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Existing indoor navigation solutions usually require pre-deployed comprehensive location services with pre-
cise indoor maps and, more importantly, all rely on dedicatedly installed or existing infrastructure. In this
article, we present Pair-Navi, an infrastructure-free indoor navigation system that circumvents all these re-
quirements by reusing a previous traveler’s (i.e., leader) trace experience to navigate future users (i.e., follow-
ers) in a Peer-to-Peer mode. Our system leverages the advances of visual simultaneous localization and
mapping (SLAM) on commercial smartphones. Visual SLAM systems, however, are vulnerable to environ-
mental dynamics in the precision and robustness and involve intensive computation that prohibits real-time
applications. To combat environmental changes, we propose to cull non-rigid contexts and keep only the
static and rigid contents in use. To enable real-time navigation on mobiles, we decouple and reorganize the
highly coupled SLAM modules for leaders and followers. We implement Pair-Navi on commodity smart-
phones and validate its performance in three diverse buildings and two standard datasets (TUM and KITTI).
Our results show that Pair-Navi achieves an immediate navigation success rate of 98.6%, which maintains as
83.4% even after 2 weeks since the leaders’ traces were collected, outperforming the state-of-the-art solutions
by >50%. Being truly infrastructure-free, Pair-Navi sheds lights on practical indoor navigations for mobile
users.

CCS Concepts: « Human-centered computing — Ubiquitous and mobile computing;

Additional Key Words and Phrases: Indoor navigation, computer vision, visual SLAM

A preliminary version of this article appeared in International Conference on Computer Communications (IEEE INFOCOM
2019).

This work is supported in part by the National Key R&D Program of China under grant no. 2018AAA0101200, and the
NSFC under grants no. 61832010, no. 61632008, no. 61872081, no. 61632013, and no. 61972131.

Authors’ addresses: J. Xu, E. Dong, Q. Ma, and Z. Yang (corresponding author), School of Software and BNRist,
Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing, China, 100084; emails: xujingaol3@gmail.com,
doneq13@gmail.com, thumq@mail tsinghua.edu.cn, hmilyyz@gmail.com. C. Wu, Deparment of Electrical & Computer
Engineering, University of Maryland, College Park, Washington DC, MD 20742; email: wucs32@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1550-4859/2021/05-ART18 $15.00

https://doi.org/10.1145/3448417

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 18. Publication date: May 2021.



mailto:permissions@acm.org
https://doi.org/10.1145/3448417

18:2 J. Xu et al.

ACM Reference format:

Jingao Xu, Erqun Dong, Qiang Ma, Chenshu Wu, and Zheng Yang. 2021. Smartphone-Based Indoor Visual
Navigation with Leader-Follower Mode. ACM Trans. Sen. Netw. 17, 2, Article 18 (May 2021), 22 pages.
https://doi.org/10.1145/3448417

1 INTRODUCTION

During the past decades, technologies using Wi-Fi [33, 60-62, 66, 71], RFID [49, 58], sound [4],
visible lights [34], and so forth, have been proposed to shape a range of location-based services.
Therein, indoor navigation with a smartphone acts as a killer application [30, 56]. All conventional
navigation techniques, however, require particular infrastructure, either pre-existing or dedicat-
edly installed, to be appropriately set up in advance in the area-of-interests. Recently, an alter-
native Peer-to-Peer (P2P) navigation is proposed to circumvent the pre-installation of indoor
localization services [14, 69]. In this mode, a previous traveler, named leader, records the trace
information (e.g., turnings and certain ambient properties) and shares it through the Internet to
a later follower, who needs to travel to the same destination. A typical example would be a self-
deployed navigation service to direct a customer to a shop, which enables a shop owner to record
such trace information from the entrance of a large mall to his/her own shop and offer them to
potential visitors as guidance, without resorting to any pre-deployed location systems provided
by third parties.

Several pioneer works have demonstrated such a leader-follower mode for P2P navigation
[51, 69, 70]. These works mainly leverage ambient Wi-Fi signals, in addition to inertial sensor mea-
surements and/or images captured by smartphone [15, 64, 67], as trace properties to synchronize
leaders’ and followers’ traces. Although these works are inspiring, the pre-installation of Wi-Fi and
the error introduced by the dynamically changing nature of Wi-Fi signal and the inertial sensors
make them less than ideal for practical usage.

Recently, two arising trends may overcome the above limitations and underpin a practical solu-
tion to indoor navigation. First, simultaneous localization and mapping (SLAM) technology
has been rapidly developed. For example, visual SLAM has been enabled with a single camera
[13, 27, 36], making it feasible on commodity smartphones that usually have only one camera
on the back side. Second, vision capability has become a standard and continues growing more
powerful on mobile devices, allowing advanced vision tasks on mobiles.

In this work, we investigate visual SLAM with the power of mobile vision and present Pair-Navi,
a P2P indoor navigation system that requires no pre-existing or dedicatedly installed infrastruc-
ture, pre-deployed localization service, or indoor digital maps. Visual SLAM utilizes one or more
cameras to explore an unknown environment by continuously locating the camera itself in the en-
vironment and meanwhile constructing a map of the environment [36]. Our approach is built upon
monocular visual SLAM with a single camera commonly equipped on commodity smartphones. A
leader of Pair-Navi simply walks through a path recording a video clip along the route and shares
the trajectory video via a cloud server for potential upcoming followers. Pair-Navi consumes the
video for SLAM and constructs the trajectory that the leader has traveled. When a follower appears,
he/she will be provided with a leader’s trajectory as reference. On the follower side, Pair-Navi also
captures real-time video frames and precisely locates the follower’s relative location to the refer-
ence trajectory, accordingly navigating the follower by timely promoting walking hints. As shown
in Figure 1, both the current scene and the reference trace will be displayed to the follower. In ad-
dition, Pair-Navi handles navigation deviation, which is necessary but neglected by existing P2P
navigation approaches. Without the need to instrument the building-of-interests, Pair-Navi works
in any scenes as long as a camera-equipped smartphone is available.
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Fig. 1. Follower’s navigation interface of Pair-Navi.

