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Smartphone localization is essential to a wide spectrum of applications in the era of mobile computing.
The ubiquity of smartphone mobile cameras and surveillance ambient cameras holds promise for offering
sub-meter accuracy localization services thanks to the maturity of computer vision techniques. In general,
ambient-camera-based solutions are able to localize pedestrians in video frames at fine-grained, but the
tracking performance under dynamic environments remains unreliable. On the contrary, mobile-camera-based
solutions are capable of continuously tracking pedestrians, however, they usually involve constructing a large
volume of image database, a labor-intensive overhead for practical deployment. We observe an opportunity
of integrating these two most promising approaches to overcome above limitations and revisit the problem
of smartphone localization with a fresh perspective. However, fusing mobile-camera-based and ambient-
camera-based systems is non-trivial due to disparity of camera in terms of perspectives, parameters and
incorrespondence of localization results. In this paper, we propose iMAC, an integrated mobile cameras and
ambient cameras based localization system that achieves sub-meter accuracy and enhanced robustness with
zero-human start-up effort. The key innovation of iMAC is a well-designed fusing frame to eliminate disparity
of cameras including a construction of projection map function to automatically calibrate ambient cameras, an
instant crowd fingerprints model to describe user motion patterns, and a confidence-aware matching algorithm
to associate results from two sub-systems. We fully implement iMAC on commodity smartphones and validate
its performance in five different scenarios. The results show that iMAC achieves a remarkable localization
accuracy of 0.68m, outperforming the state-of-the-art systems by > 75%.
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• Information systems→Mobile information processing systems.
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1 INTRODUCTION
The popularity of mobile and pervasive computing has stimulated extensive interests in indoor
applications, such as customer navigation in museums, targeted advertisements in shopping malls,
and personnel emergency rescue in factories. Therein, accurate and easy-to-deploy indoor local-
ization is a key enabler for these services on the horizon. During the past decades, crowdsourced
WiFi-based fingerprinting [27, 32, 34, 39] and inertial-based pedestrian dead-reckoning (PDR) [14]
hit the mainstream. However, it is well known that PDR has intrinsically accumulative errors [33],
and WiFi fingerprint suffers from temporal instability and spatial ambiguity [26, 31], which make
these methods yield meter-level accuracy. While meter-level accuracy can roughly localize or
navigate a customer within a shopping mall, sub-meter level accuracy is helpful to determine which
aisle he/she is facing within a particular store, to provide detailed information when a customer
stands in front of a painting in a museum, and to guide a rescuer to find trapped workers in a race
against time.

Recently, as computer vision techniques mature, two arising trends may overcome the above limi-
tations and underpin a practical solution to push the limit of wireless localization: First, surveillance
cameras are pervasively deployed in public areas, such as shopping malls, museums, and galleries.
Researchers realize that these widely installed ambient cameras could provide complementary
advantages to conventional wireless localizations in terms of accuracy. Specifically, these ambient-
camera-based approaches [3, 16, 19, 23, 30] rely on surveillance cameras and radio sub-systems
to extract user’s motion patterns (traces or tracklets) from continuous video frames and wireless
signals respectively. Then, different motion patterns are aligned to differentiate users and obtain a
fused trajectory with enhanced accuracy. However, the visual tracking performance may degrade
in complicated circumstances due to frequent LOS blockages and erroneous detections. Moreover,
the pedestrian’s motion patterns depicted by wireless system are coarse-grained due to localization
bias and accumulative errors [30, 31].

Second, vision capability has becomemore powerful onmobile devices. Images captured bymobile
are leveraged to assist localization and navigation. Among mobile-camera-based approaches,
simultaneous localization and mapping (SLAM) and structure from motion (SfM) technologies
have made rapid progress and been widely deployed [7, 22, 28, 29, 35]. These approaches are
capable of precisely tracking mobile cameras’ location and pose, but involve a labor-intensive and
time-consuming site survey to gather images (or keyframes) about landmarks. What’s worse, due
to frequent LOS blockages by crowds and environmental dynamics, such a cumbersome site survey
needs to be repeated over time.
Albeit inspiring, as illustrated in Fig. 1, none of previous studies achieve enhanced localization

accuracy and robustness, meanwhile, ease start-up efforts. Intuitively, since mobile-camera-based
and ambient-camera-based methods enjoy their unique advantages, can we fuse these two arising
trends together to push the limit of indoor localization and achieve all three goals simultaneously?
The integration will improve the precision and robustness of localization, as the leverage of mobile-
camera-based methods could provide a more fine-grained user motion pattern than wireless systems.
On the other hand, deployment costs will be reduced: frames captures by surveillance cameras can
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Fig. 1. Comparison of the state-of-the-art works.

be served as image database for mobile systems. However, translating this intuition into a practical
system is non-trivial and faces three significant challenges:

• Absence of absolute location. Ambient-camera-based systems are capable of detecting
pedestrians in video frames, however, they cannot obtain absolute locations of pedestrians
in world coordinate (or in floor plan). To solve the problem, previous works [3, 16, 23] need
manual calibration of the camera to acquire a projection matrix, which is labor-intensive.
The most recent work iVR [30] leverages SfM algorithm to automatically calibrate cameras,
however, it requires multi-cameras viewing overlapping areas, thus merely fulfill a part of
scenarios.

