-art approaches
based on visual-LiDAR fusion for comparison. We evaluate the
depth estimation performance of LeoVR with: DeepLiDAR and
DenseLiDAR, two SOTA learning-based depth estimation model.
Specifically, when comparing LeoVRwith these two works, we train
the depth map generators of them and our LeoVR on the annotated
dataset in advance. Furthermore, to evaluate the effectiveness of
the proposed self-supervised framework, we compare LeoVR with
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(a) Different Environments (b) Different LiDARs (c) Different Self-supervised Methods
Figure 10: Overall Depth Estimation Performance Comparison

(a) Impact of Scene Distance (b) Impact of Moving Speed (c) Impact of Scene Dynamics
Figure 11: System Robustness Evaluation

another two existing self-supervised training based systems, Self-
S2D and Self-VLO. In this part of experiments, without complex
pre-training, the depth map generators in these systems and LeoVR
cold start by self-supervised training.
Model Architectures & Training Details. The network architec-
ture of our depth map generator is illustrated in Fig. 8. It follows an
encoder-decoder structure and consists of three major components:
an RGB image encoder, a LiDAR points encoder, and a depth esti-
mation decoder. The features extracted in each branch are fused by
channel concatenation and further fused together with decoder fea-
tures via skip connection at each scale. We use the residual blocks of
ResNet-34 [18] and a stride of 2 for downsampling in the encoders.
After every encoding layer, the number of channels in the feature
map is [32, 64, 128, 256, 256]*𝑘 , where 𝑘 = 3/4 for three channels
RGB image branch, and 𝑘 = 1/4 for one channel depth branch,.
We use batch normalization [22] and ReLU activation for all layers
except the last one.

We implement the proposed model based on PyTorch [37]. We
use Adam optimizer [25] with 𝛽1 = 0.9 and 𝛽2 = 0.999 and batch
size of 8 to train the model for 32 epochs. The initial learning rate
starts from 10−4 and decreases by half every 8 epochs. We update
the confidence mask and supervision signals provided by the factor
graph every two epochs in the last 8 fine-tune epochs during self-
supervised training. We empirically set the hyper-parameters as
follows: _𝑣 = 0.2, _𝑟 = 0.1, and _𝑠 = 0.1.

5.2 Overall Performance Comparison
5.2.1 Depth Estimation Accuracy Comparison. We first evaluate
the depth estimation performance of LeoVR as well as the above
two comparative systems in different scenarios with a Livox Mid-40
LiDAR. As depicted in Fig. 10a, LeoVR achieves the optimal per-
formance in all scenarios with different environmental complexity.

The estimation accuracy of LeoVR is 0.18𝑚, 0.15𝑚, 0.06𝑚, 0.05𝑚
in city road, campus, classroom building, and office building, out-
performing DenseLiDAR and DeepLiDAR by more than 43.8% and
56.1%. Fig. 9 shows qualitative results of LeoVR in different scenar-
ios. Intuitively, the generated depth maps could profile the details
of objects and be comparable to the ground truth.

We further evaluate the performance of LeoVR and comparative
systems on the city road dataset with two different types of LiDAR.
As shown in Fig. 10b, the MAE of LeoVR with Velodyne VLP-16 and
Livox Mid-40 is 0.15𝑚 and 0.18𝑚 respectively,a > 21.1% and 43.8%
reduction compared to existing works. The results demonstrate
that LeoVR consistently brings significant performance gains when
using different types of LiDAR, especially for the commercial yet
sparsely sampled Mid-40. In the case of sparser 3D LiDAR point
cloud, LeoVR leverages the vehicle’s motion information to provide
additional spatio-temporal constraints among those continuously
generated depth maps, which would further optimize the depth
prediction accuracy. We will further demonstrate the effectiveness
of the proposed motion-aware optimization framework in §5.4.1.