However, translating visual SLAM into a robust navigation system entails various challenges:

— Environmental Non-Rigidity. Most popular SLAM solutions assume rigid and static indoor
environments, where the surrounding scenes are not supposed to change both when the
SLAM is running and after the map is constructed [7, 27, 36]. However, the real world is
time-varying due to considerable dynamics, e.g., pedestrians, furniture changes, advertising
screens, the inherent object deformation, and lighting condition variations, rendering the
constructed trajectories inaccurate and difficult to follow. As shown in Figure 2, such en-
vironmental non-rigidity will cause errors in video frame matching and thus significantly
degrading visual SLAM. Although some SLAM approaches attempt to reason about minimal
non-rigidity with restrictive applicability [36, 38], it still remains challenging to employ vi-
sual SLAM for mobile indoor navigation in vibrant scenarios full of dynamics, such as busy
shopping malls, large airports, and so forth.

— Real-time. Visual SLAM technologies typically require intense computation for several core
tasks including visual odometry and optimization, making them difficult to run in real-time
on commodity mobiles. A practical navigation application, however, should locate the user
precisely, render the navigation path, and provide user-friendly instructions, all in real-time.
Applying visual SLAM to real-time mobile navigation is a non-trivial task that calls for sig-
nificant efforts in system design and implementation.

To combat environmental non-rigidity, we propose to extract and subtract the dynamic fore-
grounds, e.g., pedestrians and other changing contents involved in the trajectory video, and keep
only the rigid parts for SLAM. The key observations are twofold: (1) Video frames of typical indoor
environments usually provide abundant features for SLAM, allowing room to sift out non-rigid con-
texts while keeping as good or even better performance since the remaining features are mainly
from those rigid and reliable objects. (2) Recent progress in computer vision, especially with the
application of deep learning, make it feasible for efficient and effective detection and segmentation
of non-rigid dynamic contexts inside a video [22, 25, 45]. Based on these two insights, we employ
Mask Region-based CNN (Mask R-CNN) [25] to identify non-rigid objects and cull them from
the video feature set used for SLAM. By doing so, Pair-Navi eliminates the impacts of the envi-
ronmental dynamics, thus retaining robust trajectories for leaders as well as precise locations for
followers.
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Fig. 2. Illustration of feature point matching of two consecutive frames. Feature points from rigid contexts are
matched correctly (solid green lines), while most of feature points from non-rigid contexts are mismatched
(dashed red lines), resulting in errors in camera pose calculation.

To enable real-time navigation on smartphones, Pair-Navi decouples the originally coupled
SLAM modules and reassembles merely the necessary modules. For a follower, rather than em-
ploying a complete SLAM system, we only conduct relocalization to synchronize his/her relative
walking progress to a leader’s trajectory. Furthermore, we employ a synchronization strategy for
the basic visual navigation module and non-rigid context culling module. By doing so, Pair-Navi
achieves real-time navigation on a mobile. In contrast, the latest works [6, 8, 48] that attempted to
incorporate semantics for robust SLAM fail to operate in real-time.

We implement our system on the Robot Operating System (ROS) platform [2] on the server
and on ROS-Android [1] on the phone side. Comprehensive experiments are carried out in three
buildings with various conditions over 2 weeks. The results demonstrate that Pair-Navi achieves
a remarkable navigation success rate of 98.6%. Even after 2 weeks since the construction of the
leaders’ trajectory, the rate maintains 83.4%, outperforming the state-of-the-art Travi-Navi [70]
by 50.9% and FollowMe [51] by 80.4%. We further evaluate the efficiency of Non-Rigid Context
Culling (NRCC) in two official datasets: TUM [54] and KITTI [20]. Both the localization and the
mapping accuracy are increased by more than 25%. Being truly infrastructure-free, Pair-Navi takes
an important step toward practical indoor navigation for mobile users.

In summary, the core contributions are as follows.

— We present the first user-friendly vision-based P2P navigation system, which neither re-
quires to instrument a building nor relies on pre-deployed localization service with indoor
maps.

— We employ non-rigid context culling by using Mask-RCNN to overcome indoor environmen-
tal dynamics for visual SLAM, which significantly improves the robustness and precision of
navigation. Extensive experiments on two standard datasets demonstrate the leverage of
NRCC improves the localization accuracy and mapping precision.
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— We implement a complete real-time system on commodity smartphones and extensively
evaluate the performance. The results show Pair-Navi achieves delightful results and out-
performs all existing solutions.

The rest of article is organized as follows. We present an overview in Section 2 and introduce
visual navigation in non-rigid environment in Section 3. Real-time design and implementation is
provided in Section 4, followed by experiments in Section 5. We review related works in Section 6
and conclude in Section 7.

2 OVERVIEW
2.1 Peer-to-Peer Navigation

Different from conventional navigation systems that rely on pre-deployed localization services,
Pair-Navi works in an easy-to-deploy P2P navigation mode. P2P navigation also circumvents the
need of indoor digital maps, which are sometimes difficult to obtain and process. There are two
key roles in a P2P navigation system, i.e., a leader and a follower. The basic idea is to reuse the
experience from earlier travelers who become leaders. Anyone walked through a path can serve
as a leader for that particular path by contributing corresponding trace information, i.e., certain
trace data (e.g., Wi-Fi signal series, geomagnetic series, and IMU sensor measurements [51, 69, 70],
or video clips in our case) together with the automatically extracted walking hints (e.g., heading,
turning, climbing). The trace information is later requested by and sent to a follower for his/her
reference. The navigation for the follower is then achieved by synchronizing his/her relative lo-
cation to a leader’s reference trajectory. Note that a user can participate as either a leader or a
follower, depending on specific scenarios.

P2P navigation is, in particular, useful as a fast- and easy-to-deploy service for ordinary users
who demand to provide small-scale navigation. For example, a shop owner can provide a self-
owned navigation service to guide potential customers to his/her own shop, and a conference
organizer can direct attendees to the conference location with little effort. Among many other sim-
ilar scenarios, P2P navigation, which is self-deployable and almost zero-effort, acts as a promising
alternative to traditional centralized localization and navigation systems.