• Incorrespondence of identification. The user IDs provided by vision-based approaches are
typically the labels of pedestrians. However, the sequence of labels individually acquired from
ambient-camera-based and mobile-camera-based systems are unordered and mismatched.
This association is a prerequisite to integrate results from each sub-system.

• Disparity of camera perspective. Although mobile cameras and surveillance cameras
view the same area, the perspective and contents they obtain would vary a lot. Specially,
public ambient cameras are stationary and view the area from a top-view, compared with
horizon-view from mobile cameras. It is impractical to directly match their visual features
using current computer vision techniques.

To tackle all challenges above, we propose iMAC, an integratedMobile and Ambient Cameras
based localization that achieves sub-meter accuracy and enhanced robustness with zero start-
up efforts. To acquire absolute location, we propose an automatic construction of projection map
frame to calibrate all the ambient cameras and acquire their projection matrices without human
intervention. To associate user identifications from two sub-systems, we propose an instant crowd
fingerprints model (ICFM), a real-time visual description of user motion patterns. Different from
WiFi fingerprint, ICFM exploits moving pedestrians as instant beacons to describe user features,
which is demonstrated to be more efficient and timely. Meanwhile, we analyze the disparity of
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Fig. 2. System Overview of iMAC

camera perspective to find the same estimation error in location will correspond to unequal errors
in angle. In some critical areas, a small variation in the location could introduce an extremely large
angle estimation error which seriously interferes the result of localization. We mathematically
quantify this unequal measurement error and purposely adopt a confidence-aware factor to analyze
the similarity of visual features between mobile cameras and ambient cameras.
We fully prototype iMAC on three different types of smartphones and an Ubuntu server and

conduct extensive experiments in five typical public scenarios with a practical ambient camera
system, including a floor of an office building, a teaching building, a holiday hotel, an art museum
and a shopping mall. Evaluation demonstrates that iMAC achieves a mean error of 0.68m and a
80-percentile error of 1.0m in all scenarios, which outperforms state-of-the-art smartphone-based
systems by 76.2%. The tracking success rate is more than 90% in all scenarios, including sophisticated
scenarios with multiple static pedestrians, where previous methods all malfunction.

The key contributions are summarized as follows:
• We propose a novel system to fuse ambient-camera-based and mobile-camera-based ap-
proaches, making the most of their complementary advantages while overcoming the draw-
back about labor-intensive start-up efforts. To the best of our knowledge, this is the first
work that integrates ambient camera and mobile camera together and achieves enhanced
localization accuracy.
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(a) Original Image (b) Geometric Reasoning (c) Pedestrian Trajectory (d) After Processing 

Fig. 3. Indoor Geometric Reasoning by Line Segments with Crowd Mask

• We design an automatic ambient camera calibration algorithm without the prior knowledge
of camera poses and human intervention, compared with recent works.

• We fully prototype iMAC and conduct extensive experiments in 5 different scenarios with
4 state-of-the-art approaches. The evaluation results show that with zero start-up efforts,
iMAC achieves sub-meter accuracy (0.68m location error on average), outperforming existing
works by 76.2%.

In the rest of this paper, we first present an overview in Section 2, followed by automatic
construction of projection map in Section 3. Instant crowd fingerprint model is presented in Section 4.
Section 5 explains how we achieve precise localization and tracking with confidence-aware estimation.
We introduce the settings of experiments in section 6 and make detailed evaluations in Section 7.
In the end, we review the related work in Section 8 and conclude the proposed work in Section 9.

2 SYSTEM OVERVIEW
Fig.2 sketches the system architecture of iMAC. Multiple ambient cameras continuously monitor
public areas and stream the recorded videos to the server. Meanwhile, the mobile camera carried
by a user logs visual clues and streams the processed features to the server.

2.1 Workflow from the user perspective
In iMAC, the user records the surrounding environment with its monocular camera and sends them
to iMAC server. In return, iMAC server will send a location tag to the user on the floor plan. During
navigation, iMAC is compatible with both visual targets (e.g a picture of Starbuck or a suspect) and
semantic location (e.g Room 211) as destinations. Finally, the user will receive the optimum path
and visual instructions to achieve there.

2.2 Workflow from the server perspective
In the initialization stage (in Fig.2), iMAC server automatically calibrates all the ambient cameras
and obtains their projection matrices with zero effort.

In the localization stage, a user sends a query (including images of the environment and descrip-
tion of the destination) to iMAC server. First, a rough location is estimated by a place recognition
system called FAB-MAP [6]. Afterwards, to achieve precise localization, we put forward Instant
Crowd Fingerprint Model which identifies the user appearing in the candidate areas. During match-
ing period, we mathematically quantify unequal estimation between ambient cameras and mobile
cameras, and achieve precise tracking by confidence-aware estimation. After locking the user and
obtain his location, iMAC sends the optimum path and visual instructions to the user.