5.2.2 Self-Supervised Performance Comparison. We also conduct
experiments to evaluate the performance of the proposed self-
supervised framework. In this evaluation, LeoVR and two compara-
tive self-supervised systems, Self-VLO and Self-S2D, are equipped
with the Mid-40 LiDAR and cold start in different scenarios without
pre-training. For each dataset, as described in Table 2, we leverage
partial trajectories for self-supervised training and use the remain-
ing trajectories to evaluate the MAE of each system. The results are
shown in Fig. 10c. As seen, the depth estimation performance of the
self-supervised LeoVR is 0.21𝑚, 0.17𝑚, 0.07𝑚, 0.06𝑚 in four differ-
ent scenarios respectively, which decrease by 14.3%, 11.7%, 14.2%,
and 16.7% compared to that of the supervised version. Meanwhile,
the self-supervised LeoVR outperforms comparative approaches by
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(a) Motion-aware Optimization Framework (b) Motion-Optical Flow Constraint (c) Additional Constraints

Figure 12: Ablation Study

> 45%. Especially in the city road scenario where the environment
suffers from the most dynamics, LeoVR outperforms existing works
by 54.3%. The delightful results demonstrate that the motion-optical
flow-instructed self-supervised framework could boost the model
training performance, especially in complicated real-world envi-
ronments. A detailed understanding of the contribution from each
constraint (i.e., supervision signals) will be presented in §5.4.3.

5.2.3 Motion Tracking Performance Comparison. Taking full ad-
vantage of the vehicle’s motion information is the essential reason
why LeoVR could achieve delightful depth estimation and self-
supervision training performance. Therefore, the ability to pre-
ciously track the vehicle’s motion (i.e., 6-DoF pose) is the basis
of the entire system. In this experiment, we evaluate the motion
tracking performance of LeoVR and compare it with V-LOAM [61],
a visual-LiDAR odometry work for camera motion tracking. Al-
though there are SOTA robotic localization systems by leverage
RF signals [1, 32], the vision and LiDAR based solutions are more
suitable for vehicles in outdoors. We conduct this experiment with
Livox Mid-40, while the ground truth is obtained through V-LOAM
leveraging the 80-line RoboSense Ruby Lite LiDAR. And we use the
absolute trajectory error (ATE [43], in 𝑐𝑚) to evaluate the motion
tracking accuracy. The results are shown in Table 3. As seen, LeoVR
achieves an ATE within 4.2𝑐𝑚 in all scenarios, and the performance
outperforms V-LOAM by around 17%. The results demonstrate the
effectiveness of the optimization framework for a vehicle’s mo-
tion tracking, and such an accurate tracking accuracy ensures the
reliable performance of the subsequent modules in LeoVR.

5.3 System Robustness Evaluation
In this part, we analyze the system’s robustness in the most chal-
lenging city road using commercial autonomous vehicles equipped
with Livox Mid-40.

5.3.1 Impact of Scene Distance. We examine the impact of scene
distances on the depth estimation task. We divide the frame into
five parts according to the distance from objects to the camera
and separately calculate the MAE for each part. The results are
shown in Fig. 11a. As seen, the accuracy of estimation gradually
decreases with increasing distance, and the MAE are 0.09𝑚, 0.11𝑚,
0.14𝑚, and 0.19𝑚 for the distances of 0-20𝑚, 20-40𝑚, 40-60𝑚, and
60-80𝑚, respectively. When the scene distance rises to over 80𝑚,
the average error is up to 0.34𝑚 because the accuracy and density
of the points cloud decrease significantly with increasing sensing

distance. Nevertheless, LeoVR can still achieve 95𝑡ℎ percentile error
less than 0.38𝑚 within the 80𝑚 range.

5.3.2 Impact of Vehicle Speed. We further verify the robustness
of LeoVR on different speeds of the vehicle. As shown in Fig. 11b,
at speed less than 20𝑘𝑚/ℎ, the performance of LeoVR is stable,
and the average depth error is 0.19𝑚. When the moving speed =
0𝑘𝑚/ℎ, the final optimization result can be considered as an average
of the continuous depth maps within the sliding window, which
are supposed to be consistent since the camera is stationary. As a
reminder, the sampling area of Mid-40 varies from cycle to cycle,
even when stationary, and the depth maps generated by the model
are not identical. When the speed exceeds 40𝑘𝑚/ℎ, the average
depth error of LeoVR is 0.29𝑚, and 95𝑡ℎ percentile error is within
0.63𝑚. The main reasons for the degradation are as follows: (𝑖) The
sampling circle of LiDAR is long and the vehicle is fast, resulting
in an inherent bias when accumulating sampling points; and (𝑖𝑖)
the view of adjacent frames at high speed differs greatly, posing a
challenge for matching visual feature points.