2.2 System Overview

Pair-Navi enables this kind of leader-follower navigation by leveraging mobile vision capabilities.
The system architecture is illustrated in Figure 3. For both leaders and followers, they walk natu-
rally in the course and hold their smartphones to shoot videos along the trace. Every video frame
captured by his/her smartphone camera is sent to a cloud server via network for further process-
ing. Although we leverage SLAM technology, our system does not involve all modules for leader
and follower. For a leader, we feed the video clips into three SLAM modules, i.e., Initialization, Vi-
sual Odometry, and Trajectory Construction, to simultaneously form a trajectory (a sequence of 3D
camera poses) and construct a map (3D map points and key frames). When the trace is completed,
the trajectory and map data, in addition to leader-labeled starting and destination places, will be
stored on the server.

In case a follower arrives, he/she first chooses the destination and will be provided with a refer-
ence trace leading to the same destination, contributed by some leader. When the follower walks,
our system will immediately locate his/her relative location to the reference trace by relocalization
based on the currently captured video frame. If relocalization succeeds, the follower will be rela-
tively located and accordingly instructed with timely walking hints that come with the leader’s
reference trace. However, if relocalization fails, which indicates the follower may deviate from the
given path in the following steps, a deviation detection module will be triggered to launch auxiliary
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Fig. 3. Pair-Navi architecture.

visual odometry to track the follower’s camera poses independently. The results will also be fed
back and displayed on the follower’s phone, together with the reference trace, so that the follower
can get himself back on the correct path for further navigation.

A key and unique component in Pair-Navi is the NRCC, which aims to extract and subtract
dynamic contents in the video clips to combat time-varying environments. To ensure precise ref-
erence trajectory generation and robust follower localization, NRCC is applied to both leader’s and
follower’s videos.

3 VISUAL NAVIGATION IN NON-RIGID ENVIRONMENT

In this section, we describe how Pair-Navi utilizes visual SLAM for navigation and how it addresses
non-rigidity in the environment.

3.1 Visual SLAM for Navigation

In Pair-Navi, we use monocular visual SLAM that works with a single camera since most smart-
phones have only one camera on the back side. We decouple the tightly coupled modules of a
monocular visual SLAM system, and reorganize the required modules into leader and follower
applications to simplify for real-time and meanwhile ensure accuracy. In particular, we introduce
three key modules, initialization, visual odometry, and relocalization, as follows.

Initialization. When the system initially launches, our system takes an initialization step using
epipolar geometry [24, 36] to locate the camera in an initial map with 3D map points as landmarks
of the environment. To begin with, the camera captures two very early video frames, from which
we extract and match certain feature points that describe the video frames (see Figure 5(a)). In
Pair-Navi, we leverage ORB feature point [47], which has comparative matching accuracy with
the state-of-the-art SIFT [39] and SURF [5], yet is far more efficient in computation.

Then the relative camera motion between the first two frames, denoted as gT where T rep-
resents a transformation matrix and c; denotes certain coordinate systems,! is computed by solving

I This convention is brought up by [10], where the left superscript of a variable means the reference coordinate system and
the left subscript means the objective coordinate system. By multiplication, we can cancel the left subscript of a variable
together with the left superscipt of the next variable. For example,  t :g T -B t means a vector  described in B coordinate
system multiplied by transformation ‘;T equals the description of ¢ in A coordinate system.
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Fig. 5. Examples of non-rigid contexts: feature points from non-rigid contexts, pedestrians in (a) and mirror
reflections in (b), are recognized and marked as red, while the remaining feature points from rigid and static
objects are green.

the so-called epipolar constraint equation [24]. When the camera motion between the early two
frames is acquired, the camera pose of the first frame is set to be the “world coordinate system”
w, and the camera pose of the second frame becomes ? T. Based on camera motion between them,
the depths of the feature points are also calculated by triangulation [24]. After triangulation, we
obtain the 3D coordinates (2D pixel coordinate plus depth) of every feature point in the camera
coordinate system. Since the first frame is set to be the world coordinate, we actually get the 3D
coordinates of every feature point in the world coordinate. Therefore, an initial sparse 3D map of
the environment, i.e., a sparse set of 3D map points, is accordingly built up.

Visual Odometry. After initialization, the visual odometry (VO) module takes charge of the
system, to continuously track the camera pose from consecutive video frames. Specifically, when a
new video frame arrives, its 2D ORB feature points are extracted and associated to already-created
3D map points by feature matching.

Figure 4 shows an example of the extracted feature points associated to 3D map points. From the
association of 2D feature points and 3D map points, we can acquire the camera pose of this frame
by solving a so-called Perspective-n-Point (PnP) problem [29], which determines the position
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and orientation of a camera from a set of correspondences between 3D points and 2D pixel points.
As shown in Figure 4, given the camera poses of two frames, new 3D map points can be generated
by calculating the 3D coordinates via triangulation among the two frames [24]. Repeatedly, as
more new frames come, a trajectory of the camera poses and a map of the 3D landmarks and
corresponding keyframes? are built incrementally. In Pair-Navi, VO is the core module for a leader
to construct a trajectory map.

Relocalization. In order to reuse a previously built trajectory map, relocalization module comes
in handy, which is the central component in the follower program. It compares a video frame with
the keyframes in the map, and finds out the most similar keyframe based on feature point matching.
This step is also called visual place recognition, of which the state-of-the-art is Bags of Visual
Words [18]. After the most similar keyframe is found, the feature points in the current follower
frame are associated to the feature points in the selected keyframe. On this basis, a PnP problem
[29] is solved in the same manner as VO module to get the camera pose, thus relocalizing the
camera in the map. In Pair-Navi, the follower program mainly employs relocalization to achieve
efficient relative localization (Section 4).

Note that classical monocular visual SLAM still involves complicated steps like loop closing
detection, global optimization, and so forth [36]. In our system, however, we merely apply the nec-
essary modules for leaders and followers, respectively, to avoid intensive computation, as detailed
in Section 4.

3.2 NRCC

3.2.1 Limitations of Visual SLAM in Non-Rigid Environments. While visual SLAM technology
underpins a promising solution to infrastructure-free navigation, it is vulnerable to non-rigid in-
door environments with significant dynamic changes over time. Specifically, the limitations are
twofold.

