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Abstract—Integrated Sensing and Communication (ISAC) has
been witnessed to be a new paradigm of wireless sensing in 5G
networks. Users can benefit from pervasive sensing applications
in various scenarios with no communication penalty. Given the
diverse demands for sensing resources across different sensing
tasks, elastic resource scheduling becomes crucial, particularly
when resources are constrained. However, existing approaches
often treat users equally, limiting their applicability in dealing
with diverse sensing tasks in the real world. In this paper,
we introduce ELASE, a pioneering sensing technique that
enables real-time elastic scheduling of sensing resources. At
the core of ELASE is the exploration of the user’s state
to precisely determine the sensing resource requirements and
schedule resources accordingly. We build the first model for
matching sensing resources with sensing demands, and further
propose a predictive scheduling scheme to eliminate delays by
leveraging the 5G virtualized radio access network (vRAN). We
conduct experiments to evaluate the performance of ELASE
under different settings. The results demonstrate that ELASE
outperforms the non-scheduling scheme, with a 34% reduction
in trajectory tracking error and a 92% decrease in resource
allocation error.

Index Terms—5G vRAN, RF Sensing, Resource Scheduling

I. INTRODUCTION

Due to the contact-less, privacy-protection, and even
battery-free features, wireless sensing technologies have
achieved great progress in the past few years. The mainstream
radio frequency (RF) based wireless sensing has exploited
wireless signals at various frequencies, ranging from LoRa
[1], [2], RFID [3], [4], Wi-Fi [S]-[11] to mmWave [12], [13].

Although these works have demonstrated the feasibility of
wireless-sensing applications, the method of deploying specific
devices prohibits wide-range popularization. The concept of
ISAC proposed in mobile networks can solve the problem
by building sensing system upon the pervasive base stations
[14], [15]. Despite the pervasiveness, another useful feature
of mobile networks is the centralized RF resource scheduling.
Wi-Fi and backscatter networks [16], [17] widely adopt
mechanisms like the contention-based CSMA/CA and the deep
coupling between preamble signals and data packets. This will
produce an unstable sampling rate of the sensing signals due
to either the resource contention among sensing targets or the
lack of valid data packets. Differently, the centralized resource
scheduling and the separation of data and control channels in
the mobile network can offer a stable sampling rate of the
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Fig. 1: Elastic Sensing with ELASE.

sensing signals with less multi-target contention and no data-
transmission dependency.

In existing ISAC works with 4G LTE and 5G NR [18]-[26],
we find that the majority of them have considered reducing
the sensing errors by applying advanced signal processing
algorithms [18], [19], emerging artificial intelligence
technologies [20], [21], multi-stream infrastructure (e.g.,
multiple antennas [22] and multiple base stations [23]) when
processing the LTE and NR reference signals (RS). However,
lacking deep considerations of the intrinsic features of mobile
networks, these topics are more or less discussed in other RF
signal based works and similar solutions can be found.

We believe that the above-mentioned centralized resource
scheduling is one of the intrinsic features to be well considered
in ISAC. Take the existing works as an example, where fixed
and averaged RS resources are shared among different UEs
by default. Due to the limited total amount of available RS
resources, one fast-moving UE will experience a sensing-
quality degradation while there will be a waste of RS
resources for the other static UEs. Since the RAN protocol
stack integrates a data-plane scheduler that detects the data
transmission demand of different UEs and schedules the
limited data-plane resources among them under the principle
of a long-term fairness, can we design and integrate a similar



RS scheduler to simultaneously boost the sensing quality
and reduce the resource waste in the multi-target sensing
scenarios?

In traditional hardware-based black-box mobile networking
infrastructure, only large device vendors can achieve this goal
and efforts have to be spent on the hardware modification.
Fortunately, the emerging 5G mobile networking technology
named VRAN [27]-[30] offers a more flexible way to achieve
the interoperation for ISAC. First, VRAN adopts the idea
of Network Function Virtualization (NFV) and implements
the RAN protocol stack on general processors instead of
dedicated chips in software. This gives us the opportunity
of deploying a dedicated RS scheduler and upgrading it on
demand. Besides, VRAN specifies a group of standardized
interoperation interfaces, which enables the dynamic service
loading and parameter adjustment. Plenty of works have
leveraged the white-box 5G VRAN to enhance the data-
transmission services like the cross-layer optimized video
streaming [31]-[34].