5.3.3 Impact of Environmental Dynamics. We evaluate the robust-
ness of LeoVR on different levels of scene dynamics. As shown
in Fig. 11c, we evaluate LeoVR in static (without moving objects),
slight dynamic (few pedestrians and cars), and severe dynamic
(crowded traffic) scenes. The average depth estimation error are
0.171𝑚, 0.184𝑚, and 0.207𝑚 in static, slight, and severe dynamic
scenes, respectively, which are decreased by 7.5% and 17.6% from
static to slight and severe scenes, In addition, LeoVR can still achieve
95𝑡ℎ percentile error less than 0.44𝑚 in severe dynamic environ-
ments.

The rationale behind the results of the above robustness experi-
ments lies in twofold: (i) The introduction of themotion-optical flow
consistency constraint during self-supervised training enhances
resistance of the DNN to dynamics; and (ii) The motion-aware op-
timization framework improves the system robustness. Although
the dynamics of the environment, vehicle’s speed, etc. , could harm
the depth estimation of a single frame, by leveraging the full infor-
mation (i.e., depth maps, 3D feature points, and vehicle’s motion)
within a time window, we can optimize a more accurate result that
meets the spatio-temporal constraint.

5.4 Ablation Study
We then conduct an ablation study to understand the effectiveness
of some modules in LeoVR.
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5.4.1 Effectiveness of the Motion-aware Optimization Framework.
In this experiment, we compare the depth estimation performance
without (w/o) and with (w/) the proposed motion-aware learning-
embedded optimization framework to show the performance gains
it brings into the overall system. When we close the optimization
framework, the depth map output by the system is entirely gener-
ated by the DNN. The experimental results are shown in Fig. 12a.
As seen, with our optimization framework, the system achieves an
enhanced performance, where both MAE and variance of the depth
estimation significantly decrease. Specifically, the MAE of LeoVR
with the optimization framework is 0.18𝑚,0.15𝑚,0.06𝑚,0.04𝑚 in city
road, campus, classroom building, and office building respectively,
reducing that of LeoVR without optimization by > 31.3%. Especially
in the complicated campus environment, the MAE reduction rate is
> 38.2%. Additionally, with the optimization framework, the maxi-
mum value of the estimation error could be bounded by 0.47𝑚. The
above delightful performance demonstrates the effectiveness of the
proposed motion-aware optimization framework.

5.4.2 Effectiveness of theMotion-Optical FlowConstraint. To demon-
strate the effectiveness of motion-optical flow consistency con-
straint in the proposed self-supervised learning framework, we
evaluate the model training performance on four different datasets
with and without the confidence masks generated upon the motion-
optical flow consistency through Eq. 17. The results are shown in
Fig. 12b. For the classroom building and office building, the pro-
posed training method with confidence masks can improve 17.8%
and 13.1%. As for the city road and campus, the performance is
increased by 23.4% and 21.5%, respectively. The two outdoor scenar-
ios are more complicated and dynamic, where the rigid-static world
assumption would be violated frequently. The motion-optical flow
constraint could be leveraged to select stable and consistent pixels
among adjacent frames to generate supervision signals, resulting
in a training performance lift, especially in dynamic environments.

5.4.3 Effectiveness of Additional Constraints. We finally evaluate
the effectiveness of our additionally proposed feature points con-
straint and refined depth guidance for self-supervised training. In
this experiment, we take the self-supervised model trained by the
basic photometric loss and motion-optical flow constraint as a base-
line and introduce these two additional constraints into the frame-
work individually. We focus on the performance gains each of them
brings to LeoVR. As depicted in Fig. 12c, the MAE reduced by 9.8%
when the feature points constraint is introduced on the basis of the
baseline. Similarly, when the refined depth guidance is introduced,
there is a 7.1% lift on the depth estimation performance (i.e., re-
ducing the MAE from 0.212𝑚 to 0.197𝑚). These delightful results

demonstrate that the additional two constraints could also bring
useful supervision signals to train the DNN.