Low-Precision Trajectory. As is described in the above section, to calculate the camera poses,
we need to match feature points first. Therefore, correct feature point matches influence the accu-
racy of the constructed trajectory. In the presence of erroneous matches, the generated trajectory
will deviate from the ground truth. Figure 2 illustrates an example of matching two consecutive
video frames from a typical shopping mall. As seen, feature points extracted from those dynamic
contexts (e.g., pedestrians) will lead to considerable erroneous matching, as indicated by red lines
in Figure 2. As a consequence, if we calculate camera poses from the whole set of feature point
matches without screening, the constructed trajectory will deviate from the truth, depraving fur-
ther navigation. To obtain precise trajectory, we need to intelligently recognize the non-rigid con-
texts and sift out their corresponding feature points.

Vulnerable Relocalization. Apart from degrading trajectory precision, non-rigid contexts fur-
ther harm relocalization robustness. In practice, the environment observed by a leader and later
a follower may change significantly, leading to feature point mismatches and thus large relocal-
ization errors or even relocalization failures. In one situation, if there are only a small number of
matching outliers, the feature points may be matched to wrong 3D map points, resulting in errors
in camera pose computation. In another situation, if a large portion of feature points fail to match,
a wrong keyframe will be chosen and relocalization fails.

Therefore, to ensure accurate trajectory construction for leader as well as successful relocaliza-
tion for follower navigation, we propose the NRCC module that takes out features points from
non-rigid contexts and only exploits the remaining reliable feature points, mainly from rigid and

ZKeyframes are a subset of all frames to eliminate redundancy.
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Table 1. Object Classification for Indoor Scenario

Non-Rigid Context objects Rigid Context objects
person, hair drier, toothbrush, cat, keyboard, phone, bottle
apple, cup, backpack, umbrella, handbag, tie, suitcase, dog

frisbee, book, clock, skis, snowboard, sports ball, kite couch, potted plant®, dining table
bat, glove, skateboard, surfboard, mouse, remote, glass tv, microwave, oven, toaster
fork, knife, spoon, bowl, banana, tennis racket, scissors refrigerator, vase®, bed, toilet, sink
teddy bear, sandwich, orange, broccoli, carrot, hot dog,
pizza, donut, cake, chair, laptop

static areas, for frame matching. Our key observation is that there are abundant feature points for
frame matching, allowing room to cull part of them without degrading visual SLAM performance.

3.22 NRCC via Mask R-CNN. In Pair-Navi, we adapt Mask R-CNN [25] for NRCC. Mask R-
CNN is a recent framework for instance segmentation. It aims to separate different instances in an
image via a segmentation mask for each instance. We use the Mask R-CNN network pre-trained
on the COCO dataset [32], and select the object categories that are suitable for indoor scenario.

Since we aim at distinguishing rigid and non-rigid context, we divide all the object categories
into two sets: rigid context objects and non-rigid context objects as shown in Table 1. If an object
belongs to the rigid context set, it means the location, pose, and shape of the object will not change,
and whenever the leader or follower come to the same place, they will observe the object in the
same situation. On the contrary, an object is dynamic if it belongs to the non-rigid context set.
What is worth mentioning is that the classification of the two sets is flexible. Some objects (e.g.,
vase, potted plant) can belong to either the rigid context object set or the other, depending on the
time interval between the leader’s trajectory being constructed and the follower’s navigation. For
example, for vases, if the time interval is shorter than 7 days, they will be regarded as rigid context
objects. Yet if the interval is longer than 7 days, they will be treated as non-rigid context.

When the server receives a video frame from the camera, we extract its feature points and use
the Mask R-CNN framework to detect the non-rigid contexts, then we filter out the feature points
that lie in the masks of dynamic instances. As shown in Figure 5, the feature points filtered out,
which are marked by red color, are mainly from people, and the map is generated only using the
feature points belonging to static environment, which are marked by green. Moreover, we also
use the method proposed in YOLO [44] to detect mirrors and smooth surfaces in video frames (as
shown in Figure 5(b)). We believe the illumination change in places like academic buildings may
be drastic, rendering the feature points lying in mirrors volatile. Therefore, they are also culled to
increase system robustness. After this preprocessing of the video frame, although the user may be
facing a non-rigid environment, the feature points lying in the masks of dynamic instances will not
be involved in trajectory construction (for leaders) or relocalization (for followers). As shown in
Figure 6, removing non-rigid contexts helps improve precision and avoid potential relocalization
failures.

4 REAL-TIME NAVIGATION

In this section, we present the design of Pair-Navi to enable real-time navigation.

4.1 Leader Trajectory Map Construction

To construct a map of navigation trajectories, a leader simply holds the smartphone in front
of his/her body to shoot video frames while walking along his path. Upon finishing, the leader

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 18. Publication date: May 2021.



18:10 J. Xu et al.

()

Fig. 6. The effect of NRCC on trajectory construction: A complex trajectory computed (a) without NRCC,
in which the camera poses of some frames in the red circle are deviated from the original path, and (b) with
NRCC, in which the camera poses are correct and smooth. Similarly, (c) and (d) show a simple trajectory
without and with NRCC, respectively.

uploads to the server the video labeled with the origin and the destination. The server then runs
visual SLAM, including initialization and visual odometry, with Mask R-CNN for each frame to
cull out the non-rigid contexts, and then the map is saved for followers.

4.2 Follower Real-Time Navigation

To begin with, a follower chooses the destination given by the server, then the smartphone runs as a
ROS node, capturing video frames and sending them to the server. The server, as another ROS node,
loads the chosen trajectory and map, and starts running;: it relocalizes every follower video frame,
visualizes the camera pose in the leader’s trajectory map, and calculates the navigation instruction.
On receiving all the returned messages, the follower can see the navigation instruction, together
with an visualization of the current camera pose and leader’s trajectory map.

If the relocalization observes inadequate quantity of 3D map points, the auxiliary VO is launched
from this frame, and will take the place of the relocalization to show camera pose if it truly fails.
At this time, the follower can still see the camera pose in the leader’s trajectory and spare little
effort to return to the track. Once the relocalization is successful again, the auxiliary VO is shut
down, and the follower goes back to the normal case, in which only relocalization is executed.

