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ABSTRACT

Various pioneering approaches have been proposed for Wi-Fi-based

sensing, which usually employ learning-based techniques to seek

appropriate statistical features, yet do not support precise tracking

without prior training. Thus to advance passive sensing, the ability

to track fine-grained human mobility information acts as a key

enabler. In this paper, we proposeWidar , a Wi-Fi-based tracking

system that simultaneously estimates a human’s moving velocity

(both speed and direction) and location at a decimeter level. Instead

of applying statistical learning techniques, Widar builds a theoreti-

cal model that geometrically quantifies the relationships between

CSI dynamics and the user’s location and velocity. On this basis,

we propose novel techniques to identify frequency components

related to human motion from noisy CSI readings and then derive

a user’s location in addition to velocity. We implementWidar on

commercial Wi-Fi devices and validate its performance in real en-

vironments. Our results show that Widar achieves decimeter-level

accuracy, with a median location error of 25 cm given initial posi-

tions and 38 cm without them and a median relative velocity error

of 13%.
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1 INTRODUCTION

Location awareness is a key enabler for a wide range of applications

such as smart homes, virtual reality, augmented reality, security

monitoring, and asset management. Traditional approaches track

a user in an active manner via devices such as smartphones or
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wearable sensors attached to users [7, 12]. These approaches, how-

ever, pose inconvenience since users need to wear or take specific

devices and thus are inapplicable in some scenarios such as security

surveillance. Other approaches work passively with infrastructure

installed in the area of interests, such as cameras andwireless sensor

networks (WSNs) [20, 25]. Among them, camera based approaches

only provide directional coverage with Line-Of-Sight (LOS) condi-

tion and breach user privacy significantly. WSN-based approaches

require densely deployed nodes.

Recent innovations in wireless communications shed light on

passive human sensing with Wi-Fi signals. Various approaches

such as WiVi [3], E-eyes [19], CARM [18] have been proposed

for human detection, activity classification, gesture recognition,

etc. In principle, these works exploit the phenomenon that human

motions distort multipath profiles during signal propagation. These

RF based approaches are more attractive than previous solutions

since they do not require the user to carry a device, support omni-

directional coverage even in Non-Line-Of-Sight (NLOS) scenarios,

and preserve user privacy gracefully.

Limitations of existing works. Existing works, however, can-

not track fine-grained humanmobility information (including speed,

direction and location). Specifically, they do not quantitatively

model the relationships between signal features and human mobil-

ity. Instead, most of them employ learning techniques for gesture

and activity recognition by seeking appropriate statistical features

of Wi-Fi signals [10, 18, 19]. The key limitations are that they only

recognize pre-defined gestures and activities and usually require

prior training. Without an elaborate model that outputs locations

directly from radio signals, user locations are sometimes identi-

fied from recognized specific activities that are highly location-

dependent rather than vice versa [19]. Similarly, a user’s mov-

ing velocity can only be derived from successive locations rather

than vice versa. These drawbacks largely confine the application

prospects and effects of passive sensing. To advance Wi-Fi-based

human sensing, the ability to track fine-grained mobility informa-

tion from RF signals acts as a fundamental primitive.

Proposed approach. In this paper, we proposedWidar , a Wi-

Fi-based tracking system that simultaneously estimates human’s

moving velocity and locations at decimeter level. Specifically, we

attempt to emulate a Wi-Fi-based velocimeter that measures the

instantaneous velocity (both speed and direction), in order to track

fine-grained continuous locations. Instead of applying statistical

learning techniques, Widar achieves these goals by deriving ve-

locities and locations both directly from the Channel State Infor-

mation (CSI) of Wi-Fi signals [28]. Our key observation is that
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movement at different locations with different velocities induces

different changes in the lengths of individual signal propagation

paths. Therefore, we investigate a CSI-mobility model that captures

the geometrical constraints between CSI and a human’s location

and velocity. On this basis, we propose techniques to extract the

rate of change of each signal propagation path length (which we

term path length change rate, or PLCR), from which we can directly

estimate both a user’s velocity and location. By doing this, we

enable precise tracking of a user’s moving velocity and location

using COTS Wi-Fi devices.

Widar advances the state-of-the-art onWi-Fi-based sensing from

two fronts. First,Widar models the relationship between CSI and

human mobility from a geometrical perspective, a simpler approach

than previous learning based techniques [19]. Such a model helps

understand the physical principles of the effects of human mobil-

ity on CSI changes. Moreover, our model does not require prior

training and can easily generalize to various scenarios. Second,

Widar directly estimates the velocity of human motion, which is

beyond the achievements of existing approaches. Previous works

either need to derive velocity from successive location estimates

or merely report the mixture of speeds of different body parts [18].

Estimates of moving velocity, as an additional dimension of mo-

bility, stimulate a wide variety of novel applications. For example,

velocity analysis provides valuable information for indoor fitness

and athletic training.

Challenges and our solutions. Building such a model and

translating it into a practical tracking system involves many chal-

lenges. The first challenge is to derive moving velocity from the

PLCR. PLCRs induced by human movements depend on both the

location and velocity of the human. Thus according to the target’s

specific location, the PLCR is not necessarily equivalent or propor-

tional to the velocity. A huge gap exists between CSI and velocity,

although existing models have associated CSI with motion-induced

propagation path changes [18]. In our work, we attempt to bridge

this gap and further extend to simultaneous estimation of moving

velocities and locations. To achieve this, a quantitative model is

required to precisely depict the physical constraints of CSI changes

and the user’s location and velocity.