Though 5G vRAN shows promise in the wireless sensing
applications, we have to tackle the following technical
challenges before turning the above RS scheduler extension
into a practical system:

o First, how to match sensing demands with sensing
resources? Within the scope of our research, there
is currently no work focusing on sensing resource
scheduling in 5G networks. The criteria for estimating
sensing resources, defining sensing demands, and
matching them are not clear.

o Second, how to eliminate scheduling delays? We hope
that the scheduler’s resource allocation plan will change
as soon as the demands of UEs change, but scheduling
delays still exist inevitably. The scheduling delays come
from the execution time of the state recognition algorithm
and its requirement for recording some sampling points.

In this paper, we propose ELASE to address the above
challenges. Our main contributions can be summarized as
follows:

1) We discuss the feasibility of the RS scheduling with
5G VRAN and provide our considerations about the
scheduling space and principles (Sec.II).

2) We dissect the architecture of ELASE and present its
three main components named UE state recognition,
SRS resource scheduling and Elimination of scheduling
delays(Sec.II).

3) We implement ELASE with a 5G vRAN and commercial
5G UEs and conduct extensive evaluation experiments.
The results show that ELASE can elastically schedule
appropriate sensing resources for UEs in different
environments and motion states, thus achieving small
tracking errors. The predictive scheduling scheme can
further reduce allocation errors for sensing resources.
(Sec.IV).

Besides the above core contents, we also (i) discuss the
limitations of ELASE and point out corresponding future
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Fig. 2: 5G PHY frame structure and time-frequency domain patterns
of four different reference signals in the U slot.

directions in Sec.V, and (ii) summarize the related works
and their differences with ELASE in Sec.VI. Finally, Sec.VII
presents a conclusion of our work.

II. BACKGROUND

In this section, we first review the organization of the
time-frequency domain resource in 5G. Then, we introduce
the background of 5G VRAN and discuss the feasibility
of elastically scheduling the sensing resource in 5G VRAN
(Sec.II-B). Finally, we highlight the design principles of our
elastic resource scheduler (Sec.II-C).

A. Organization of 5G Reference Signal

5G frame structure. 5G NR’s physical layer (PHY) adopts
the Orthogonal Frequency Division Multiplexing (OFDM) as
the basic modulation scheme. As illustrated in Fig.2, the
resource elements (REs) of 14 OFDM symbols in the time
domain and 12 subcarriers in the frequency domain form
the basic time-frequency unit named Resource Block (RB).
The 5G slot is the time unit of one RB. Multiple continuous
5G slots are structured into 5G frames. Typically, one frame
lasting 10 ms contains 20 slots with three different types:
Downlink (D), Uplink (U) and Special (S). Fig.2 shows a basic
slot format of "DDDDDDDSUU" in the commonly used Time
Division Duplex (TDD) mode.

Different 5G reference signals. 5G NR adopts various
types of reference signals for clock synchronization, frequency
compensation and channel estimation for data transmission,
including Tracking Reference Signal (TRS), Phase Tracking
Reference Signal (PTRS) and Demodulation Reference Signal
(DMRS) respectively. Moreover, for target sensing, it adopts
the Channel State Information Reference Signal (CSI-RS) in
the downlink channel and the Sounding Reference Signal
(SRS) in the uplink channel. Our system utilizing 5G vVRAN
for elastic sensing only focuses on processing the continuous
samples of SRS. Different reference signals have different
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to the RS scheduler in MAC.

time-frequency patterns regulated by the standards. We depict
a classic case of these patterns in Fig.2, where SRS REs appear
in the 14th OFDM symbol with a subcarrier spacing of 2
(termed as comb2 in 5G).

B. Manipulating SRS for Sensing in 5G vRAN

Basic information of 5G vRAN. 5G vRAN is proposed to
solve the closedness problem of the traditional RAN based on
ASIC chips.

Fig.3 shows the typical data-plane structure of the 5G vRAN
protocol stack, from bottom to top including PHY layer,
Medium Access Control (MAC) layer, Radio Link Control
(RLC) layer, Packet Data Convergence Protocol (PDCP) layer
and Service Data Adaptation Protocol (SDAP) layer. Since
RLC, PDCP and SDAP are mainly responsible for the data
transmission like packet retransmission, segmentation, security
and quality-of-service enhancement, etc., we here mainly
review the details of PHY and MAC.

In 5G vRAN, PHY layer is separated into two parts: (i)
the low PHY responsible for relatively fixed signal processing
functions like FFT and iFFT; (ii) the high PHY responsible
for upgradable modules like channel estimation, OFDM
modulation and channel coding. MAC layer centrally schedules
physical resources for data transmission, reference signals, and
broadcast signals. To integrate 5G vVRAN with the capability of
ISAC, we mainly focus on PHY’s channel estimation module
for the CSI retrieving and MAC’s scheduler module for the
elastic SRS scheduling.