Our system has the following three designs that ensure it can run in real-time (by “real-time,”
we mean at least 10 fps, the typical value of persistence of vision):
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Relocalization. We decouple a typical visual SLAM system, adaptively combining the relocal-
ization module and VO module into our follower navigation program. In this design, we avoid the
heavy overhead to acquire the follower’s current position with a full visual SLAM system since
the beginning of the follower’s navigation. Instead, we get the utmost of the leaders’ efforts, only
running relocalization for follower, which is more efficient than a full visual SLAM system yet
produces as accurate results as it. As will be demonstrated in Section 5, our design considerably
reduces running latency compared to a conventional SLAM system.

Mask Synchronization Strategy. Non-rigid context culling is for both leader and follower’s
video frames, but in different ways. For leaders, we generate one mask for each frame, because
the leader’s map construction can be done offline. Yet for followers, the calculation of Mask R-
CNN is relatively slow, at an average frame rate of about 5 fps. So we take a tradeoff strategy to
synchronize Mask R-CNN with visual SLAM. We aggregate every two frames (corresponding to
0.2 s due to 10 fps), and generate one mask for them both.

The rationale behind this is that a user will move for only about 20 cm during the 0.2 s time-
window, assuming a typical walking speed of 1 m/s. Therefore the potential scene changes in two
consecutive frames will not be too significant, which may slightly affect trajectory construction
accuracy for leaders, but do not necessarily influence relocalization for followers. In summary, to
obtain a highly precise and reliable trajectory for followers to use, we need to cull non-rigid con-
texts for each frame; yet to save the the computational resources for real-time follower navigation,
we can confidently reuse the masks for several consecutive frames.

The Fringe Benefit of NRCC. Additionally, NRCC brings a fringe benefit to the real-time
performance. Since the number of feature points is reduced, further computation, including feature
point matching, calculating bags of visual words, PnP, and so forth, is simplified by the proportion
of rigid feature points in all the feature points. The quantitative benefit of this simplification is
shown in Figure 15.

4.3 Follower Deviation Handling

Existing P2P navigation systems such as Travi-Navi and FollowMe have no function of deviation
handling, and thus if follower deviation happens, the tracking will lose and the navigation will
fail, with no recovery approach. In contrast, we add an auxiliary VO module to track the deviated
trajectory, which acts as a fail-safe measure to guarantee the success of navigation.

In our scenario, deviation happens when the follower walks off the instructed course, or even
when camera pose slightly deviates. In these cases, the follower’s relocalization module observes
inadequate 3D map points in a frame, which is when the system launches the auxiliary VO. The
auxiliary VO, extracting new feature points and generating new 3D map points, runs in parallel
with the relocalization to retain continuous tracking and show the camera pose in the trajectory
map, as shown in Figure 7. With the camera pose shown in the trajectory map, the follower can
easily go back on the right track. When it comes to an extreme situation in that the relocalization
truly fails, the VO will come on the stage and guide the follower to go back to the course by showing
his pose in the leader’s trajectory map. Once the relocalization observes a healthy quantity of 3D
map points, the auxiliary VO will shut down and hand over the navigation to the relocalization
module.

Note that to further keep our system running in real-time with this auxiliary VO, we strictly se-
lect a feature point quantity threshold for triggering it, so that redundant calculation is eliminated.
In this way, we make the system tolerate navigation deviations in harsh environments while still
maintaining real-time performance.

ACM Transactions on Sensor Networks, Vol. 17, No. 2, Article 18. Publication date: May 2021.



18:12 J. Xu et al.

Current Scene

, Reference Trace
Follower’s

Current Location

Fig. 7. llustration of auxiliary VO when deviation happens.

4.4 Navigation Instruction Calculation

The calculation of navigation instruction takes the relocalized camera pose of the current follower
frame with reference to the world coordinate system, ;'T, as an input (the left superscript w de-
notes “world,” which is set to be the first frame of the leader’s map, and the left subscript ¢ denotes
“current”). In this way, every follower frame is localized and assigned a pose in the leader’s trajec-
tory map. Next, the server needs to compute navigation instruction through the follower’s current
camera pose. Since in the leader’s trajectory, there is one pose }'T (r denotes “relocalization”) that
is closest to follower’s current camera pose, we choose it as a representative, and average the
translation® of the next 10 poses in the leader’s trajectory as “t,¢ys. The reason why we select
10 following poses is that the average time interval of 10 keyframes is approximately 1.5 seconds
by our statistic and the average step period of human is around 0.4-0.6 seconds, therefore, this
10-keyframe interval suggests approximately in which direction the follower should head to in
the next two or three steps.

So far, we have the pose of the current follower frame T, and the average translation of the
next 10 poses “tyex;. By converting t,.,; to homogeneous coordinate (adding a fourth dimension
with value 1, such that t,.,; becomes [x y z 1]7), we can compute

Ctnext zi\; TV Inexts (2)

where “t,,¢x; is the homogeneous coordinate of ¢, in the current follower frame. The coordinate
axis direction is already shown in Figure 2.

Finally, we can generate the navigation instruction with the angle between “t,.; and the imag-
ing plane of the camera

z
a = arctan —, (3)
x

3 Here the translation is a 3D vector denoting the position of a pose. A pose can be denoted by a transformation matrix

R t
T:[O 1], )

where R is 3 X 3 rotation matrix, ¢ is the translation vector.
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Fig. 8. lllustration of the relationship between navigation instruction and «a.

where we assume the follower is holding the phone in a steady level so that the y coordinate of
“tnext has little effect on navigation.

As shown in Figure 8, by our design, if 7 < a < 2?”, the system will give out “Go Straight” in-
struction; when 0 < & < %, “Turn Right”; and when ZT” < a < 7, “Turn Left” Note that we assume
the leader will not go backwards when constructing the trajectory map, and thus theoretically z
is always positive, so no “Go Backward” instruction is necessary. If z is truly negative, which is
due to flawed relocalization, we will give “Deviation Warning” instruction. If a deviation is later

detected, the auxiliary VO will be triggered to continue the navigation.