The second challenge is to determine signs of PLCRs that in-

dicate moving direction. With only absolute PLCR, it is difficult

to tell whether a reflector is moving towards or away from the

link. Considering the simplest case where a user moves along the

extended line of a transmitter and a receiver, a movement of 0.5m ei-

ther towards or backwards the link both causes an identical change

of 1m in reflecting path length. To fully eliminate such direction

ambiguity, we integrate recent art [23], which enables estimation of

signs of PLCR in restricted moving directions provided sufficiently

long observations, to opportunistically identify signs of PLCRs for

particular links and search through the space of possible signs for

the other links using a novel error function based on the continuity

of sequential locations.

The third challenge is to identify moving velocity from the su-

perpositioned reflections from different human body parts. For

the purpose of tracking a user’s location, we mainly care about

the moving velocity. However, motion of different body parts (e.g.,

arms and legs) all potentially contribute to CSI changes, adding non-

negligible changes to PLCRs. Hence, Widar needs to distinguish

the mixed components and identify the relevant parts for velocity

estimation. To achieve this, we propose a novel PLCR extraction

algorithm based on dynamic programming to identify the targeted

frequency components.

Overcoming all these challenges,Widar enables precise tracking

of both human locations and velocities with CSIs. We implement

Widar on COTS Wi-Fi devices and conduct extensive experiments

in real world. The results demonstrate that Widar yields decimeter-

level tracking with a respective median location error of 25 cm

and 38 cm with and without initial positions and a mean relative

velocity error of 13%.

In a nutshell, our core contributions are as follows: First, we build

a geometrical model that captures the relationships of CSI dynamics

and human mobility, which underpins the feasibility of human

sensing without a training phase. Second, we design a system that

simultaneously and directly tracks human moving velocity (both

speed and direction) and location, which provides us richer mobility

information for various applications. We envision this capability as

a key enabler for future motion recognition applications. Third, we

implement Widar and validate its performance on COTS hardware.

Experimental results show thatWidar achieves a decimeter-level

accuracy with only one commercial Wi-Fi sender and two receivers.

2 PRELIMINARY

This section provides a primer on CSI and state-of-the-art model

relating CSI dynamics with human movement. The limitations

and challenges of adapting the existing model to passive human

tracking are discussed.

2.1 Channel State Information

Taking multipath propagation into consideration, the wireless chan-

nel has the following structure at frequency f and time t :

H (f , t) =
K∑
k=1

αk (t)e
−j2π f τk (t ), (1)

where K is the total number of multipath components. αk (t) and
τk (t) are the complex attenuation factor and propagation delay

for the k-th path respectively. CSI, provided as a software API by

off-the-shelf Wi-Fi NICs, is a discretely sampled version of channel

response in time-frequency space [4]. In the frequency domain, CSI

is sampled on certain OFDM subcarriers, while in time domain, CSI

is measured for each received 802.11 frame.

2.2 From CSI to PLCR

Relative movements between transceivers and reflectors lead to

Doppler effect, which shifts the frequency of the signal for observers,

as discussed in prior work [10, 15]. The root cause of Doppler

frequency shifts is the change in the length of the signal propagation

path [18]. As shown in Figure 1a, the frequency shift of the signals

reflected off the moving human is given by:

fD (t) = −
1

λ

d

dt
d(t) = −f

d

dt
τ (t), (2)

where λ, f ,τ (t) are the wave-length, carrier frequency and time of

flight of the signal, and d(t) is the length of the path NLOS2, and

the PLCR r is mathematically defined as r � d
dt
d(t).
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Figure 1: Typical movement and its effect on the path length change rate (PLCR).

Thus, CSI can be represented as superimposition of path re-

sponses modulated by Doppler frequency shift arising from moving

reflectors on each path:

H (f , t) = (Hs (f ) +
∑
k ∈Pd

αk (t)e
j2π

∫
t

−∞
fDk (u)du )e−jκ(f ,t ), (3)

where Hs (f ) is the sum of responses for static paths (fD = 0), Pd
is the set of dynamic paths(fD � 0). However, CSI is polluted

by unknown phase shifts κ(f , t). which is caused by residue fre-

quency and time offsets of imperfect hardwares. To eliminate the

unknown shift, CARM [18] calculates the CSI power (i.e. conjugate

multiplication of CSI) and extract PLCR through frequency domain.

2.3 Challenges for Tracking

The model described above is helpful for activity recognition when

approximating human velocity as a fixed function of PLCR, which

is, however, insufficient for tracking. To track with CSI, three

challenges exist.

From PLCR to target velocity. As PLCR only reflects the

Doppler frequency shifts, it is not real velocity of the moving tar-

get. Instead, both target velocity and location jointly determine

the PLCR of the target reflecting path. For example, as depicted

in Figure 1b, target P1 is on the perpendicular bisector of the link;

P2 is parallel with the link; P3 is on an ellipse whose foci are the

transmitter and receiver. Suppose an identical constant velocity

and the same length of each trace, we plot their respective PLCRs

in Figure 1c, which turn out to be significantly different from each

other. In conclusion, while PLCR provides some clues of human

motion, it can not directly measure movement. An advanced model

that outputs human mobility information from PLCRs is needed

for tracking.

Loss of the sign. While CSI power excludes unknown phase

offsets, it also loses the sign of frequency shifts due to conjugate

multiplication. Recall Equation 2, the sign of frequency shift is

identical to that of PLCR, which indicates whether the reflector

moves towards or away from the link. Without the sign information,

It is unable to obtain moving directions and further track locations

with velocities.

Interference terms. As shown in Equation 3, CSI contains

irrelevant multipath components, the CSI power, as conjugate mul-

tiplication of itself, may contain irrelevant cross-terms, unwanted

frequency shift terms and time-variant power terms that severely

interfere with the targeted frequency shift components for tracking.

