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Motivation

Understanding citizens’ main transportation modes at urban scale is 
beneficial to a range of applications.
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Motivation

The inference of trajectory’s transportation modes has been well-studied 
on GPS and phone sensor data, which are collected in a limited scale.
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GPS Data

Geolife dataset[1]: 
182 users

Sensor Data

SHL dataset[2]: 
3 users

[1] Yu Zheng, Yukun Chen, Quannan Li, Xing Xie, and Wei-Ying Ma. 2010. Understanding Transportation Modes Based on GPS Data for Web Applications. ACM Trans. Web 4, 1, 
Article 1 (Jan. 2010),

[2] Lin Wang, Hristijan Gjoreskia, Kazuya Murao, Tsuyoshi Okita, and Daniel Roggen. 2018. Summary of the Sussex-Huawei Locomotion-Transportation Recognition Challenge. 
In Proceedings of UbiComp 2018.



Cellular networks

Fast development of cellular networks:

• Large scale, both spatially and temporally.

• Low cost, already collected for billing purposes.

8,918,157,500
Mobile Devices

7,687,783,109 5,123,988,900
World Population Unique Subscribers
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Question

Can cellular data be used to infer users’ main transportation modes?

• Direct solution based on previous methods:

Find Trips Infer Mode Main Mode

However, this direct solution does not work.
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The direct solution does not work for cellular data:

Coarse spatial granularity Irregular temporal sampling
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CellTrans

Stay
Stay

Stay

Trip

Trip

• Instead of focusing on each trip, 
CellTrans considers a long period 
of users’ location records.

• The expansion of observation time 
can compensate for the coarse 
spatiotemporal granularity of 
cellular data.
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Framework of CellTrans
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Dataset
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We base our design on two large-scale cellular datasets from different 
cities: Shenyang and Dalian. 

Shenyang Dalian



Trajectory Processing

Parsing users’ raw cellular data into stays and trips.[1]

[1] S. Jiang, J. Ferreira, and M. C. Gonzalez. 2017. Activity-Based Human Mobility Patterns Inferred from Mobile Phone Data: A Case Study of Singapore. IEEE Transactions on 
Big Data 3, 2 (June 2017), 208–219

Stay

Stay

Stay

Trip

Trip

• Stays usually correspond to users’ 
activities like resting at home or 
working at office. 

• Trips are trajectory segments 
when users travel from one stay 
region to another by some 
transportation means
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Mobility Features
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Stays & Trips
Mobility 
Features

Main Mode
Extract Infer

Movement Range Trip Statistics User Behavior



Mobility Features: Movement Range
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It is easier for people driving car to visit more and further places 
compared to people taking public transportation.

1. Radius of Gyration

rg=rg rg=rgncluster=4

2. # of Stay Clusters

ncluster=2

3. Convex Hull Area

a=0.5*rg*rg a=0



Mobility Features: Trip Statistics
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The high-level statistics of trips can provide useful information to infer 
users’ main transportation modes.

4. # of Trips

5. # of Night Trips

6. Average Speed



Mobility Features: User Behavior
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The living pattern and economical status may be different between users 
of different modes.

7. Network Access during Trip

8. Schedule

9. House Price



Mode Inference Model

Scenario 1: With Labeled Users. We assume that partial users’ actual 
modes are known, so a supervised model can be trained.
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• Radius of Gyration
• # of Stay Clusters
• Area of Convex Hull
…

Mobility Features

• SVM
• Random Forest
• MLP
…

Supervised Models



Mode Inference Model

Scenario 2: Without Labeled Users:
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Car or Public trans. users

… Clustering

…

…
…



Model 
Training

Mode Inference Model

Scenario 2: Without Labeled Users:
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Labeled 
Users

…
SVM
RF

MLP …

…

City A

…

City B

… …



Evaluation

Groundtruth:
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• ws/mapapi/navigation/auto

• ws/transfer/navigation/auto

• …

• ws/mapapi/navigation/bus/ext

• ws/mapapi/realtimebus/linestation

• …

Shenyang Dalian



Evaluation: Scenario 1
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MFR Data

Mobility 
Features

SVM

Main Mode

Trips
Previous 
Methods

Aggregate



Evaluation: Scenario 1
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Shenyang Dalian

• In Shenyang, CellTrans improves the accuracy by 20%.

• In Dalian, CellTrans improves the accuracy by 19%.



Labeled 
Users

• Evaluate the trained model at urban scale.

Evaluation: Scenario 1

21

… …

Evaluate on All Users

Model 
Training

SVM Model



Evaluation: Scenario 1

22

Distribution of car/public transportation users’ homes:

• A: High-end residential areas -> More car users.

• B: Universities -> More public transportation users.

Shenyang, car users Shenyang, public transportation users



Evaluation: Scenario 2
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Shenyang Dalian

• Our methods outperform previous methods in both cities.

• The transferred model achieves the best results.



How important is each feature? -> The coefficients in Linear SVM.

• Some features are important in both cities. • Some features are important in one city. 

Evaluation: Feature Importance
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Dalian

Shenyang



Evaluation: Feature Distribution
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• Some features have obviously different distribution between two 
modes.



Evaluation: Feature Distribution
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• Some features have similar distribution, but they are still helpful to 
differentiate main transportation modes.



Summary

• We present CellTrans, a novel framework to survey users’ main 
transportation modes (public transportation or private car) at urban 
scale.

• We devise techniques to extract various mobility features from noisy 
cellular data that are pertinent to users’ transportation modes. 

• We carry out comprehensive experiments to evaluate the performance 
of CellTrans on two large-scale cellular datasets.





Dataset

1 2 3a
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Dataset

30

The distribution of cellular data is uneven. 



Preprocessing

The preprocessing module deals with two problems of cellular data:
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Oscillation[1] Bursty Sampling[2]
[1] Ling Qi, Yuanyuan Qiao, Fehmi Ben Abdesslem, Zhanyu Ma, and Jie Yang. 2016. Oscillation Resolution for Massive Cell Phone Traffic Data. MobiData ’16

[2] Yi Zhao, Zimu Zhou, Xu Wang, Tongtong Liu, Yunhao Liu, and Zheng Yang. 2019. CellTradeMap: Delineating Trade Areas for Urban Commercial Districts with Cellular 
Networks. INFOCOM 2019.



Mode Inference Model

Scenario 1: With Labeled Users:
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Value of Rg

33

CDF of rg for all users and car/pub. users. 

Shenyang Dalian



Selection of k in K-means

34

Accuracy with k. 

Shenyang Dalian



How many labeled users do we need?
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Shenyang Dalian