4.5 Implementation

We implement our system on the ROS Kinetic [2] platform. The user program is developed on
the ROS-Android [1] platform. The server’s SLAM program is developed on ORB-SLAM [36] on
ROS, and we develop the system visualization upon the visualization of ORB-SLAM, with some
modifications via OpenCV. We resize all the frames to 640 X 480, which is relatively high-resolution
and still not too large to prolong the process time of each frame. The phone-server communication
resorts to ROS topic publication and subscription, which guarantees all the imformation is integral
because ROS data transfer is based on a TCP protocol.

We applied our Mask R-CNN models with the ResNet-FPN-50 backbone and the network pa-
rameters are pre-trained on the COCO image daaset. The Mask R-CNN code is implemented in
Python-3.6.5 with PyTorch-0.4.0.

5 EXPERIMENTS AND EVALUATION
5.1 Experiment Settings and Methodology

Experiment Venues. We conducted extensive experiments in an office building, a gymnasium,
and the firts through fourth floors of a shopping mall, with area sizes of about 400 m?, 1,000 m?,
and 6,000 m?, respectively. The three testing environments have diverse conditions. In particular,
the crowded shopping mall is the most dynamic. The office building has the most drastic illumi-
nation oscillation during a day. The gymnasium has the medium crowdedness among the three
environments.

Data Collection. Overall, we design 21 navigation paths, including 6 short paths (<100 m), 7
medium paths (100-200 m), and 8 long paths (=200 m), covering all the main pathways of the
testing areas. Figure 9 shows four trajectories of different lengths constructed from the three ar-
eas. The reference trajectories for these paths are constructed by three different leaders. The total
length of leaders’ reference trajectories is about 3.1 km with 33,452 video frames, among which
6,781 keyframes are selected, and the followers’ total walking distance is around 15 km.

Devices. We tested Pair-Navi on a variety of Android mobile devices, including Huawei P10,
Nexus 6p, Nexus 7, and Lenovo Phab2 pro. Since the main device discrepancies are camera
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Fig.9. Four typical real trajectories in our experiment: (a) a straight line; (b) a U-turn; (c) a complex trajectory
going up an escalator; (d) a complex trajectory going up one escalator and then down another.

intrinsics (i.e., focal length, lens center, and distortion), we calibrate camera intrinsics of the smart-
phones and accordingly rectify video frames. The server, Lenovo IdeaPad-Y700 with i7-6700HQ
CPU of 2.6 GHz main frequency and 8 G RAM, runs the Ubuntu 16.0.4 operating system and ROS
Kinetic. For Mask R-CNN, the GPU we used is TITAN V with CUDA version 9.1.85 and cuDNN-
7.05.

Users. We recruited four volunteer followers to walk along different routes naturally as they
usually do. The follower behaviors are diverse in camera holding gestures and heights. For example,
one user prefers to hold the camera with two hands, while others tend to use their right hands.
Thus, the cameras suffer various extents of shake when the users are walking, which may cause
different feature point matches. User study is conducted on three particular days: the same day as
the trajectories were constructed, 1 week later, and 2 weeks later.

Comparison. To evaluate the performance of Pair-Navi, we implemented Travi-Navi [70] and
FollowMe [51], two start-of-the-art P2P navigation systems for comparison.

Evaluation Metrics. Similar to some existing works like Travi-Navi and FollowMe, we set check-
points at turns, escalators, and some landmarks on each trajectory. In total, we set 274 checkpoints
for the 21 navigation paths. The followers were not informed of navigation routes, the final des-
tination, or the checkpoint locations. Navigation success rate is defined as the rate of successful
arrival at each checkpoint in Travi-Navi and FollowMe. Thanks to the employment of deviation
handling, this rate is always 100% in Pair-Navi, which means the followers arrived at the destina-
tions successfully in all cases. So instead, we use a more strict definition of navigation success rate
as 1 — p (where p is the rate of auxiliary VO launches) for Pair-Navi, while keeping the original
defination of navigation success rate unchanged for Travi-Navi and FollowMe.
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5.2 Overall Performance

5.2.1 Performance Comparison. The performances of Pair-Navi as well as the two state-of-the-
art approaches to compare are depicted in Figure 10. We find that Pair-Navi achieves the best
performance among all three of them, no matter how long the time interval is. The average navi-
gation success rates by Pair-Navi in the same day of the trajectory’s construction, after 1 week and
after 2 weeks are 98.6%, 93.2%, and 83.4%, respectively. Compared with the immediate performance
(tested in the same day), the navigation success rates after 2 weeks decline to 14.1%, 49.3%, and
59.3% in Pair-Navi, Travi-Navi, and FollowMe, respectively. In contrast to Travi-Navi and FollowMe,
Pair-Navi attains high navigation accuracy after a 2-week interval, and outperforms Travi-Navi by
50.9% and FollowMe by 80.4%.

The reason for this performance gain is twofold:

(1) Innate metric advantages of vision-based methods. On the one hand, radio-frequency-based
and magnetic-field-based systems suffer from metric error of localization typically averaging 3-5
m [43, 50] due to intrinsic defects such as fluctuation of signal strength, change of indoor multipath
environment, and the inaccuracy of pedestrian dead-reckoning. On the other hand, vision-based
methods tackle metric error rationally, which consists of three parts: rolling shutter cameras in
most smartphones skewing the image, which is negligible; the calculation of epipolar geometry
and PnP, which have closed form solution and is accurate; and feature point mismatch, which is
largely tackled by ORB feature. As is reported in [36], typical localization error in indoor senarios
(TUM RGB-D dataset) in visual SLAM systems is within 5 cm, much smaller than that in radio-
frequency-based and magnetic-field-based systems.

With an error of 3-5 m, a person can miss turning points in indoor environments every now
and then, but it is not the case with an error of 5 cm.

(2) Robust design of NRCC. Apart from the innate metric advantages of vision-based sys-
tems, benefiting from the design of NRCC, the system robustness is remarkably enhanced. Radio-
frequency-based and magnetic-field-based methods are plagued by ambiguity of localization when
several signal patterns of different locations are close to each other, under which cases the track-
ing of phones can easily be lost. With the design of NRCC, our system obtains good relocalization
robustness.