Specifically, when a person walks, not only the torso but also other

moving body parts reflect significant signal power, resulting in mul-

tiple reflection components. To obtain movement velocity, we need

to eliminate disturbances of irrelevant body parts as well as other

sources of interference and retain only the relevant components

among the superimposed observations.

3 MODELING OF CSI-MOBILITY

In this section, we attempt to build a model to directly relate CSI

dynamics to human moving velocity together with location. We

achieve this by considering the geometrical constraints between

reflection paths and human movement. We start with the ideal

case where the sign of PLCR is available, and then extend to the

practical case without such knowledge.

3.1 The Ideal Model

When a target moves, only certain velocity components affect re-

flecting path lengths, and thus influence the corresponding PLCR.

As shown in Figure 2a, taking the transmitter and receiver as ellipse

foci, the length of reflecting path decides which ellipse the target is

on. The target velocity �v can be decomposed into a radial velocity

�vr and an orthogonal tangential velocity �vt . While the tangential

velocity �vt does not affect the reflection path length, the radial

velocity �vr moves the target away from the ellipse and induces

change in the reflection path length. As a result, only the radial

velocity �vr can be deduced from PLCR, and target velocity cannot

be uniquely identified. For example, in Figure 2a, �v ′ and �v (which

share the same radial velocity component) can not be distinguished

with the only knowledge of �vr .
Fortunately, we are able to solve the ambiguity and derive the

true velocity with more links, which add further geometric con-

straints. For example, by adding one more link (Figure 2b), the

target velocity �v can be deduced from �r1 and �r2, as long as the two

radial velocities are not in the same direction. Thus, ideally, at least

two links are required to calculate the target velocity. Furthermore,

by adding more links (Figure 2c), the optimal solution, �vopt , can be

even calculated in case of measurement errors in PLCRs.

Given the position of the transmitter and the receiver of the

i-th link as �l
(i)
t = (x

(i)
t ,y

(i)
t )T , �l

(i)
r = (x

(i)
r ,y

(i)
r )T , the current target

position as �lh = (xh ,yh )
T , the target velocity as �v = (vx ,vy )

T ,
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Figure 2: Relation between target velocity and PLCR: the model with information of the sign of PLCR: (a)one link, (b)two

links, (c)three links; the model without the sign information: (d)one link, (e)two links, (f)three links; and (g)consecutiveness

of target movements.

and PLCR as r (i), the PLCR can be algebraically represented by the

target velocity:

a
(i)
x vx + a

(i)
y vy = r

(i), (4)

where

a
(i)
x =

xh − x
(i)
t

| |�lh − �l
(i)
t | |
+

xh − x
(i)
r

| |�lh − �l
(i)
r | |
,

a
(i)
y =

yh − y
(i)
t

| |�lh − �l
(i)
t | |
+

yh − y
(i)
r

| |�lh − �l
(i)
r | |
.

(5)

Aggregating relations of all L links, we have:

A�v = �r , (6)

where

A =

(
a
(1)
x a

(2)
x · · · a

(L)
x

a
(1)
y a

(2)
y · · · a

(L)
y

)T
,

�r =
(
r (1) r (2) · · · r (L)

)T
.

The optimal solution for �v can then be expressed in terms of A and

�r :

�vopt = (ATA)−1AT �r . (7)

3.2 The Real Model

The above elegant result, however, does not hold in practice when

the signs of PLCRs are unknown. As shown in Figure 2d, with only

the absolute PLCR value from one link, the target may move in

any direction other than the pair of tangential directions. With one

link added (Figure 2e), the number of velocity candidates reduces

to four, since there are in total four possible combinations of two

unsigned radial velocities of the two links. Adding another link

(Figure 2f) further excludes a pair of candidates with larger fitting

errors. However, further adding any number of extra links does

not solve the ambiguity of the remaining pairs of candidates, in

that all constraints (i.e. absolute PLCRs) added by additional links

are fulfilled by the two candidates due to central symmetry, as in

Figure 2f.

Fortunately, such symmetrical ambiguity can be resolved as long

as the sign of PLCR of any link is known. Recent art, WiDir [23],

proposes to identify the sign of PLCR through time lags of signal

variations of CSI subcarriers. The key insight is that different sub-

carriers experience non-zero time lags in motion-induced signal

variations due to their slightly different wavelengths. Specifically,

as the target moves towards a link, subcarriers with larger wave-

lengths experience constructive variations earlier than those with

smaller wavelengths, while later as the target moves away from

the link. Thus, the signs of PLCR could be inferred by inspecting

signs of the time lags.

However, WiDir has two major limitations: 1) The calculated

time lag is unstable due to severe noises and thus long duration

data is required to statistically identify the correct sign of PLCR. 2)

Even with sufficient data, WiDir fails to identify the sign of PLCR

when the target moves in approximately parallel with the link due

to evenly distributed time lags in such case. Thus, Widar integrate

WiDir to opportunistically obtain hints of signs of PLCR.

To fully resolve the ambiguity of solutions, we further introduce

constraints based on the continuity of target movement in the

real world. Specifically, for human movement, the directions of

consecutive velocities within a certain small time interval (e.g. 100

ms), are likely to be similar, due to natural limitations on people’s

moving accelerations and the high sampling rates supported by

commercial devices. Figure 2g illustratively demonstrates the effect

of the constraint. Suppose the last measurement of target velocity

is �vk−1. At time k , for the two symmetric velocity candidates,

�vk and �v ′
k
with the smallest fitting error, �vk holds a significantly

higher probability to be the current velocity since it is almost in
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Figure 3: Cross-correlation of subcarriers when a person

walks and stands still
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Figure 4: Extraction of PLCRs with a person walking in

straight line

the same direction as preceded �vk−1. Based on this insight, we

design an effective model to derive continuous velocities of human

movements from PLCRs extracted from CSI measurements.