3 AUTOMATIC CONSTRUCTION OF PROJECTION MAP
Automatically acquiring projection matrix is an indispensable prerequisite to enable ambient-
camera-based navigation to acquire absolute location without human intervention. Most previous
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Fig. 4. Workflow of Automatic Camera Calibration

works depend on manual measurement to calibrate ambient cameras, which is a labor-intensive
and time-consuming process. Existing techniques including SfM and visual SLAM require hundreds
of overlapping images from different perspectives to reconstruct 3D model of objects, which is
unaccessible towards sparse distributed ambient cameras. Most recent work iVR [30] constructs
semantic map requiring two ambient cameras to view same area, which is a strong assumption and
invalid in most cases. We design a scheme combining floor plan to automatically calibrate ambient
cameras and acquire their projection matrix with no assumption and other prior information.

3.1 Original Camera Pose Estimation
iMAC combines the idea of SfM and crowd trajectory to calibrate the first batch of ambient cameras
which monitor corridors, corners and doors (Fig.3a). To calculate the map relationship between
image-generated 3D point cloud and absolute location, we adopt Indoor Geometric Reasoning [12]
which assumes that indoor environments satisfy the Manhattan World assumption and recognize
the three dimensional structure of the interior of a building from a collection of line segments
automatically extracted from single indoor image. However, merge and filter operations [29]
fail to effectively extract building structure from line segments (Fig.3b) due to clutter of various
objects in complex indoor scenarios. Inspired by crowdsourcing strategy, we capture the trajectory
of pedestrian movements and generate a crowd mask (Fig.3c) through particle filter algorithm.
Assuming the appear and disappear centers of the crowd as the doors or corners, we effectively
remove redundant line segments and extract building structure (Fig.3d) corresponding to physical
scale deriving from the floor plan.
Then, iMAC exploits the idea of Perspective-n-Point [15] (PnP) to calibrate camera external

parameters. Concretely, after Indoor Geometric Reasoning we acquire a set of points correspon-
dences, each composed of a 3D reference point Pi = (Xi ,Yi ,Zi )

T, i = 1, . . . ,n,n ⩾ 4 expressed in
world coordinates and its 2D projection pi = (ui ,vi , 1)T, i = 1, . . . ,n,n ⩾ 4 expressed in image
coordinates. T is the transformation matrix with which we can acquire the absolute location of the
points on image. Then it comes to solving an optimizing problem to estimate the transformation
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matrix T:

T = argmin
T

e = argmin
T

1
2

n∑
i=1

pi − 1
si
KTPi

2
2
, (1)

where e is the cost function of reprojection error, si is the depth of point Pi, K is the intrinsic matrix
which assumed easy to known from factory defaults.
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3.2 Neighbour Camera Pose Estimation
Although we acquire satisfied pose estimation of some original cameras, more ambient cameras
whose monitoring areas mismatching the condition have to be calibrated automatically. Fortunately,
for security reasons, ambient cameras systems are required to cover public space [20] which means
overlap exists between neighbour cameras. However, these narrow overlapping areas can not
support the SfM algorithm to extract enough corresponding feature points.

Thanks to astonishing progress of pedestrian detection in recent years, iMAC can calibrates neigh-
bour cameras through keypoints extracted from the same pedestrian appearing in the overlapping
area. Fig.4 illustrates the process of neighbour cameras pose estimation.
First, iMAC topologizes the ambient cameras by their neighbour relations and selects a pair

of know-unknown cameras. Then, iMAC recognizes the same pedestrian in the overlapping area
through ReID (Pedestrian Re-Identification) technique [2, 37] which performs well under tight
spatio-temporal constraint. To this pedestrian, iMAC adopts OpenPose [4] (a realtime approach to
detect the 2D pose of multiple people in an image) to extract his skeleton and select his arthrosis
as feature points in neighbour images. Afterwards, iMAC exploits these corresponding points to
calculate camera pose estimation.
As shown in Fig.5, P is a pedestrian recognized in the overlapping area of a pose-estimated

camera 1 and a pose-unestimated camera 2. S1 containing the foot keypoints on the floor plane
where Z = 0 and the rest keypoints are contained in S2. According to the pinhole model, we get
pixel coordinates p1 = (u1,v1, 1)T and p2 = (u2,v2, 1)T on image planes, which are corresponding
points of point P = (X ,Y ,Z )T: {

s1p1 = K1(R1P + t1)
s2p2 = K2(R2P + t2)

, (2)
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whereK1,R1, t1 are known parameters of calibrated camera 1 andK2,R2, t2 are unknown parameters
of uncalibrated camera 2. Using PnP algorithm [15], we can obtain K2, R2, t2 and acquire the
projection matrix of camera 2.
Finally, we calibrate all ambient cameras and obtain their projection matrices, which enable

iMAC to acquire absolute location of detected objects in world coordinates.

4 INSTANT CROWD FINGERPRINT MODEL
Mobile-camera-based navigation depends on high-quality recognition of the landmark, which
suffers from environment fluctuations and frequent LOS blockages of crowds. Although ambient
camera offers instant information of environment, it is unworkable to directly match images from
the mobile camera and the ambient camera since perspective disparity. Conversely thinking, the
crowd not only leads to LOS blockages but also offers a unique description of pedestrian location
and motion pattern. iMAC proposes a brand new model called Instant Crowd Fingerprint Model to
discern different pedestrians based on the description of crowds.

