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Motivation

Understanding citizens’ main transportation modes at urban scale is
beneficial to a range of applications.
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Motivation

The inference of trajectory’s transportation modes has been well-studied
on GPS and phone sensor data, which are collected in a limited scale.

GPS Data — # Sensor Data

Geolife dataset[1]: US S’A SHL dataset(2]:
182 users NERSTY  HUAWE 3 users

[1] Yu Zheng, Yukun Chen, Quannan Li, Xing Xie, and Wei-Ying Ma. 2010. Understanding Transportation Modes Based on GPS Data for Web Applications. ACM Trans. Web 4, 1,
Article 1 (Jan. 2010),

[2] Lin Wang, Hristijan Gjoreskia, Kazuya Murao, Tsuyoshi Okita, and Daniel Roggen. 2018. Summary of the Sussex-Huawei Locomotion-Transportation Recognition Challenge.
In Proceedings of UbiComp 2018.




Cellular networks

Fast development of cellular networks:
* Large scale, both spatially and temporally.

* Low cost, already collected for billing purposes.
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Question

Can cellular data be used to infer users’ main transportation modes?
e Direct solution based on previous methods:
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However, this direct solution does not work.




The direct solution does not work for cellular data:
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CellTrans

Trip e Instead of focusing on each trip,
Stay CellTrans considers a long period
of users’ location records.

e expansion of observation time
ompensate for the coarse
poral granularity of

Stay cellular data.




Framework of CellTrans

Preprocessing Trajectory Processing I\/Ialn Transportatien Mode Inference

| : | : | |

I I I

| MFR D : | Extract : | M t U+ :

: ata | : xtrac | : ovemen Trip Statistics SEI.’ |

| E ] Actlwtles 1k Range behavior |

| i ! ! S R I

I I

| | Stays Trips |1 Supervised\ Unsupervise :

: : : g : : Model Model |

| T ! > il ¥ ¥ |

| | L P

| \ I || NG ] Car Users Bus Users :
I

: Preprocess | | : / : : v :

| N . I | ‘

| v : | ' ¥ | : : <] L :

| ) Mobility 1k ] & |

| Trajectories | | Features | |

| N N\ N |

I I I




Dataset

We base our desigh on two large-scale cellular datasets from different
cities: Shenyang and Dalian.

Statistics Value Statistics Value
Records 8 x 10° Records 12 X 10°

Cell towers 1.2 x 104 Cell towers 1.2 x 104
Covered users 1.8 X 10° Covered users 1.1 x 10°
Covered area 1.3 X 10* km? Covered area 1.3 X 10* km?

Covered period Dec. 19, 2016 - Feb. 4, 2017 Covered period Dec. 19, 2016 - Feb. 4, 2017

Shenyang Dalian




Trajectory Processing

Parsing users’ raw cellular data into stays and trips.[1]

e Stays usually correspond to users’
activities like resting at home or
working at office.

e Trips are trajectory segments
when users travel from one stay
region to another by some
transportation means

[1] S. Jiang, J. Ferreira, and M. C. Gonzalez. 2017. Activity-Based Human Mobility Patterns Inferred from Mobile Phone Data: A Case Study of Singapore. IEEE Transactions on
Big Data 3, 2 (June 2017), 208-219
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Mobility Features
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Mobility Features: Movement Range

It is easier for people driving car to visit more and further places
compared to people taking public transportation.

1. Radius of Gyration

\ 2. # of Stay Clusters

| ; 3. Convex Hull Area
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Mobility Features: Trip Statistics

The high-level statistics of trips can provide useful information to infer
users’ main transportation modes.

4. # of Trips

5. # of Night Trips
6. Average Speed




Mobility Features: User Behavior

The living pattern and economical status may be different between users
of different modes.

/. Network Access during Trip

8. Schedule

9. House Price




Mode Inference Model

Scenario 1: With Labeled Users. We assume that partial users’ actual
modes are known, so a supervised model can be trained.