Feasibility of on-demand SRS manipulating with RIC.
The software-implemented protocol stack of SG VRAN gives
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us the opportunity of manipulating SRS signals. Moreover,
the O-RAN alliance [35] has proposed the RAN Intelligence
Control (RIC) as the standardized interfaces for the VRAN
interaction [36]. To obtain real-time information from vVRAN
and perform intelligent control, the customized xApps built
with the RIC SDK interact with the RIC agent embedded
in the VRAN via the E2 protocol. Although the current E2
protocol does not directly support the functionality of the SRS
manipulation, we can easily conduct such extension based on
its various implementations [37]. As depicted in Fig.4, with the
help of RIC, an xApp designed for the ISAC application can
deliver the SRS schedule to the MAC layer’s RB scheduler and
collect the estimated channel parameter to form the complete
CSI matrix.

C. ELASE’s Scheduling Principles of 5G SRS.

Before digging into the detailed designs of ELASE, we
introduce our basic considerations in the SRS scheduling
pattern, range, and logic. For a typical setting of the
"DDDDDDDSUU" slot format, SRS can be scheduled in the
S and U slots. For the typical 100 MHz bandwidth in 5G, each
slot has 273 RBs in the frequency domain. To provide a more
effective SRS scheduling, we adopt the following principles:

Scheduling Pattern: First, for the SRS comb pattern, we
choose the default comb2 instead of other available options
such as comb4. Second, for the SRS symbol pattern, we adopt
at most one SRS symbol in each slot. The rationale behind
our selections is the trade-off between the gain and cost:
obtaining a denser CSI sample in one slot yields a limited
sensing gain. Third, we choose continuous RB allocation
each schedule instead of the dispersed one, i.e., allocating
[RB_start, RB_num] for each user at each slot. According to
the 5G NR standard, the value of RB_start can be arbitrary
while the value of RB_num must be chosen from the non-
contiguous values in a predefined table (Table 6.4.1.4.3-1 of
3GPP TS38.211 [38]). It’s worth noting that the maximum
value of RB_num is 272 instead of 273 because the number
needs to be a multiple of 4.

Scheduling Range: Here we mainly discuss the sparsest
schedule and the densest schedule of SRS RBs in the time-
frequency domain. For the sparsest one, we comply with the
reference implementation of a most popular VRAN system
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named OAI [28] where at least four SRS RBs of one 5G
frame are scheduled for one UE. For the most densest one, we
allocate 272 RBs within one 5G slot to one UE in each half 5G
frame (also called one subframe). We only allocate at most one
slot in the three consecutive S/U slots to one target, mainly
because more consecutive slot allocations cannot effectively
increase the sampling frequency. Fig.5 illustrates an example
where we allocate all RBs in slot 8 and slot 18 to a fast-moving
object.

III. SYSTEM DESIGN
A. ELASE Overview

The overview of ELASE is shown in Fig.6. ELASE
implements a real-time system for identifying UE’s state and
scheduling SRS sensing resources. We introduce each module
below:

o UE state recognition. ELASE aims to accurately identify the
dynamic demands of UEs of sensing resources. To achieve this
objective, we leverage the UE’s velocity as a state indicator,
recognizing that different velocities reflect different states and
require varying SRS resources. To determine the UE’s velocity,
we utilize the existing low sampling rate SRS available in
communication and derive the velocity information from the
CSI. It is important to note that the velocity estimation
algorithm requires a certain number of sampling points, and
frequent estimations will result in significant computational
overhead. To address this, we implement a periodic strategy
and find out the appropriate cycle length.

o SRS resource scheduling. After determining the UE’s state,
the allocation of SRS resources to each UE becomes necessary.
We categorize UEs into two states: stationary and moving, and
assign different SRS bandwidths to each state. Additionally,
we map the UE’s velocity to corresponding SRS sampling
rates. Once the UE’s velocity is mapped to SRS resources

(SRS bandwidths and sampling rates), the base station is
responsible for scheduling the SRS transmission to UEs in
different time slots. ELASE converts the scheduling problem
into a resource allocation problem aimed at minimizing the
number of required time slots.

e Elimination of scheduling delays. The velocity of each
UE is calculated by the base station at the end of each cycle.
One intuitive approach is to employ an immediate response
scheduling strategy, where the current velocity is utilized
to allocate sensing resources for the next cycle. We call it
Reactive Scheduling Scheme. However, this scheme introduces
a significant delay between the UE acquiring sensing resources
and its state change when the UE’s velocity changes. To
eliminate delays, we perform a delay analysis and propose
a Predictive Scheduling Scheme.

e Multi-target sensing. Finally, ELASE accomplishes
different sensing tasks using the different amounts of SRS
resources scheduled to different targets. In this context, we
consider localization and tracking as multi-target sensing tasks.