Fig.6 illustrates this process. First, iMAC sever uses MobileNetV3 (a class of efficient models for
mobile vision applications) [10] to detective pedestrians appearing in candidate areas and acquire
their absolute locations. Afterwards, we calculate the geometric estimation of each pedestrian
Pi, i = 1, . . . ,n,n ⩾ 3 to distinguish each potential user. Concretely speaking, each pedestrian Pi
has a series of angles αi = (αi1, . . . ,αi j , . . . αim), j = 1, . . . ,m, which engendered with the restm
pedestrians in sight:

αi j = arccos
−−−→
PiPj ·

−−−−→
PiPj+1−−−→PiPj ∗ −−−−→PiPj+1

 (3)

Up to now, iMAC sets up an instant fingerprint database of candidate pedestrians. However,it
becomes difficult to estimate geometric relationship for mobile cameras due to scale ambiguity of
monocular vision system.

Fortunately, we find it still accessible to obtain angle informations in (Fig.7). Pi = (xi ,yi , zi ) and
Pj = (x j ,yj , zj ) are 3D world coordinates of two objects and P′i = (x ′

i ,y
′
i , z

′
i ) and P

′
j = (x ′

j ,y
′
j , z

′
j ) are

their projection on the image plane where Z = f (f is focal length). P∗i = (ui ,vi ) and P∗j = (uj ,vj )

are their 2D pixel coordinates in the image. According to trigonometric constraints:

∠PiOPj = ∠P
′
iOP

′
j , (4)
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our aim equals to calculate ∠P ′
iOP

′
j :

∠P ′
iOP

′
j = arccos

(x ′
i ,y

′
i , z

′
i ) · (x

′
j ,y

′
j , z

′
j )(x ′

i ,y
′
i , z

′
i )
 ∗ (x ′

j ,y
′
j , z

′
j )

 (5)

Afterwards, iMAC obtains β = (β1, . . . βi . . . βs ), i = 1, . . . s, s ⩾ 2 as an instant fingerprint on
the mobile side, which will be uploaded to iMAC sever and compared with other fingerprints in
ICFM database.

5 PRECISE LOCALIZATION AND TRACKINGWITH CONFIDENCE-AWARE
ESTIMATION

However, it is quite unwise to directly compare the similarities of geometric features between
mobile camera and ambient camera. Since each side of them has a different function of error, among
which the error of ambient camera depends on location error, but the error of mobile camera comes
from angle error.
As shown in Fig.8.a, θ is an estimation error of angle from the mobile camera, L is the corre-

sponding location error from the ambient camera, d is the unit distance from a candidate pedestrian
to reference pedestrian:

L = 2(M − 1)d sin
θ

2
(6)

When θ is set to a constant, L becomes a linear increasing function of M . That is to say, to each
candidate pedestrian, the farther a reference pedestrian stands away, the more confidence this
reference pedestrian has.

To eliminate the unequal error, we set different confidence to angles in the fingerprint database.
For example (in Fig.8.b), P1 is a candidate pedestrian, R1, R2, R3 and R4 are its reference pedestrians,
d1, d2, d3 and d4 (d2 ⩾ d4 ⩾ d3 ⩾ d1)are distance between them. α1, α2 and α3 are fingerprints of P1.
According to Eq. (6), we first set the confidence of the farthest reference pedestrian R2 to 1, and
the rest R1, R3, R4 to d1

d2
, d3d2 ,

d4
d2

respectively. Then we set different confidence factor of fingerprints
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Table 1. Different representative scenarios of experiments

Scenario Size(m2) Original
Cameras

Neighbour
Cameras Frames Duration

Office building 600 3 6 20.3k 1h(office hours)&1h(rush hours)
Teaching building 1360 4 8 28.4k 2h(break hours)
Art museum 860 3 6 13.4k 1h(weekday)&1h(weekend)
Holiday hotel 1120 3 6 14.6k 2h(intermittently in 5days)
Shopping mall 2130 4 8 26.4k 1h(weekday)&1h(weekend)

according to the influence of two sides of the angle:
F1 =

d1
d2

· 1
F2 = 1 · d3d2
F3 =

d3
d2

·
d4
d2
,

, (7)

where F1, F2 and F3 are the confidence of α1, α2 and α3 respectively. Meanwhile, these confidence
factors will be used to calibrate the rough comparison during query process, which means each
likelihood of angles will multiply its correspond confidence factor to get the last value of likelihood.
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Fig. 9. Query result of one frame by confidence-aware estimation

Fig.9 illustrates the estimation result of a frame. Usually, we keep several candidate pedestrians
a time and repeat the same execution until the right pedestrian is locked.
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6 EXPERIMENT SETTINGS
6.1 Implementation Setup
We prototype iMAC front-end on three phones of different types, including a Google Pixel, a
HUAWEI P30 and an iPhone X, which are equipped with different types of mobile cameras and
computing resources. Images are processed on the phone and uploaded to a server, which is a
desktop computer with i7-9700F CPU of 4.7GHz main frequency and 16G RAM, runs the Ubuntu
16.04 operation system. The ambient camera we use is HIKIVISION-C3A ,which continuously
stream recorded videos to the server. We use Bundler[21] for SfM, EPnP[13] for PnP. We also use
VisualSFM[25] to validate and visualize our results.