Denote the sign of PLCR of the i-th link at time k by s
(i)
k
, where

s
(i)
k

∈ {−1, 1} is either decided by WiDir, or an unknown binary

variable. Then Equation 6 has following transformation:

Ak �vk = Rk �sk , (8)

where

Rk = diag
(
|r
(1)
k

| |r
(2)
k

| · · · |r
(L)
k

|
)
,

�sk =
(
s
(1)
k

s
(2)
k

· · · s
(L)
k

)T
.

And the optimal solution for �vk becomes:

�vk,opt = (AT
k
Ak )

−1
A
T
k
Rk �sk . (9)

The optimal solution for �sk can be obtained by minimizing fol-

lowing error function:

�sk,opt = argmin
�sk ∈{−1,1}L

(errl,k + β · errv,k ),

errl,k = | |Ak �vk,opt − Rk �sk | |,

errv,k = | |Ak �vk,opt − Ak−1 �vk−1,opt | |,

(10)

where errl,k is the mean square error that quantifies inconsistency

between PLCR and solved velocity. errv,k is the velocity deviation

error that quantifies the deviation of current velocity against to

last velocity estimation. β is the weight factor to prevent excessive

impact of the error term errv . The rationality lies in that the opti-

mization procedure determines two best fitted candidates mostly

based on the mean square error while applies the second velocity

deviation error term to exclude one of them.

Unlike traditional models, our CSI-Mobility model geometrically

relates PLCR to moving velocities and locations, which shows the

feasibility of simultaneous tracking of velocity and location even

using only three links.

4 PLCR EXTRACTION

This section presents processes for extracting PLCRs and their signs.

Illustrations of the processes are calculated from field-test data, as

in Section 6.1. To extract PLCRs from noisy and interfered CSIs,

Widar first preprocesses the CSI sequence to obtain noisy spec-

trogram of signals with a target frequency shift. Then, a novel

extraction algorithm based on the constraint of target acceleration

is applied to the spectrogram to finally retrieve target PLCR. To effi-

ciently extract signs of PLCRs, Widar implements cross correlation

and time lag identification in frequency domain.

4.1 CSI Preprocessing

Passband filtering. Comparing to frequency of reflecting signals

caused by human movement, the frequency of impulses and burst

noises is generally higher, and the frequency of interference caused

by static and quasi-static reflectors and the LOS signal is generally

lower. Thus, it is natural to surpress these uninteresting signal

components with filters. Specifically, we adopt a Butterworth filter

(with cutting off frequency set to 2 Hz and 80 Hz respectively) for

its flat amplitude response in passband that does not distort target

signal components, and apply filters to all subcarriers of CSI power

series |H (f , t)|2 to eliminate independent noises and interference

in each subcarrier.

Subcarrier selection. Figure 3 shows correlations of CSI power

segments of different subcarriers in typical scenarios where human

moves and stands still in the monitor area. When the humanmoves,

all OFDM subcarriers experience similar power variations caused

by the reflecting signal, and have a statistically higher degree of

correlation than in static scenario. However, some subcarriers may

experience weaker power variations due to reflector motions, and

are more vulnerable to correlated noises. It inspires us to design a

correlation-driven selection strategy to choose appropriate subcar-

riers to increase the proportion of reflecting power while surpress

irrelevant noise. Specifically, we split the CSI power series into over-

lapped 0.5 s segments. For segments with moving targets, we select

first 20 subcarriers which have larger increases in correlation coeffi-

cients relative to latest static segments. Then, we perform Principal

Component Analysis (PCA) on the selected group of subcarriers

and select the first PCA component for time-frequency analysis.

Thanks to subcarrier selection and PCA based extraction, the first

PCA component contains major and consistent power variations

caused by all target motions.

Time-frequency Analysis. To efficiently estimate PLCR at sta-

ble resolution across both frequency and time, we apply STFT to

the first PCA component. For each segment of the PCA series, a

0.125 s Gaussian window is applied to smooth the spectrogram and

a 0.5 s zero padding is added to achieve finer frequency resolution

of 1 Hz. Finally, the non-overlapping spectrograms of all segments

are spliced together to generate the whole PLCR spectrogram (Fig-

ure 4a).
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Figure 5: Illustration of trace segmentation and refinement for a long trace

4.2 PLCR Extraction Algorithm

The human torso reflects more signals than other body parts, lead-

ing to dominant components in spectrogram. Thus, we could select

frequency bins with maximum power as the PLCRs caused by hu-

man movements. In practice, however, this yields significant errors

(Figure 4b), since the spectrogram may contain abnormal fluctua-

tions due to remnant noises and interferences in the passband.

To remove noise and interference in such situation, we propose

an extraction algorithm based on the acceleration constraints of

path length change. Since the acceleration a and Doppler frequency
shift fD has following relation:

a(t) =
d2

dt2
d(t) = λ

d

dt
fD (t), (11)

with the knowledge of the maximum acceleration of walking hu-

man [29], we can properly decimate the spectrogram in time domain

to limit the frequency change in adjacent time samples to a sin-

gle frequency bin. For convenience of programming, we adopt a

relaxed value of 3.2 m/s2 as the maximum acceleration, and accord-

ingly, we set the upper bound of acceleration of path length change

to am = 6.4 m/s2. As the frequency resolution of the spectrogram

is Δf = 1 Hz, we decimate the spectrogram to sampling rate of

fs = 128 Hz. Instead of selecting the strongest bin at each time

point, we maximize the overall power of the whole trajectory.