Furthermore, as for long-term performance, NRCC attacks environment change by ruling out
the changed while maintaining the unchanged contexts in the trajectory map. In this way, even
after 2 weeks, our system can handle time-varying environment and palliate the performance
drop even in the long term. On the contrary, the deterioration of trajectory information in radio-
frequency-based and magnetic-field-based systems is not dealt with properly. In Section 5.3, we
will further delve into the effectiveness of NRCC.

5.2.2  Performance Under Different Conditions. We invite four volunteers to examine the robust-
ness and practicability of Pair-Navi in different areas and at different times. As shown in Figure 11,
Pair-Navi achieves an average navigation success rate of more than 85% for each user and the de-
crease of success rate for each one is less than 15% after 2 weeks. Furthermore, Figure 12 shows
that Pair-Navi yields similar performance regardless of the different crowdedness levels and illu-
mination conditions at different areas. Pair-Navi achieves a consistently delightful success rate of
more than 90%, 85%, and 80% in the office building, gymnasium, and large shopping mall under a
time interval within 2 weeks.

To further demonstrate the applicability of Pair-Navi, we note that the trajectories in the of-
fice building are mainly constructed by User-2 and User-3, and in the gymnasium and shopping
mall by User-1 and User-2. The heights of the four users are different, and camera holding ges-
tures are variant. Figure 13 reflects the robustness of Pair-Navi for different leaders and followers.
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Navigation success rates for all users in different areas are more than 80% and the success rate
gaps between different users are within 5%.

5.2.3 Impact of lllumination. We further tested our system with different illumination condi-
tions in the office building, which undergos the most drastic illumination oscillation among the
three areas. We first asked a leader to walk four pathways in the morning, afternoon, and evening
during a day. Then we asked volunteers to walk the same pathways correspondingly and calculate
the navigation success rate of each test case. As shown in Figure 14, whenever followers walk the
pathways, the navigation success rates are more than 80% and more than 90% if followers walk at
evening. Generally, in the office building, we usually turn on all of the lights at evening, the ma-
jority at morning, but rarely at afternoon, which lead to the same video frame captured at evening
enjoys the most drastic light and shadow oscillation. Therefore, the video frame has more ORB
feature points than captured at morning and afternoon [47] and the relocalization success rate of
the frame will increase.

5.24 System Latency. We recorded the time consumption of all frames in all followers’ navi-
gation experiments. As shown in Figure 15, Pair-Navi reduces the average relocalization time for
one frame to 76 ms. Compared with a complete SLAM system, the average delay is reduced by
17.4%, moreover, the percentage of frames using less than 100 ms for relocalization increase from
81.6% to 91%. Surprisingly, we also observe that NRCC even slightly reduces the system latency
by 4 ms per frame on average. This is because NRCC shrinks the number of valid features points
involved in relocalization. The average mask process time for each frame (resized as 640 X 480) is
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0.18 s in our system. In other words, a mask takes in charge of the NRCC of two frames that are
captured in 0.2 s. In a nutshell, Pair-Navi accomplishes relocalization and navigation within the
system sampling time of 0.1 s and runs fluently in real-time, with partial computation off-loaded
to a cloud server. As our future work, we plan to optimize to a complete standalone system on
smartphones based on model compressing.

5.2.5 Energy Consumption. We record the energy consumption of the follower’s navigation
app on the smartphones. On the Huawei P10, the program ran 41 minutes and 48 seconds and con-
sumed 203.12 mAh, while the battery level dropped from 100% to 69%. On the Lenovo Phab2pro, the
program ran 44 minutes and 36 seconds and consumed 348 mAh, while the battery level dropped
from 100% to 85%. Since indoor pathways from one place to another are usually less than 15-min
walking distance, we consider the energy consumption of Pair-Navi is acceptable.

5.3 Impact of NRCC

To demonstrate the effect of non-rigid context culling, we first compare the relocalization failure
rate with and without non-rigid context culling. Specifically, we save all the video frames captured
by a follower’s camera and record whether each frame can be relocalized (matched to a keyframe in
the trajectory map with enough feature point matches). This part of the experiment is conducted on
all 21 navigation trajectories mentioned above and under different time intervals. Furthermore, we
have performed an extra extensive experimental validation of NRCC on two standard benchmarks
for visual SLAM: TUM [54] and KITTI [20] datasets. We mainly focus on two targets: Pose Tracking
Accuracy and Mapping Accuracy, and we compare the precision of ORB-SLAM with and without
NRCC.

5.3.1  Performance in Navigation Scenario. As shown in Figure 16, the relocalization failure rate
increases from 4% to 27% without NRCC in the same day, 1 week later, and 2 weeks later, while it
keeps low at 3%, 5%, and 9%, respectively, with NRCC. In other words, the use of NRCC significantly
decreases the relocalization failures by more than 65% when the time interval exceeds 2 weeks.

Furthermore, Figure 17 shows the relocalization robustness at different areas. We conducted the
experiment under the time interval of 2 weeks. The relocalization failure rate at the office building,
the gymnasium, and the shopping mall is 2%, 5%, and 10% with NRCC, compared to 4%, 15%, and
25% when without NRCC. On average, NRCC declines relocalization failures by 57%. Especially in
the gymnasium, the failure rate is decreased by 67%, which reflects remarkable improvement on
robustness.

5.3.2  Performance in Standard Datasets. The TUM benchmark is an excellent dataset to eval-
uate the accuracy of camera localization as it provides several sequences with accurate ground
truth obtained with an external motion capture system. The odometry benchmark from the KITTI
dataset contains 11 sequences from a car driven around a residential area with accurate ground
truth from GPS and a Velodyne laser scanner. This is an exceedingly challenging dataset for
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monocular vision due to fast rotations and areas with lots of dynamic objects, which make data
association more difficult.

We evaluate the general localization accuracy in 16 hand-held sequences of the TUM
RGB-Moncocular benchmark. Moreover, in five sequences from the KITTI dataset, we evaluate
the tracking accuracy of camera pose and precision of the constructed map.