6.2 Implementation Scenarios
We implement experiments in five different typical public areas, including a floor of an office
building, a teaching building, a holiday hotel, an art museum and a shopping mall. In each scenario,
We collect video data during different periods of the day to guarantee the cover of different crowd
flows situations. The summarize of collected videos are listed in Table 1.

6.3 Ground truth Acquisition
To acquire the ground truth of cameras pose, we manually measure the location and orientation of
each ambient camera in the scenarios. Then we use the measurements to calculate projection as
ground truth. In total, we collect 49 calibration results of ambient cameras.

To acquire the ground truth of localization and tracking, we invite 3 volunteers to label the video.
They manually recognize the user and localize the user through measured projection matrices.
Specifically, each user on each frame will have a tuple (UID, Loc, ti ), where UID is the ID of users,
Loc is the ground truth location and ti represents the timestamp of each frame. Overall, our label
collection contains 45K records.

7 PERFORMANCE EVALUATION
7.1 Evaluation Methods
We evaluate the performance of iMAC in three fields.

First we evaluate the self-calibration performance of ambient cameras. Since original cameras
and neighbour cameras are calibrated through different approaches, they are analyzed separately.
We use the classic precise chessboard calibration method in [36] as the control group. We contrast
calibration error of rotation and translation respectively.
Then we test overall localization accuracy of iMAC and compare its performance with three

different representative indoor localization fusing surveillance cameras observation or mobile
camera observation:

• RAVEL [19]: RAVEL (Radio And Vision Enhanced Localization) is a generic vision+radio
tracking framework, which fuse visual signals from surveillance cameras and WiFi radio
signals and is the first paper that proposes a practical solution of radio-aided visual tracking.

• PHADE [3]: PHADE is a recent vision+sensor tracking framework, which relies on surveil-
lance cameras viewing user’s motion patterns, and compares the uniqueness of these patterns
with the patterns extracted from user’s IMU data.

• iVR [30]: iVR is a most recent vision+radio+sensor tracking framework, which combines
observations from surveillance cameras, WiFi radio signals and IMU data and outperform
the state-of-the-art system.

• ClickLoc [29]:ClickLoc is a typical high accurate localization system integrating mobile
cameras and IMU signals from the smartphone.
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Fig. 10. Evaluation of Automatic Camera Calibration

In the end, we focus on evaluating tracking success rate. Since tracking success rate is the
main influence factors of localization based on ambient cameras. If tracking successfully, the
localization accuracy depends on projection accuracy of ambient cameras, which depends on
calibration accuracy of ambient cameras. If tracking incorrectly, it will result in a large bias in
localization. During this period, we introduce a classic vision-based object tracking system [40] as a
contrast, which is a robust collaborative model accounting for drastic appearance change especially
occlusion problem.

• SDC&SGM [40]: A robust appearance model that exploits both holistic templates and local
representations, which develops a sparsity-based discriminative classifier (SDC) and a sparsity-
based generative model (SGM).

7.2 Performance of Pose Estimation
As mentioned before, automatically acquiring camera external parameters without human inter-
vention is a basic premise of all localization schemes based on ambient cameras. We first test
the calibration accuracy of original cameras. We choose 8 ambient cameras in each scenario and
calibrate 40 original cameras automatically in total.

7.2.1 Original Cameras Calibration. Fig.10.c illustrates that ourmethod achieves similar accuracy in
total compared with Zhang’s [36] standard result. Concretely speaking, our method achieves better
performance in rotation calibration (Fig.10.b) in most scenarios and outperform Zhang’s output
by 0.5 degrees on average. Meanwhile, it achieves worse performance in translation calibration
(Fig.10.a) in most scenarios. It is because the corresponding points we take in our method is far
from the original camera and far apart from each other. But the corresponding points on Zhang’s
standard chessboard are much closer to the original camera and close to each other. Although the
error of world coordinates of our corresponding points is larger than that of Zhang’s corresponding
points. It induces worse performance in the translation calibration but little influence in the rotation
calibration.
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Meanwhile, our method performs better accuracy in the holiday hotel. Since the holiday hotel
has more regular texture especially in the area of guest corridors which offers more corresponding
points for calibration.

Eventually, our method achieves roughly the same performance in average projection accuracy
compared with Zhang’s (Fig.10.c). Moreover, our result is more stable in each scenario since it has
a smaller range of waving. The rationale behind is rotation accuracy becomes more influential to
projection than translation accuracy, when the distance between point and camera grows. And as
expected, our method performs the best in the holiday hotel, which even outstands Zhang’s by
nearly 40%.