Mobility Features Supervised Models
* Radius of Gyration e SVM
e # of Stay Clusters * Random Forest

 Area of Convex Hull e MLP




Mode Inference Model

Scenario 2: Without Labeled Users:

Car or Public trans. users
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Mode Inference Model

Scenario 2: Without Labeled Users:
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Evaluation

Groundtruth:
e ws/ mébgﬂ}'@ﬁ%ation/but(éext Dalian
Transportation mode # Groundtruth users Transportation mode # Groundtruth users

Car 679 Car 813
«~ Public transportation 633 Public transportation 464

e




MFR Data

Evaluation: Scenario 1
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Evaluation: Scenario 1

e |n Shenyang, CellTrans improves the accuracy by 20%.
e |n Dalian, CellTrans improves the accuracy by 19%.
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Evaluation: Scenario 1

e Evaluate the trained model at urban scale.

Model

— SVM Model
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Evaluation: Scenario 1

Distribution of car/public transportation users’ homes:
e A: High-end residential areas -> More car users.
e B: Universities -> More public transportation users.

Shenyang, car users Shenyang, public transportation users
22




Evaluation: Scenario 2

e Our methods outperform previous methods in both cities.
e The transferred model achieves the best results.
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Evaluation: Feature Importance

How important is each feature? -> The coefficients in Linear SVM.
e Some features are important in boghcdivies.
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Evaluation: Feature Distribution

e Some features have obviously different distribution between two

modes.
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Evaluation: Feature Distribution

e Some features have similar distribution, but they are still helpful to
differentiate main transportation modes.
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Summary

e We present CellTrans, a novel framework to survey users’ main
transportation modes (public transportation or private car) at urban
scale.

e \We devise techniques to extract various mobility features from noisy
cellular data that are pertinent to users’ transportation modes.

e We carry out comprehensive experiments to evaluate the performance
of CellTrans on two large-scale cellular datasets.
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Dataset

User Time Tower Tower location HTTP host HTTP URI
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Dataset

The distribution of cellular data is uneven.

le8
p Jrn
8 - 8 - 7 6 “Ag“tm
/ B
L .6 7 " 6 // B f
&) &) / S 4 \
O 4 1 @) 4 // o
// FH
~”
D — Shenyang 2 ,z’ — Shenyang 5 —&— Shenyang
= —=- Dalian _,..-", —=- Dalian =A:- Dalian
.0 LR | LR | LR | LU .0 - 1 I 1 I I I
10° 10! 102 108 104 10° 102 104 108 0 10 20

# Daily records per person # Records per tower Hour




Preprocessing

The preprocessing module deals with two problems of cellular data:
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[1] Ling Qi, Yuanyuan Qiao, Fehmi Ben Abdesslem, Zhanyu Ma, and Jie Yang. 2016. Oscillation Resolution for Massive Cell Phone Traffic Data. MobiData '16

[2] Yi Zhao, Zimu Zhou, Xu Wang, Tongtong Liu, Yunhao Liu, and Zheng Yang. 2019. CellTradeMap: Delineating Trade Areas for Urban Commercial Districts with Cellular
Networks. INFOCOM 2019. 31




Mode Inference Model

Scenario 1: With Labeled Users:

All users
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Value of Rg

CDF of rg for all users and car/pub. users.
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Selection of k in K-means

Accuracy with k.
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How many labeled users do we need?

Proportion of training data

Shenyang

.y - —— . e e T el e T N _:__._._._:_.._-.—
0.8 - *'_-'7""‘ i X 0.85 1 + ____._‘__—#7____* _______ X
- —2 ® —9 0.80 - &
(>_3"0 7 —@®— CellTrans Tree -+ CellTrans MLP 5 . ® ° -
© > —A- CellTrans RF -¥-- Agg. Tree © o
8 —¥ CellTrans SVM Agg. CNN 8 0.75 A ~®— CellTrans Tree -+ CellTrans MLP
2 N PSR SRS ¥Worenran, O —A- CellTrans RF -+ Agg. Tree
<L 0.6 - Herarneenssrnnassznrnss HGrannans TRt nnaa <C 0.70 - ¥ CellTrans SVM Agg. CNN
................. X
. = - N EE RN AR CFEpATE )( ..................... )(...-
0.5 - 0.65 7 x
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Proportion of training data

Dalian




