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Motivation

• Various location-based ubiquitous applications.

• And locating with Wi-Fi is superior in 

– Ubiquitous: Almost everywhere installed infrastructure.

– Low-cost: Off-the-shelf Wi-Fi devices.

– Non-invasive: not required to wear/carry any special devices.

• Attract attention from both academic and industrial communities.
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Motivation

• Long-term evaluation of Wi-Fi Localization system.

– We evaluate the performance of the Wi-Fi fingerprint-based localization system 
in real business environments across 7 months.

– We find three key reasons that lead to frequent large localization bias.
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Major Problems

• Three key reasons that lead to frequent large localization bias.

– Signal variation.

– Device heterogeneity.

– Database deterioration.
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Existing Arts

• Improve Localization Accuracy and robustness
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Argus, Ubicomp ’15 ViVi, Ubicomp ’17

Localization accuracy and cross-

device robustness remain low

Environmental dynamics &

device heterogeneity



Existing Arts

• Reduce Maintenance Overhead
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AcMu, INFOCOM ’15LiFS, MobiCom ’12

reliable update depends 

on accurate localization

maintenance overhead has

not been obviously reduced



Target System
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• Achieve three goals simultaneously. 

- high localization accuracy.

- low maintenance cost.

- delightful deployment ubiquity.
iT
o
L
o
c

• iToLoc: A fine-grained deep learning 

based indoor localization system that is 

able to Train once, update automatically, 

Locate anytime for anyone.



System Overview
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Co-training based reliable model update 

Adversarial learning based robust localization 
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DANN-based Robust Localization

• Domain Adversarial Neural Network
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Latent Feature

when the fingerprints are collected 
by what type of devices
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DANN-based Robust Localization

• Spatial Constraint
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Spatial Ambiguity：Large localization error

We penalizes when it is inconsistent with and

far away from the ground truth .

Ground Truth

is the weight representing the physical

distance between the c-th location and ground

truth .

Spatial Constraint Loss:

Large Error



DANN-based Robust Localization

• Objective and Training
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Cheat the domain discriminator but boost the location predictor

Feature extractor contradicts to domain discriminator. How to train the model？



DANN-based Robust Localization
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Location From Domain 1

Location From Domain 2

The representation of data from 

different domains are separate



DANN-based Robust Localization
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Location From Domain 1

Location From Domain 2

It recognizes the non-linear 

boundary between domains



DANN-based Robust Localization
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Location From Domain 2
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DANN-based Robust Localization
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Location From Domain 1

Location From Domain 2

It moves the data towards the 

boundary of different domains
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DANN-based Robust Localization
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DANN-based Robust Localization
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DANN-based Robust Localization

• Latent Representation
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Co-training Based Model Update

• Training process of model update
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Experiment
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The architecture of iToLoc

• Experimental Methodology

– 3 scenarios.

– 8 devices.

– 7 months.

– 2 evaluation metrics.



Experiment
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• Overall Performance

Accuracy comparison Temporal robustness Cross-device robustness



Experiment
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• Overall Performance

Long-term performance comparison



Conclusion & Contribution

• We design a novel adversarial network based localization framework. Based on

the in-depth understanding of RSS fingerprints and efficient design of the network

model, the proposed framework is able to extract device-independent and

dynamics-resistant feature for robust localization.

• We provide a fresh perspective to solve the radio-map automatic adaption

problem based on semi-supervised learning. Compared with existing methods,

we first fill the gap between robust localization and reliable model update.

• We prototype iToLoc on 8 different types of devices in real environments for 7

months. Encouraging results demonstrate that iToLoc makes a great progress

towards fortifying WiFi fingerprint-based localization to an entirely practical
service for wide deployment.
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