Denote the spectrogram asWT×F , where F is number of fre-

quency bins and T is number of time bins. The optimal PLCR, as

the function of indices of frequency bins, can be solved via the

following dynamic programming problem:

PLCRopt = PLCR(argmax
f1, · · · ,fT

T∑
i=1

Wi,fi ),

s.t. | fi − fi−1 | <= 1; i = 2, · · · ,T .

(12)

Upon obtaining the PLCR series, we apply a moving average win-

dow to the series to further smooth the data (Figure 4b).

4.3 PLCR Sign Identification

After extraction of PLCR, Widar tries to identify the sign of PLCR.

Instead of calculating cross covariance that may suffer from vari-

ations of absolute signal power as in [23],Widar calculates cross

correlation between subcarriers for time lags. Specifically, for each

PLCR sample,Widar calculates time lags between subcarrier seg-

ments around the sample. Denote s(t ,T ) as the segment whose

center time is t and interval length is T . For subcarriers s1, s2, the

cross correlation function R(τ ) is calculated as:

R(τ ) =
F−1{F {s1(t , 2T )} · F

∗{s2(t , 2T )w(t)}}(t + τ )

| |s1(t + τ ,T )| | · | |s2(t ,T )| |
,

−
T

2
≤ τ ≤

T

2

(13)

where F is Fourier transform, andw(t) is a window function that is

1 within interval [t − T
2 , t +

T
2 ] and 0 elsewhere. The key advantage

of cross correlation in frequency domain lies in its computational

efficiency compared with that in time domain. Specifically, the

calculation of numerator only involves Fourier transform and dot

product, while calculation of denominator can be carried out it-

eratively in linear time. Thus the calculation of cross correlation

only requires only O(TloдT ) time cost. Widar adopts T = 0.125 s

CSI segment and calculates time lags between subcarriers spacing

every 5 indices, as recommended in [23].

However, since the calculated time lag is unstable,Widar accu-

mulates time lags as PLCR is above a threshold (e.g. 0.5 m/s), and

calculates the distribution of signs once PLCR decreases below the

threshold or until enough time lags has been accumulated (e.g. 3 s).

The signs of continuous PLCRs are opportunistically identified if

the percentage of specific sign exceeds a threshold (e.g. 70%). The

rationality behind such operation is that when the sign of PLCR

changes, the PLCR must cross zero line and a significant decrease

in PLCR can be observed. In contrast, continuous large PLCRs are

likely to have the same signs.

5 TRACKING VELOCITY & LOCATION

To fully track human velocity as well as location, Widar has to

detect human movement, pinpoint the human to provide initial

target location and successively update his velocity and location.

Lacking external information for references,Widar further adopts

a pseudo self-calibration scheme and an antenna selection criterion

to refine tracking results.

5.1 Movement Detection

Velocity estimation should be performed only when a person is

walking nearby. To detect the start and end of human walking,

Widar makes two key observations. First, as in Figure 3, the cor-

relation between different subcarriers increases in the presence

of human walking. Second, when a human is walking, the spec-

trogram power concentrates at certain frequencies corresponding

to the signal reflected by the human body; otherwise, the power
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distribution of the spectrogram is dispersed. In practice,Widar con-

tinuously monitors the environment, and calculates the mean cross-

correlation valueC and mean normalized variance σ 2 of power dis-

tribution of frequency spectrum. The movement detection indicator

(MDI) is then defined asCe−(σ
2−σ 2

m ), whereσ 2
m is theminimumvari-

ance observed in last two seconds before user starts moving. Only

when MDI exceeds the predefined location-independent threshold

doesWidar start to track human movement.

5.2 Initial Location Estimation

Widar tracks human movements with velocity, rather than location

estimations. Consequently, an initial location is needed. There ex-

ists approaches for passive localization [8, 16], which however are

not directly feasible for scenarios ofWidar . LiFS [16] requires dense

deployment of devices to ensure targets always sufficiently close to

the LoS of some links. Dynamic-Music [8] requires pre-calibration

of NICs and strictly shaped antenna array. To complement the

tracking process while avoiding learning and training, Widar pro-

vides an alternative approach through a quick-and-dirty location

search. Specifically, Widar first searches through the whole track-

ing area at a coarse resolution, identifying a location that yields the

least fitting error of the trace, as the initial location. Then,Widar

searches through the narrowed area around the initial location

at a fine-grained resolution to refine the initial location accuracy.

This search step can be iterated until the fitting error achieves the

minimum.

5.3 Successive Tracking

As the initial direction at the start point is unknown, we set �v0 as a
small disturbance that takes values in a pair of symmetric vectors

(e.g. (0.01, 0.01)T and (−0.01,−0.01)T ).

Upon obtaining current velocity �vk,opt using Equation 10, the

target location can be updated as:

�lk+1 = �lk + �vk,opt · Δt , (14)

where Δt is the interval between two consecutive measurements.

And the target velocity thereafter can be successively estimated in

the same way.

5.4 Trace Refinement

Pseudo-calibration. Opportunistic location hints are necessary

for calibration in a tracking system to avoid accumulative errors.

Since we do not have extra information to serve as precise initial

locations and for calibration, we employ a pseudo-calibration ap-

proach based on trace segmentation to refine the tracking results

and remove erroneous trajectories.

As shown in Figure 5, we observe that Widar may misjudge the

velocity direction in some cases, especially when the user takes

a sharp turn or walks very slowly. To avoid error accumulation

due to such mistakes, we first perform trace segmentation at these

vulnerable moments and re-initialize the tracking process for each

new segment to guarantee the correct direction.