B. UE State Recognition

In Sec.II-C, we mentioned that in the original 5G
communication system, each frame assigns one SRS for
channel quality estimation. This SRS has a sampling rate of
100 Hz. We utilize this periodic SRS to identify the UE’s
velocity. We introduce the velocity estimation algorithm in
this section.

1) Velocity Estimation Algorithm: Prior researches [39]—
[41] have proposed methods for estimating the velocity
of device movement using CSI exclusively. This method
proposed by C?IL [39] is based on the electromagnetic
standing wave field. C2I L finds through electromagnetic wave
propagation theory and measurements that when an antenna
traverses an indoor space at a velocity of v, a periodically
ripple-like pattern with a frequency of f, emerges, following
the relationship fy = 2*” , Where A represents the wavelength
of the electromagnetlc wave. C?IL utilizes a CSI matrix
over time on one spatial stream and one subcarrier to extract
the frequency f after undergoing data preprocessing, noise
cancellation, fading enhancement, and frequency estimation.
By extracting f from multiple subcarriers and selecting the
median value f; as the final result. Then the moving velocity
is estimated by:

_Axfo

. (M)

2) Periodic Strategy: The velocity estimation algorithm
requires a certain number of sampling points. However,
adopting a pipeline strategy would introduce significant
computational overhead. Considering the need for resource
scheduling, we adopt a periodic strategy. At the end of each
cycle, the base station calculates the velocity of the UE in the
current cycle and schedules the SRS resources for the next
cycle. If the cycle is set too short, there would not be enough
CSI samples to identify the UE’s state, and the scheduling
space for the next cycle would be insufficient. On the other
hand, if the cycle is set too long, the estimated average velocity
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of the UE in the current cycle could not represent the UE’s
state accurately, leading to inadequate real-time performance
of the system. We will measure the impact of different cycle
lengths on resource scheduling in our experiments.

Furthermore, ELASE minds real-time sensing resource
scheduling, taking into account the time consumed by
the velocity estimation algorithm and resource allocation
algorithm. Our measurements show that these tasks can be
completed in less than 20 ms, which is negligible compared
to the cycle length.

C. SRS Resource Scheduling

1) Mapping Velocity to SRS Resources: After obtaining the
velocity of each UE, it is necessary to convert the velocity
into sensing resource demand. Initially, we classify UEs into
two states: stationary and moving. Recognizing that dynamic
tracking necessitates a greater bandwidth compared to static
localization, we allocate half bandwidth to stationary UEs
and all bandwidth to moving UEs. Then, let’s delve into the
determination of the sampling rate. According to [39], the
typical velocity of walking indoors ranges from 0.8 to 1.6 m/s,
with a maximum value of 2 m/s. The velocity value represents
the displacement of the UE per unit time, while the sampling
rate represents the number of samples taken within the same
unit of time. Assuming the UE is sampled once after the same
displacement, we establish a positive correlation between the
sampling rate and velocity value. Let’s denote the sampling
rate as f, the scaling coefficient as k, and the velocity value as
v. The relationship among them can be expressed as follows:

fs= ko )

To determine the coefficient k, we conduct a set of pre-
experiments to measure the relationship between tracking error
and sampling rate. We set the velocities of UE from 0 m/s
to 2 m/s, and the sampling rate from 20 Hz to 200 Hz.
We use the sampling method when the rate is less than the
sparsest rate and keep the bandwidth of SRS 100 MHz. The
localization method adopts a modified super-resolution method
from SpotFi [42]. The experimental results are shown in the
Fig.7. Based on the experimental findings, we determine the
value of the scaling coefficient as k=100 to keep the average
trajectory tracking error less than 70 cm.

Additionally, for UEs with extremely low velocities, it
is essential to maintain a minimum SRS sampling rate.