Localization Accuracy in TUM Dataset. Figure 18 depicts the impact of the proposed NRCC
in indoor localization scenarios. As shown, the average localization of ORB-SLAM with and with-
out NRCC is 1.24 cm and 1.97 cm, respectively. The use of NRCC significantly increases the local-
ization precision by more than 35%.

Pose Tracking Accuracy in KITTI Dataset. We further examine the impact of NRCC on
camera pose tracking task in the KITTI dataset. We calculate the Relative Rotation Error (RRE,
an essential evaluation indicator in the KITTI dataset) of the tracking result with and without
NRCC. As shown in Figure 19, the tracking accumulative bias is within 0.25° for 1-m-length traces
with NRCC, compared to 0.34°/m when without NRCC. On average, NRCC declines RRE by 25.6%.

Mapping Precision in KITTI Dataset. Finally, we evaluate the impact of NRCC on mapping
accuracy in the KITTI dataset. Relative Translation Error (RTE, another fundamental evalua-
tion indicator in the KITTI dataset) is used to demonstrate the mapping accuracy. As shown in
Figure 20, in all five frame sequences, NRCC declines RTE by 10%.

In summary, the leverage of NRCC achieves enhanced localization accuracy and mapping pre-
cision compared with original ORB-SLAM in all evaluations. The delightful performance gain is
owed to the robust design of NRCC, which attacks environment change by ruling out the changed
while maintaining the unchanged contexts in the trajectory map.

6 RELATED WORKS

Indoor P2P Navigation. Traditional indoor navigation solutions require a global map of the
indoor floor plan in infrastructure-ready indoor environments (e.g., Wi-Fi [42, 55, 59, 65, 66, 68],
Bluetooth, RFID [49]), and navigation instructions are provided based upon the absolute position in
the global map. Recently, P2P navigation appears as another solution to indoor navigation, which
does not rely on a complete global map and absolute localization in the map [9, 46, 51, 52, 69, 70].
In [9], an electronic escort system was proposed by using crowd encounter information and dead-
reckoning techniques. The most relevant works Travi-Navi [70], FollowMe [51], and ppNav [69] all
employ trace-driven navigation on smartphones. Travi-Navi synthesized Wi-Fi and inertial mea-
surement to bootstrap navigation services without indoor floorplan. FollowMe exploited magnetic
sensing and dead-reckoning to achieve lastmile navigation for smartphone users. ppNav utilized
the ubiquitous Wi-Fi fingerprints in a novel diagrammed form and extracted both radio and visual
features of the diagram to track relative locations. edgeSLAM [63] leverages the power of edge
server to enable mobile devices to run visual SLAM in real-time. In contrast, Pair-Navi exploits
the power of vision, which is infrastructure-free and demonstrated to be more efficient, precise,
and further beneficial to various vision-based applications, such as indoor 3D-reconstruction, store
sign identification, and so forth.

Monocular Visual SLAM. The pioneer work of visual SLAM [13] adopted a filtering-based
approach. Later, optimization-based methods [27, 35] came on stage and were demonstrated to be
more accurate [53] than a filtering-based approach. ORB-SLAM [36], the state-of-the-art monocu-
lar visual SLAM work, used DBoW?2 [18] as the place recognition module, and g2o [28] as the op-
timization framework. The above-mentioned monocular visual SLAM systems lie in the genre of
feature point method, whose counterpart, though not comparatively well-studied than the other,
is the genre of direct method [17, 19], which focuses mainly on pixel gradient rather than fea-
ture point. Latest researches on monocular visual SLAM have at least two trends. Some works
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attempted to incorporate semantics into monocular visual SLAM [6, 8] for better robustness in
time-varying environments. Others are dedicated to solving the scale uncertainty of monocular
SLAM, introducing IMU into monocular visual SLAM [16, 37].

Being able to compute the camera pose while generating the map and environment, visual SLAM
is a suitable technique for indoor navigation.

Instance Segmentation. The Region-based CNN (R-CNN) approach [22] leveraged candi-
date object regions [26] and evaluated convolutional neural networks for each Region of Interest
(RolI) for object detection. Driven by the effectiveness of R-CNN, many approaches to instance seg-
mentation are based on segment proposals. Earlier methods [23] resorted to bottom-up segments
[3, 57]. DeepMask [40] and following works [41] learn to propose segment candidates, which are
then classified by Fast R-CNN. In these methods, segmentation precedes recognition, which is slow
and less accurate.

Most recently, Li et al. [31] combined the segment proposal system in [11] and object detec-
tion system in [12] to simultaneously address object classes, boxes, and masks, making the system
fast. Furthermore, R-CNN and [31] were extended to allow Rol extraction on feature maps using
RoIPool [21] and then advanced to Faster R-CNN [45] by learning the attention mechanism with
a Region Proposal Network (RPN). On this basis, Mask R-CNN [25] was proposed to use mask
predictions for classification and is the state-of-the-art in instance segmentation. More specifically,
Mask R-CNN followed the idea of Fast R-CNN [21] that applies bounding-box classification and re-
gression in parallel; it proposed an RoIAlign layer that removes the harsh quantization of RoIPool
to properly align the extracted features with the input. In addition, it adopted a two-stage proce-
dure like Faster R-CNN, with a first stage of RPN and a second stage of outputting a binary mask
for each Rol.

7 CONCLUSION

In this article, we present Pair-Navi, a robust and real-time P2P navigation system based on visual
SLAM, requiring no pre-installed infrastructure or pre-deployed localization services. We decou-
ple conventional visual SLAM into independent modules and reassemble the necessary compo-
nents into a P2P navigation system. To bolster system performance in time-varying environments,
we incorporate Mask R-CNN to dynamically cull non-rigid environmental changes. We imple-
ment Pair-Navi on commodity smartphones and conduct experiments in multiple buildings over
2 weeks. Experiment results show that our system outperforms existing solutions in navigation
success rate and robustness. We believe Pair-Navi takes a promising step toward practical P2P
navigation. Our future works target at fusing crowdsourced trajectories to generalize navigation
routes to a larger scale and make a global consistent map.
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