Antenna selection. During real tracking, we observe that some

links yield wrong PLCRs due to weak reflecting signal-to-noise ratio

and small PLCR itself, which may lead to totally wrong trace. To

pick out these “bad” antennas,Widar adopts two-round tracking

for each trace segment. In the first round, least square method

(Equation 9) is used to calculate optimal velocity. In the second

round, a weight is applied to the least square method in order to

suppress “bad” antennas:

�vk,opt = (AT
k
WAk )

−1
A
T
k
WRk �sk . (15)

whereW = diag(w(1)w(2) · · ·w(L)) is the weight matrix andw(i) is

the weight for the i-th link. Theweights of links are calculated based

on the average mean square errors in the first round. Suppose the

error of the i-link is err(i), the weights of links with first 4 smallest

errors are set to 1 to ensure enough independent equations for least

square method, and the weights of rest links are updated as:

w(i) = e−ζ (err
(i )−errmin) (16)

where ζ controls the extent of suppressing, and errmin is the small-

est link error.

6 EVALUATION

6.1 Experiment Methodology

Implementation. We implement Widar using three off-the-shelf

mini-desktops (physical size 17cm×17cm) equipped with Intel 5300

NIC. One mini-desktop with one external antenna works as the

transmitter, while the other two mini-desktops, each with three

external antennas, work as receivers. This provides 6 links in total

for tracking. To obtain CSI measurements from Wi-Fi data frames,

all mini-desktops are installed with the Linux 802.11n CSI Tool [4]

and set up to inject in monitor mode on Channel 161 at 5.825 GHz.

A high transmission rate of 2000 Hz is adopted, for comparing the

effects of different sampling rates via downsampling.

Evaluation Setup. Figure 6 shows the deployment schemes

ofWidar . Specifically, two types of schemes are designed, where
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Figure 8: Overall performance of velocity and location tracking

devices are deployed at the corner (Setup 1), and where devices

are deployed at one side (Setup 2). The tracking area is a 4 m×4

m square. We design traces with various lengths, directions and

shapes (such as line, curve, rectangular, circle and fold line, etc.),

and test them with 5 volunteers. The volunteers include 4 males

and 1 female, with heights in the range of 1.6 m to 1.8 m, and ages

in the range of 20 to 35. Code and data samples are available at

our official website 1.

Ground Truth. To obtain the ground truth locations and veloc-

ities of human trajectories, we install a Canon 70d digital camera to

record walking videos and extract traces using video-based tracking.

The camera frames the experimental area from a field of view as

shown in Figure 7 and generates FHD (1920×1080) videos at a rate

of 25 fps. The visual tracking algorithm consists of two components.

First, it identifies the tracking target in the video frame. To identify

the tracking target, testers are asked to wear a light green T-shirt

which produces high chromatic contrast against the background

(e.g. wall and floor), as in Figure 7. Second, it transforms the pixel

coordinates of the target to the world coordinates in physical space.

The transformation is performed based on the projection matrix

calculated from visual markers deployed in the experimental field.

The velocity output of Widar and ground truth are aligned by

minimizingmean square error after alignment. The location outputs

are aligned according to the corresponding velocity. Both velocity

and location errors are calculated in a point-to-point manner.

6.2 Overall Performance

Performance in Velocity Tracking We first report performance

of Widar on tracking target velocity, in terms of both speed and

direction. For speed, we compare Widar with a naı̈ve method: Max

PLCR, which takes half the largest PLCR among all links as its

estimate of target speed. In addition, we show the estimation errors

when only one link is available (denoted Single PLCR). Figure 8a

plots the CDF of relative speed errors of three methods over all

trajectories. As illustrated, Widar achieves the highest accuracy

with a median error of 13%, while those of Max PLCR and Single

PLCR are 19% and 40% respectively. The favorable performance of

Max PLCR attributes to the deployment of links, where links are

deployed in two orthogonal directions in the experiment.

While bothWidar and Max PLCR report highly accurate veloc-

ity amplitude, Widar further provides velocity direction, which

is necessary for tracking. We compareWidar with WiDir, which

1 http://tns.thss.tsinghua.edu.cn/wifiradar/WidarProject.zip

essentially calculates PLCR ratio of orthogonal links as target’s

moving direction. As shown in Figure 8b, Widar achieves an error

within 18◦ for more than 80% measurements, while WiDir achieves

only an error of 55◦. The superior performance of Widar is due to

its further consideration of location, rather than merely PLCRs as

in WiDir.

Performance in LocationTracking Figure 8c shows the track-

ing error across all trajectories. As illustrated, with knowledge of

accurate initial location, Widar achieves high tracking accuracy

with a median tracking error of 25 cm. Without initial location,

the performance slightly degrades yet the median tracking error

is still as low as 38 cm. In addition, even without precise initial

knowledge, the 90-percentile tracking error is limited by 78 cm,

guaranteeing decimeter-level accuracy. Figure 8d shows the track-

ing error with respect to the reflection distances to the receivers

with a map of the tracking area under the setup 1. As shown, when

the target is close to the link (i.e. the origin and two axes),Widar

achieves higher accuracy with average error of 20 cm. Accuracy

degrades when the target moves away from the link. The tracking

error is maximized on the side opposite to the links. These trends

are caused by two factors: the drop of SNR of the reflecting signal,

and the decrease of PLCR of the reflecting paths. As a result, the

coverage of single Widar system is limited. However, it can still be

extended by deploying multiple cooperativeWidar systems.

Currently,Widar requires intensive computations for initial loca-

tion estimation and opportunistic calibration, which may limit the

scalability ofWidar . Thus, location hints obtained by certain pas-

sive localization techniques, even not accurate enough, may benefit

Widar for tracking. Fortunately, the advent of passive localization

works [8, 16] make it possible. For example, Dynamic-MUSIC [8]

estimates angle of arrival (AoA) of moving targets, which may

complement Widar by reducing searching range of initial location

and opportunistic calibration. We plan to integrate both AoA and

Doppler frequency shifts to achieve efficient and accurate passive

tracking in future work.