7.2.2 Neighbour Cameras Calibration. Afterwards, we evaluate the performance of neighbour
cameras calibration. Compared with original camera (Fig.10.d), the average projection error of
neighbour camera is about 0.1m larger since the cumulative error. Since pedestrians offer the key
points which play a decisive role in calibration, Fig.11 analyzes the relationship between projection
accuracy and the number of pedestrians. Although the projection produces large errors at the first
three pedestrians, it becomes narrow and stable with the increase of pedestrians and ultimately
stabilizes after 10 pedestrians. As a result, we only list neighbour cameras in a white list after being
calibrated by more than 20 pedestrians.
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Fig. 11. Relationship between projection accuracy and number of pedestrians

Although we obtain precise calibration results on original cameras, cumulative error will be
transmitted to every next neighbour camera. Fig.10.d analyzes this cumulation through increasing
layers of neighbour cameras. According to observation, the projection error is linearly proportional
to the layers of neighbour cameras in topology structure. And the fourth layer of nighbour camera
still has an acceptable projection error in 1m. In practise, an uncalibrated camera may connect
to different original camera through distinct routines. Thus, this camera will engender multiple
calibration results derived from different original cameras. Fortunately, this regularity directs us
to adopt projection result from neighbour camera which is more closer to an original camera in
topological relationship.
On the whole, we accomplish a reliable solution to self-calibrate the global cameras which has

similar accuracy to Zhang’s standard results. Although Zhang’s method has been a flexible and
convenient calibration method, it still costs us about half an hour and two professional volunteers to
calibrate each camera on average. Since Zhang’s method only offers calibration result in coordinate
of chessboard. It induces additional labor and bias to manually calibrate the location of chessboard.
By comparison, our method leverages a zero-cost and effective method to calibrate ambient cameras
and help construct the indoor projection map.

7.3 Performance of Localization
7.3.1 Overall Comparison. Compared with three other state-of-the-art indoor localization systems,
iMAC achieves the best performance in overall accuracy(in Fig.12.a). The average localization
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(a) (b) 

(a) (b) 

(e) (f) 

(e) (f) 

Fig. 12. Evaluation of localization and tracking: (a) Overall location accuracy comparison with state-of-the-art
systems. (b) Location accuracy in different public scenarios. (c) Comparison of overall tracking success rate in
different public scenarios. (d) Influence to tracking success rate from number of pedestrians. (e) Performance
comparison of different sampling time for retracking. (f) Performance comparison in complex scenarios with
multiple static pedestrians. (g) Performance comparison between hand-held and stable mobile cameras in
complex scenarios. (h) Performance comparison bewteen different rotation of the mobile camera in three
typical scenarios.

accuracy of iMAC is 0.68m, which surpasses iVR by 34.7%, PHADE by 76.2%, ClickLoc by 77.4%,
and RAVEL by 83.4%.
In ambient-camera-based systems, it is noteworthy that WiFi, IMU and vision make different

contribution to the final performance. Basically, WiFi plays a fundamental role to offer a rough
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localization, which obtains 3-5m precision and avoids excessive outliers. IMU plays a definitive
role in distinguishing pedestrians in proximate space, which differ in the shape of trajectory. That
is why RAVEL has better result(6m) in maximum error than PHADE(7m), although it performs
worse in average accuracy. iVR integrates the advantages of both IMU and WiFi to achieve an
overall better localization system. On this basis, iMAC replaces WiFi fingerprints with instant
visual geometry fingerprints, which performs more accurate, realtime and low-cost.

In mobile-camera-based systems, location accuracy depends on visual recognition of landmark.
Once fails in recognition, ClickLoc will degenerate into WiFi-based localization. Thus, ClickLoc has
a better performance than RAVEL in average accuracy but performs as bad as PHADE in maximum
error. iMAC leverages ambient cameras to enhance accuracy and significantly surpasses ClickLoc
in average accuracy and worst accuracy.
For above reasons, iMAC attains outstanding location performance through fusing ambient

camera and mobile camera and acquires better accuracy without human efforts.

7.3.2 Performance in Different Scenarios. To meticulously evaluate iMAC, Fig.12.b depicts location
accuracy in different scenarios. The 80-percentile error in each scenario is within 2m, meaning
iMAC has better performance in different environments. Among them, teaching building, holiday
hotel and office building contribute better average accuracy, which are 0.65m, 0.68m and 0.74m
respectively. However, art museum and shopping mall contribute slightly worse average accuracy,
which are 1.22m and 1.31m. According to our observation, visual occlusion is the primary cause of
the drop in accuracy. Complexity of crowd and environment still makes negative influence to some
degree.

Basically, iMAC resists the striking disparity between diverse scenarios and achieves an acceptable
accuracy in all scenarios.

7.4 Performance of Tracking
7.4.1 Overall Success Rate. Since iMAC, iVR, PHADE are recent indoor localization systems draw-
ing in surveillance cameras, we further analyze the success rate of tracking. For better understanding,
we add a classical visual tracking algorithm (SDC&SGM [40]) into comparison. Fig.12.c depicts
the comparison in 3 distinct scenarios. Significantly, iMAC, iVR and PHADE all achieve better
success rate and higher robustness than SDC&SGM, which proves combining surveillance video
and mobile sensors is a promising way to enhance and promote indoor localization and tracking.