5.5 Parameter Study
We conduct a parameter study to understand the impact of the
selection of some critical parameters on the system performance.

5.5.1 Impact of Sliding Window Length. As aforementioned, LeoVR
uses a set of frames within a sliding window to optimize the depth
map using the factor-graph. We evaluate the impact of the sliding
window length on the accuracy and latency, and the results. As
depicted in Fig. 13, when using only two adjacent frames, the depth
estimation error is 0.25𝑚 with a 20ms delay (the computational
delay considers all factor constraints presented in Section 3.2). With
the window length increasing to 4 frames, the error decreases by
27.3%, and the optimization latency increases to 27ms. However,
continuously increasing the window length beyond 4 frames will
not improve the accuracy of LeoVR because there will be a large
gap in the FoV among these frames. To balance the accuracy and
latency, we use a sliding window length of 4 frames in LeoVR.

5.5.2 Impact of Training Data Amount. The self-supervised train-
ing framework in LeoVR allows the DNN model (i.e., the depth map
generator) to be trained by unlabeled data, however, the model train-
ing effectiveness is inevitably sensitive to the amount of the training
data. We further evaluate the impact of training data amount on
the performance of LeoVR with and without (i.e., merely using the
DNN model) the optimization framework in the city road dataset.
As shown in Fig. 14, the average estimation error of LeoVR with and
without optimization are 0.33𝑚 and 0.21𝑚 when using 142k frames
for self-supervised training. When the training data number de-
creased to 48k, the error scale to 0.42𝑚 and 0.23𝑚, respectively. The
performance degradation of LeoVR without optimization is 27.3%,
while the entire LeoVR is only 9.2%. The above results demonstrate
that although the self-supervised training performance degrades
with limited training data amount, the subsequent optimization
scheme could still maintain the estimation accuracy.

5.6 System Efficiency Study
As a depth estimation system towards auto-driving scenarios, we
further evaluate the efficiency of LeoVR. As shown in Fig. 15, we
measure the end-to-end latency of four depth estimation systems.
Note that unlike existing DNN standalone approaches, LeoVR in-
volves both a DNN and a joint optimization scheme. Therefore, we
separately report the latency of these two modules in LeoVR. The
end-to-end latency of LeoVR, DenseLiDAR, DeepLiDAR and Self-
S2D are 59ms, 42ms, 55ms, and 87ms. The latency of the DNN and
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the optimization scheme in LeoVR are 32ms and 27ms, respectively.
In general, LeoVR could work with a frequency of 16Hz, which
matches the LiDAR sampling frequency (e.g., VLP-16, 5-20Hz). Ad-
ditionally, benefiting from our optimization scheme, LeoVR could
select a more light-weight model to guarantee the real-time perfor-
mance.

6 DISCUSSION AND FUTUREWORK
LeoVR is an early step towards ubiquitous environmental depth
estimation by fusing camera and low-cost LiDAR.We briefly discuss
limitations and future works in this section.
Degraded performance in adverse weather. Both of conven-
tional LiDAR and camera are sensitive to weather conditions and
are not expected to work fully in adverse weather like fog, mak-
ing the perception results unreliable [31]. Aside from lidar and
camera, radar has been widely deployed on autonomous vehicles.
Specifically, radar uses millimeter-wave signals whose wavelength
is much larger than the tiny particles forming fog, rain, and snow,
and hence easily penetrates or diffracts around them [30]. We think
integrating mmWave radar into LeoVR would greatly enhance the
robustness of system in harsh weather.
Additional latency for optimization. The learning-embedded
optimization scheme of LeoVR pushes the limits of the depth esti-
mation accuracy, however, the fine-grained optimization also in-
troduces additional computational delay. Optimizing the computa-
tional overhead required by the algorithm [2], or offloading some
computation-intensive yet delay-tolerant tasks to an edge server
[52] is also a promising research direction.
Adaptation in high-speed scenarios. As the vehicle speed in-
creases, the LiDAR point clouds generated by Mid-40 as well as
visual features also suffer from obvious motion blur[28, 45] due
to their hardware nature, resulting in LeoVR not capable of han-
dling high-speed scenarios (e.g., vehicle speed > 40𝑘𝑚/ℎ). We think
introducing IMU [50] or wheel odometry [5] into the optimiza-
tion framework to provide a high frequency ego-motion estimation
could help to tackle the above challenge, which is left as future
works.