6.3 Parameter Study

Impact of walking direction. We further explore how walking

direction relative to the link impacts the accuracy of velocity esti-

mation. Both transmitters and receivers are placed at one side of

the tracking area, and testers are asked to walk in straight lines

with various directions. As shown in Figure 9a, the performance

of Max PLCR significantly decreases when the walking direction
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Figure 9: Imapcts of different factors

is parallel to the link. In contrast, Widar achieves high accuracy

through all walking directions. In conclusion,Widar successfully

tracks velocity, while simply converting PLCR by a fixed rate as

target speed leads to severe underestimation and high errors.

Impact of walking distance. Currently,Widar does not em-

ploy passive localization for calibration, it is interesting to examine

the accumulative errors over different walking distances. As shown

in Figure 9b, the tracking error accumulates at a moderate rate as

the target continuously moves. Specifically, the median tracking er-

rors increase from 10 cm to 61 cm when human continuously walks

for 1 m to 10 m. While pseudo-calibration limits the accumulation

rate of tracking error, it still requires occasionally pinpointing the

target to avoid accumulation error. As current precise passive lo-

calization methods [8, 16] do not directly apply to Widar , we leave

the development of the localization method for future work.

Impact of deployment. As different deployment of links may

impact the tracking accuracy, we design two deployment schemes

as in Figure 6 and evaluate the performance under individual setting.

Specifically, in Setup 1, the transmitter is placed at the corner of

the tracking area, and two receivers are deployed along two sides

adjacent to that corner. In Setup 2, all devices are placed at one side

of the tracking area, where the transmitter is placed in the middle

and two receives are placed at opposite sides of the transmitter.

Testers are asked to walk in straight lines with various directions.

As shown in Figure 9c, whileWidar achieves consistent accuracy

across all directions under both deployments, the error distributions

with the two deployments are apparently different. Specifically, the

direction with maximum error in Setup 1 is 135◦, and that in Setup

2 is 0◦, which is the direction almost in parallel with all links.

Impact of human diversity. To determine whether Widar

consistently works for different users, we recruit five volunteers

to participate in experiments. The five volunteers have different

ages (from 20∼30), heights (1.6 m∼1.8 m) and genders. Except for

one participant who helped develop the prototype, the other four

volunteers were for the first time taking part in the experiment

without training. Figure 9d plots the tracking errors of Widar with

different tracking targets. As shown, Widar tracks all targets with

high precision, without knowing any body features of the targets.

Impact of packet transmission rate. Initially, we set the

packet transmission rate to 2000 Hz and interpolate CSI measure-

ments to 2048 Hz. To evaluate the impact of different transmission

rates, we test Widar with down-sampled CSI measurements of

1024, 512, 256 Hz. Theoretically, decreasing sampling rate may

aggravate aliasing effect of the spectrogram as the high-frequency

power aliases with target-frequency power, which leads to increase

in PLCR estimation error. However, as shown in Figure 9d, the

tracking accuracy ofWidar only slightly decreases, as the sampling

rate exponentially decreases from 2048 Hz to 256 Hz. The counter-

intuitive results indicate that the major power of CSI measurements

concentrates at the low end of spectrum, and a transmission rate

of 250 Hz is sufficient for tracking human walking.

7 RELATEDWORK

RF-based Active Tracking. Active motion tracking, which essen-

tially localizes radio devices attached on objects, has been studied in

depth. Various signal features, from RSSI [27] to CSI [13], have been

exploited as location fingerprints. Incorporating inertial sensors

embedded in mobile devices exposes a new way for localization

tracking [12]. However, inertial sensors can only be used as step

counter due to unknown drifts and changing device orientation [5].

Other active motion tracking systems are built upon phased an-

tenna arrays [24]. SpotFi [7] jointly estimates AoA and ToF of the

incident signal by synthesising sensors at sub-carrier level. How-

ever, these tracking schemes require dedicated radio devices that

expose accurate phase information of antenna array, which is un-

available in COTS Wi-Fi devices due to unknown phase calibration

factors [18].

RF-based Passive Motion Tracking. Passive motion tracking

exploits reflections of signals to recognize and localize moving

objects. Isolating certain reflections can be done in either time

domain [9] or frequency domain [1, 2]. WiVi [3] proposes a MIMO

interference nulling algorithm to focus the receiver on moving tar-

gets. In contrast, however, isolating certain reflections can not be

processed on COTS Wi-Fi devices due to limited bandwidth, con-

stant carrier frequency and asynchronization between transmitter

and receiver.

Widar is similar to conventional Doppler radar, yet it develops

finer tracking model to consider location differences of transceivers

and accurately relate target’s radial velocity with Doppler frequency

shifts. Further, Widar works on COTS WiFi devices, where it re-

covers the signs of Doppler frequency shifts using subcarrier cor-

relations and human motion continuity. Finally, Widar targets

multipath-rich indoor environments, and adopts novel algorithms

to filter and extract target Doppler frequency shift from noisy CSI

measurements.
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Recently, mTrack [21] designs a mmWave radio system to track

writing objects with signal phase shifting. WiDeo [6] jointly esti-

mates ToF and AoA to identify all reflectors and extract moving

ones by comparing successive estimation. Tadar [26] tracks hu-

man motion by extracting phase of signals reflected off human

body. WiDraw [14] tracks in-air hand motion by computing AoA of

blocked incident signals. D-Watch [17] tracks human by identifying

AoA of RFID tags’ backscatter signal blocked by human. Similarly,

phase information used in these tracking systems is unavailable in

COTS Wi-Fi devices.

Recent techniques achieve decimeter-level passive localization

using COTS Wi-Fi [8, 16]. LiFS [16] leverages shadowing effect of

targets near LoS of links and requires dense deployment of devices.