Moreover, iMAC achieves the highest rate in each scenario and shows high robustness, keeping
more than 90% success rate regardless of environments. Meanwhile, iVR gains slightly inferior
success rate (in 4%) in teaching building and holiday hotel, which is slightly superior (in 6%) than
that of PHADE. However, both iVR and PHADE have a more significant drop of success rate in
art museum than that of iMAC. Although all these visual tracking algorithms suffer from visual
occlusion, iMAC still wins a relative robustness in complex environment by adopting instant
geometry features.

Thus, ICFM is demonstrated to have better performance and robustness than using WiFi finger-
prints in tracking people in real scenarios. It is remarkable that iMAC gets rid of human intervening
in map construction, collecting radio fingerprints and calibrating ambient cameras.

7.4.2 Number of Pedestrians. Obviously, the number of pedestrians influences the visual processing
and disturbs tracking scheme. We further test the influence of multiple pedestrians in iMAC, which
is shown in Fig.12.d.
iMAC achieves the best success rate when there are different number of pedestrians under the

camera, which is 97%,95%,93%,88% for 4, 8, 12, 16 pedestrians respectively. iVR also shows high
accuracy over 90% within 8 pedestrians, which precipitately drops down to 70% when there are 16
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pedestrians. Worse still, PHADE drops down to less than 60% when the number of pedestrians is
16. Although all three methods degenerate with the increase of pedestrians, which induces visual
occlusion. iMAC shows significantly better resistance against scenarios with more pedestrians.
Previous solutions depend on WiFi and IMU datas will lose efficacy when more pedestrians

appear with similar trajectory and close location. Thus, their accuracy will deteriorate precipitately,
which put those location-based indoor smart application out of commission. However, the increase
of pedestrians meanwhile brings more complex geometry features of crowds, which offers rich
discrimination for ICFM module and benefits iMAC in crowded public areas.

As a result, iMAC achieves better advantages in scenarios with multiple pedestrians, which are
insurmountable for all previous methods.

7.4.3 ReTracking Delay. We also concern the time cost for one-time tracking, since it has quite an
influence on retracking and relocation. As shown in Fig.12.e, iMAC shows stably excellence success
rates, which is 95%, 92%, 90% and 85% when sampling time is set to 7s, 5s, 3s and 1s respectively.
iVR performs an equally better rate, which is 92% and 90% in 7s and 5s. However, iVR drops down
to 82% and 72% when sampling time reduces to 3s and 1s. Worse still, PHADE faces this drop (78%)
even earlier when sampling time reduces to 5s. Eventually, PHADE reaps an unacceptable success
rate (51%) when sample time is compressed to 1s.
The above results verify that iMAC keeps an effective performance in each short sampling.

Thus it proves ICFM is a highly discriminable real-time model compared with IMU driven model.
Since the latter depends on trajectory difference over a period of time, which costs more time to
achieve a high accuracy as stable as iMAC. iVR alleviates this shortage by fusing WiFi signals into
consideration. However, the improvement of fusing WiFi signals is also limited to a short time slice.
For instance, normal human walks about 1.2m per second in a relaxed state [1], which is within the
location error engendered by WiFi signals.

iMAC performs extraordinary speed in retracking, which enables users to gain precise location
as soon as they pick up their smartphones.

7.4.4 Static Pedestrian. Pedestrians regularly slow down or halt their steps in public areas like art
museum or shopping mall. We evaluate the performance of iMAC in scenarios with multiple static
pedestrians. Concretely, we set different number of static pedestrians ,and set one of them as a user.
The result is shown in Fig.12.f.

iMAC shows overwhelming advantages in distinguishing different static pedestrians, achieving
over 90% regardless of numbers of pedestrians. Although iMAC, iVR and PHADE all achieve high
success rate when there is only one static pedestrian. iVR suffers from multiple static pedestrians,
which soon linearly decreases to below 49% when there are 8 static pedestrians. Worst of all, PHADE
performs like a random selection algorithm. The rational is IMU module becomes completely out of
action when there are multiple static pedestrians. Due to the same reason, iVR performs relatively
better since WiFi module still makes efforts to offer a rough difference in location.

Compared with state-of-the-art systems, iMAC overcomes difficulties in dealing with scenarios
with multiple static pedestrians, which is very common in public areas.

7.4.5 Shake of the Mobile Camera. Due to movements and limb shaking, hand-held mobile cameras
will keep shaking, which results in unavoidable image jitter. Those image jitter will disturb the
pixel position of pedestrians in the image in the consecutive frame pairs. To evaluate the influence
caused by hand shake, we use a handheld gimbal stabilizer to stabilize the mobile camera as a
control group. And we test iMAC in all five different scenarios and compare the performance of
this two modes. The result is shown in Fig.12.g.
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Overall speaking, the shake of the mobile camera has very limited influence to the tracking result
of iMAC. Concretely speaking, the tracking success rate of the hand-held mobile camera is lower
than that of the stable mobile camera by around 2% in different scenarios. Further more, we find
this little defect will be soon made up once we wait for several seconds. Since several additional
match will be enough to eliminate the influence and target the right person.