7 RELATEDWORK
We briefly review the most related works in this section.

Optimization-based Visual-Radar fusion. In recent years, the
fusion of multi-modal sensors, especially leveraging vision or radar,
has attracted a wide range of attention from both industry and
academia [4, 15, 35, 41, 61, 65]. Among them, RF-Fusion [4] fuses
vision and RFID to enable robots to recognize objects. ITrackU [6]
leverages IMU and UWB radar for tracking a pen-like instrument.
V-LOAM [61] integrates vision and LiDAR in a loosely coupled
manner to track a camera’s motion and generate environmental
3D point clouds. VILENS [50] and FollowUpAR [53] utilize a factor
graph to tightly integrate vision and laser or mmWave radar fea-
tures for real-time object point cloud registration. However, all of
the above optimization-based approaches could merely generate
object- or surface-level sparse point clouds instead of pixel-level
depth maps of surrounding environments. Some recent works [15]
rely on an expensive LiDAR to sample dense point clouds, limiting
their deployment on commercial devices. In contrast, LeoVR could
achieve dense depth map generation with low-cost LiDAR.

Learning-based Depth Estimation with visual-LiDAR fu-
sion. Recent years have witnessed the emergence of environmental
perception for IoT devices through deep learning [3, 36, 38, 57, 59].
Some most related works [21, 27, 63] design learning-based frame-
work to fuse vision and LiDAR for environment depth estimation.
Specifically, each of them designs a DNN, which takes monocular
images and LiDAR point clouds as inputs and predicts the depth
for each pixel in an image. Recently, DeepLiDAR [39] and DenseLi-
DAR [16] exploit pseudo-depth maps obtained from morphological
operations to instruct the higher-level network to generate a more
accurate depth map. PENet [21] proposes a two-branch backbone
that consists of a color-dominant branch and a depth-dominant
branch to extract distinctive features for further fusion and opti-
mization. However, the performance of these solutions also highly
relies on the density of the point clouds scanned by the LiDAR and
suffers from severe performance degradation when equipped with
commercial in-vehicle LiDARs.

Self-supervised depth estimation. Most existing works on
depth map estimation rely on densely annotated ground truth for
model training, which burdens these systems for widespread de-
ployment. Recently, some self-supervised solutions have been pro-
posed [14, 33, 55, 64]. For instance, Self-S2D [33] takes a sequence of
images with depth maps as inputs and uses Perspective-n-Point to
align them for photometric consistency. [64] proposes an unsuper-
vised learning framework for monocular depth and camera motion
estimation from unstructured video sequences. However, the train-
ing performance of the above self-supervised solutions degrades
in practical scenarios with dynamic objects, occlusion, and non-
Lambertian surfaces, leaving room for improvement. Compared
with these works, LeoVR further digs into the vehicle’s motion in-
formation and designs several motion-aware constraints to extract
supervision signals in complicated environments, improving the
self-supervised training performance.

8 CONCLUSION
We have presented the design and implementation of LeoVR, a
self-supervised environment depth estimation system with visual-
radar fusion. LeoVR takes fully advantages of the vehicle’s motion
information and designs (𝑖) a motion-aware learning-embedded
optimization scheme for generating accurate environmental depth
maps even with low-cost LiDARs; and (𝑖𝑖) a motion-optical flow
instructed self-supervised framework that enables self-supervised
training of the DNN. We implement LeoVR on a robotic testbed and
commercial vehicles, conducting extensive experiments in real en-
vironments across 6 months. The results demonstrate its superior
performance over previous schemes in all scenarios with differ-
ent types of LiDAR, promising adaptability for future LiDAR with
different specifications. Being fully self-supervised and achieving
an accurate depth estimation performance, LeoVR makes a great
process towards fortifying environmental perception to an essential
capability for large-scale on-vehicle deployment.
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