Dynamic-Music [8] leverages the incoherence between reflecting

signal and static signal to separate reflecting signal and estimate its

AoA. Thus it requires pre-calibration of NICs and strictly shaped

antenna array. In contrast,Widar targets at more practical scenarios

where only a few devices are casually deployed on area edges.

Wi-Fi-basedGesture andActivityRecognition. Wi-Fi-based

activity recognition attracts considerable research interests recently.

Many innovative applications and systems have been designed, in-

cluding gesture recognition [19], respiration detection [22] and

direction estimation [11], etc. These works mainly target at activity

recognition instead of location tracking and speed estimation. As

such, most of them employ learning-based solutions for recognition.

WiSee [10] leverages Doppler effect to enable gesture recognition

using specialized hardwares (USRP). CARM [18] uses off-the-shelf

Wi-Fi NICs and correlates CSI value dynamics with human motion,

yet without velocity. In this paper, Widar further reveals the re-

lationships of CSI dynamics and real human moving velocity. In

addition, Widar targets movement tracking and enables simultane-

ous estimation of human velocities and locations.

8 CONCLUSION

In this paper, we propose a Wi-Fi-based passive tracking system

Widar that simultaneously estimates human’s location and velocity

at decimeter level. First we build a model that geometrically quan-

tifies the relationships between CSI dynamics and human mobility.

Then we propose several novel techniques to translate this model

into a fine-grained tracking system. We implementWidar on COTS

Wi-Fi devices and evaluate it in real environments. Experimental

results show that Widar achieves decimeter-level accuracy with

a median location error of 25 cm and 38 cm with and without ini-

tial positions and a median relative velocity error of 13%. Future

work focuses on incorporating non-learning based localization and

applying Widar to fortify various sensing applications.
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[13] Souvik Sen, Božidar Radunovic, Romit Roy Choudhury, and Tom Minka. 2012.
You are facing the Mona Lisa: spot localization using PHY layer information. In
Proc. of ACM MobiSys.

[14] Li Sun, Souvik Sen, Dimitrios Koutsonikolas, and Kyu-Han Kim. 2015. Widraw:
Enabling hands-free drawing in the air on commodity wifi devices. In Proc. of
ACM MobiCom.

[15] Bo Tan, Karl Woodbridge, and Kevin Chetty. 2014. A real-time high resolu-
tion passive WiFi Doppler-radar and its applications. In International Radar
Conference.

[16] Ju Wang, Hongbo Jiang, Jie Xiong, Kyle Jamieson, Xiaojiang Chen, Dingyi Fang,
and Binbin Xie. 2016. LiFS: Low Human Effort, Device-Free Localization with
Fine-Grained Subcarrier Information. In Proc. of ACM MobiCom.

[17] Ju Wang, Jie Xiong, Hongbo Jiang, Xiaojiang Chen, and Dingyi Fang. 2016. D-
watch: Embracing” bad” multipaths for device-free localization with COTS RFID
devices. In Proc. of ACM CoNEXT.

[18] Wei Wang, Alex X Liu, Muhammad Shahzad, Kang Ling, and Sanglu Lu. 2015.
Understanding and modeling of wifi signal based human activity recognition. In
Proc. of ACM MobiCom.

[19] Yan Wang, Jian Liu, Yingying Chen, Marco Gruteser, Jie Yang, and Hongbo
Liu. 2014. E-eyes: device-free location-oriented activity identification using
fine-grained wifi signatures. In Proc. of ACM MobiCom.

[20] Bo Wei, Ambuj Varshney, Neal Patwari, Wen Hu, Thiemo Voigt, and Chun Tung
Chou. 2015. drti: Directional radio tomographic imaging. In Proc. of ACM/IEEE
IPSN.

[21] Teng Wei and Xinyu Zhang. 2015. mtrack: High-precision passive tracking using
millimeter wave radios. In Proc. of ACM MobiCom.

[22] Chenshu Wu, Zheng Yang, Zimu Zhou, Xuefeng Liu, Yunhao Liu, and Jiannong
Cao. 2015. Non-Invasive Detection of Moving and Stationary Human With WiFi.
Selected Areas in Communications, IEEE Journal on (2015).

[23] Dan Wu, Daqing Zhang, Chenren Xu, Yasha Wang, and Hao Wang. 2016. WiDir:
walking direction estimation using wireless signals. In Proc. of ACM UbiComp.

[24] Jie Xiong and Kyle Jamieson. 2013. ArrayTrack: a fine-grained indoor location
system. In Proc. of USENIX NSDI.

[25] Fan Yang, Qiang Zhai, Guoxing Chen, Adam C Champion, Junda Zhu, and Dong
Xuan. 2016. Flash-Loc: Flashing Mobile Phones for Accurate Indoor Localization.
In Proc. of IEEE INFOCOM.

[26] Lei Yang, Qiongzheng Lin, Xiangyang Li, Tianci Liu, and Yunhao Liu. 2015. See
through walls with cots rfid system!. In Proc. of ACM MobiCom.

[27] Zheng Yang, Chenshu Wu, and Yunhao Liu. 2012. Locating in fingerprint space:
wireless indoor localization with little human intervention. In Proc. of ACM
MobiCom.

[28] Zheng Yang, Zimu Zhou, and Yunhao Liu. 2013. From RSSI to CSI: Indoor
localization via channel response. ACM Computing Surveys (CSUR) (2013).

[29] Jungwon Yoon, Hyung-Soon Park, and Diane Louise Damiano. 2012. A novel
walking speed estimation scheme and its application to treadmill control for gait
rehabilitation. Journal of neuroengineering and rehabilitation (2012).