Theoretically analyzing, iMAC adopts angles but not locations as the description of the pedestrian,
which hardly suffers from the image jitter caused by the shake of the mobile camera. Since according
to the monocular vision model in Fig.7, the required angle only depends on the absolute location of
the two reference pedestrians but no other factors.
Thus, there is no need to deliberately stabilize your mobile camera when using iMAC system,

which makes it more convenient and user-friendly.

7.4.6 Rotation of Mobile Cameras. Besides the shake of the mobile camera, the rotation of the
mobile camera also influences the content of the image and thus influences the performance of
iMAC system. However, it is an anti-human design to require the users of iMAC to keep their
mobile devices perpendicular to the ground from beginning to end. Thus, we evaluate the influence
caused by the rotation of the mobile camera and try to give some advices to our users. We set the
mobile camera in several fixed angels and test iMAC in three typical scenarios including an art
museum, a teaching building and a shopping mall. The result is shown in Fig.12.h.

Overall speaking, the rotation of the mobile camera has an increasing influence to the tracking
performance with the degree of rotation. Concretely speaking, the rotation has limited damage to
iMAC when the degree of rotation is less than 15◦. But with the rotation growing, the performance
of iMAC rapidly deteriorates and becomes out of use. Hence a substantial rotation will make iMAC
unavailable to the users. In the experiments, we find the mobile camera will gradually lose the sight
of the reference pedestrians with the rotation, which finally leads to the system failure. However,
once the mobile camera recovers the limited rotation degree, iMAC will soon go back to work and
offer precise service. Theoretically analyzing, iMAC depends on recognizing reference pedestrians
to localize the user, which requires enough reference pedestrians appear in the mobile camera’s
sight and able to be detected by mature CV algorithms.

Thus, we advice our users to maintain their mobile cameras approximately 75◦ to90◦ or roughly
facing the surrounding pedestrians, which makes iMAC system able to offer stable and precise
service.

8 RELATEDWORK
iMAC is the first work to combine mobile cameras and ambient cameras. Here we list most recent
works related to our work.

8.1 Mobile-camera-based Localization
Vision has higher resolution than WiFi kind of radio signals and IMU signals, several existing works
leverage mobile camera to improve performance of location service.
OPS [17] integrates GPS, inertial sensors and multiple images of a same object to furnish

an outdoor object localization system. Sextant [24] leverages environmental physical features
from inertial sensors and mobile cameras to triangulate user locations using at least 3 photos.
ClickLoc [29] fuses the advantages of mobile cameras, WiFi fingerprints and IMU signals to achieve
an easy-to-use image-based indoor localization system with multi-modal sensing. Travi-Navi [38]
and Pair-Navi [7] both provide trace-driven navigation on smartphone. Travi-Navi records high-
quality images and sensor readings during a guider’s walk on the navigation paths. The followers
track the navigation trace, get prompt visual instructions and image tips. Pair-Navi exploits visual
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SLAM based on mobile cameras to achieve a real-time P2P navigation without help of other sensors
in smartphone.

8.2 Ambient-camera-based Localization
Researchers integrate images from ambient cameras, radio signals and IMU signals to achieve
higher accuracy.
RAVEL [19] and EV-Loc fuses visual signals from surveillance cameras with WiFi radio signals

for higher location accuracy. [11] combines visual signals from surveillance cameras and sensors
signals from IMU to achieve robust pedestrian tracking. Shortly afterwards, PHADE [3] extracts
uniqueness patterns of users in surveillance cameras and compares these patterns with user’s IMU
data to discern different users. Most recently, iVR [30] designs a tightly coupled fusion algorithm
to exploit advantages of visual signals, IMU signals and WiFi signals, which outperforms previous
systems in accuracy and performs more robust in multi-pedestrian scenario.

8.3 Easing start-up effort
Indoor floor plan construction has been a major bottleneck for image-based localization, which is
time-consuming and labor-intensive. Tango [18] reconstructs 3D indoor structure in real time fusing
a depth camera and extra motion capture sensors. Jigsaw [9] using SfM to construct 2D floor plan
with commodity smartphones by carefully designed ’Click-Walk-Click’ model. IndoorCrowd2D [5]
integrates mobile cameras and inertial measurements to construct building interior skeleton.
ClickLoc [29] reduces the overhead of image database by correlating image-generated relative
models to physical coordinates. iVR [30] further reduces human intervention leveraging two
ambient cameras to construct an indoor semantic map.

9 CONCLUSIONS
In this paper, we present iMAC, a robust sub-meter accuracy indoor localization and navigation
system which fuses observation from mobile cameras and ambient cameras. By integrating ob-
servation from two sub-modules, iMAC finally overcomes their respective bottlenecks of heavy
start-up efforts and calibration efforts and achieves enhanced accuracy and robustness. iMAC is
implemented on several commercial smartphones in different scenarios to validate its performance.
The result demonstrates that iMAC shows the light of offering universal indoor location service
and becoming a practical indoor navigation system without human efforts.
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