

Train Once, Locate Anytime for Anyone: Adversarial Learning based Wireless Localization

Danyang Li*, Jingao Xu*, Zheng Yang*, Yumeng Lu*, Qian Zhang*, Xinglin Zhang‡ * School of Software and BNRist, Tsinghua University ‡ South China University of Technology, China

Motivation

• Various location-based ubiquitous applications.

Indoor Location

Navigation

Pol discovery

- And locating with Wi-Fi is superior in
 - Ubiquitous: Almost everywhere installed infrastructure.
 - Low-cost: Off-the-shelf Wi-Fi devices.
 - Non-invasive: not required to wear/carry any special devices.
- Attract attention from both academic and industrial communities.

Motivation

- Long-term evaluation of Wi-Fi Localization system.
 - We evaluate the performance of the Wi-Fi fingerprint-based localization system in real business environments across 7 months.

Shopping Mall Indoor Floor-plan

WiFi Collection and Localization System

- We find three key reasons that lead to frequent large localization bias.

Major Problems

• Three key reasons that lead to frequent large localization bias.

- Signal variation.
- Device heterogeneity.
- Database deterioration.

Existing Arts

• Improve Localization Accuracy and robustness

Argus, Ubicomp '15

Environmental dynamics & device heterogeneity

Localization accuracy and crossdevice robustness remain low

ViVi, Ubicomp '17

RSS

fingerprints

Locations

FSG profile

Physical

distance

Existing Arts

• Reduce Maintenance Overhead

LiFS, MobiCom '12

reliable update depends on accurate localization

ACMU, INFOCOM '15

maintenance overhead has not been obviously reduced

Target System

- Achieve three goals simultaneously.
 - high localization accuracy.
 - low maintenance cost.
 - delightful deployment ubiquity.

 iToLoc: A fine-grained deep learning based indoor localization system that is able to Train once, update automatically, Locate anytime for anyone.

System Overview

• Domain Adversarial Neural Network

• Spatial Constraint

We penalizes $\hat{\mathbf{y}}_i$ when it is inconsistent with and far away from the ground truth \mathbf{y}_i .

Spatial Constraint Loss:
$$L_{s} = \frac{1}{|\mathbf{X}|} \sum_{i=1}^{|\mathbf{X}|} \sum_{c=1}^{C} w_{y_{i}c} \hat{\mathbf{y}}_{ic}$$

 w_{y_ic} is the weight representing the physical distance between the c-th location and ground truth \mathbf{y}_i .

• Objective and Training

Cheat the domain discriminator but boost the location predictor

$$L = L_a + \gamma L_s - \lambda L_d$$

Feature extractor contradicts to domain discriminator. How to train the model?

different domains are separate

Location From Domain 1

Location From Domain 2

It recognizes the non-linear boundary between domains

Location From Domain 1

Location From Domain 2

Location From Domain 1

Location From Domain 2

It moves the data towards the boundary of different domains

Location From Domain 1

Location From Domain 2

Location From Domain 1

Location From Domain 2

• Latent Representation

Without Adversarial Learning

With Adversarial Learning

Co-training Based Model Update

• Training process of model update

Experiment

- Experimental Methodology
 - 3 scenarios.
 - 8 devices.
 - 7 months.
 - 2 evaluation metrics.

The architecture of *iToLoc*

#	Building type (Areas)	Size(m ²)	Density	Devices	Region	Samples	Duration
1	Office (Whole floor)	600	$1m \times 1m$	HUAWEI P10 * 2, Phab2, Nexus 6p * 2/7, Millet 6/9	13	72K	2 weeks
2	Classroom (Whole floor)	1,360	$1.5m \times 1.5m$	HUAWEI P10 * 2, Phab2, Nexus 6p * 2/7, Millet 6/9	18	96K	2 weeks
3	Shopping mall (Public areas)	2,130		HUAWEI P10 * 2, Phab2, Nexus 6p * 2/7, Millet 6/9,	30	288K	7 months
				imoo Z5/Z6			

(a) Office building

(b) Classroom building

Experiment

• Overall Performance

Experiment

• Overall Performance

Long-term performance comparison

Conclusion & Contribution

- We design a novel **adversarial network based localization framework**. Based on the in-depth understanding of RSS fingerprints and efficient design of the network model, the proposed framework is able to extract **device-independent** and **dynamics-resistant feature** for robust localization.
- We provide a fresh perspective to solve the radio-map automatic adaption problem based on semi-supervised learning. Compared with existing methods, we first fill the gap between robust localization and reliable model update.
- We prototype *iToLoc* on 8 different types of devices in real environments for 7 months. Encouraging results demonstrate that *iToLoc* makes a great progress towards fortifying WiFi fingerprint-based localization to an entirely practical service for wide deployment.

Danyang Li Tsinghua University Iidanyang 1919@gmail.com