Therefore, we have set a threshold of 50 for the minimum
sampling rate. To summarize, the sampling rate is given by:

,v<0.5m/s

,v>0.5m/s )

50
fs{ 100 * v

2) Resource Allocation Algorithm: Once the demands of
SRS resources for the next cycle are determined, the base
station considers scheduling which SRS resources in the
time and frequency dimensions for each UE. This resource
allocation problem can be transformed into a two-dimensional
coloring problem. In the time domain, there are 500 time slots
per second available for SRS resources, while in the frequency
domain, a bandwidth of 272 RBs is allocated. It is possible
to divide and allocate bandwidth to different UEs within the
same time slot, but the allocated bandwidth for a single UE
remains continuous.

Effects of SRS slot numbers on data throughput. We
conduct experiments to measure the uplink data throughput
when using SRS with different time slot numbers. Fig.8
demonstrates that the uplink data throughput decreases as SRS
slot numbers increase. The throughput with 600 SRS slot
numbers exhibits a 5.8% decrease compared to that with 100.
Sensing resources and communication resources are mutually
exclusive in the OFDMA structure.

Therefore, to minimize the total number of SRS time
slots, the resource allocation algorithm combines the sensing
resource demands of all UEs. If the combined SRS bandwidth
required by multiple UEs does not exceed 100 MHz, they
can be merged into a single time slot. In our resource
mapping scheme, two stationary UEs can each occupy 50 MHz
bandwidth within the same time slot. It is important to note
that different resource mapping schemes may exist, allowing
for a finer distinction of UE SRS bandwidth requirements.
In such cases, multiple UE SRSs with a total bandwidth not
exceeding the upper limit can be allocated in the same time
slot.

In scenarios where the total SRS resource demands exceed
the upper limit, our allocation algorithm prioritizes UEs based
on their velocities. Resources are assigned to UEs with
larger velocities until the remaining resources are insufficient.
However, alternative methods can also be employed for
different application scenarios. Here we provide the following
two examples:

1) Priority-based approaches: The base station can
calculate the priority of resource allocation for UEs
based on other conditions. For example, it can compute
the sum of resources allocated to UEs in the past several
cycles, where lower sums indicate higher priority.

2) Proportional fair approaches: Proportional fairness is
widely used in scheduling algorithms in different fields.
The base station reduces the sensing resources allocated
to each UE in the same proportion when the demands
exceed the upper limit.



TABLE I: A scenario where UE accelerates first and then moves uniformly. Predictive Scheduling Scheme eliminates the scheduling delay.

Cycle 1 2 3 4 5 6
UE’s acceleration  Zero Positive Positive Zero Zero Zero
UE’s velocity Zero Low Low High High High
. Recognize Recognize Recognize Schedule a high
Reactive scheme \ velocity in 2 velocity in 3 velocity in 4 sampling rate SRS \
. Predict Predict Schedule a high
Predictive scheme \ \ \

velocity in 3

velocity in 4

sampling rate SRS

D. Elimination of Scheduling Delays

1) Reactive Scheduling Scheme: The Reactive Scheduling
Scheme functions effectively when the UE’s velocity remains
constant. However, when the UE experiences changes in
velocity, such as acceleration, the velocity in the next
cycle exceeds the estimated velocity in the current cycle.
Consequently, the sensing resources allocated based on the
current cycle’s velocity may prove insufficient to meet the
actual demand. This scheme introduces a delay of one cycle
between the change in the UE’s velocity and the adjustment
of allocated sensing resources. When considering resource
allocation as a service to meet evolving demands over time,
such delays can pose challenges for subsequent sensing
applications.

The reason behind the one-cycle delay in the Reactive
Scheduling Scheme is that the base station requires one cycle
to obtain CSI for determining the UE’s velocity. Therefore,
when scheduling sensing resources for the UE in the next
cycle, the UE’s velocity in that cycle remains unknown.
In response to this challenge, we propose the Predictive
Scheduling Scheme.

2) Predictive Scheduling Scheme: Although the base station
lacks knowledge of the UE’s velocity in the next cycle during
resource scheduling, it can gather historical velocity data of
the UE in multiple past cycles. By utilizing this historical
data, the base station can compute the current acceleration
of the UE and use it to estimate the UE’s velocity in the next
cycle. Furthermore, to enhance the accuracy of UE velocity
prediction, we employ a Kalman filter that combines prior
information with measurement information. This integrated
approach enables more precise state estimation. The velocity
prediction algorithm leverages the acceleration values and
Kalman filtering to predict the velocity in the next cycle. At
the end of the next cycle, the velocity estimation results are fed
back into the filtering algorithm. This iterative process aims to
continuously optimize the prediction algorithm and enhance
its accuracy in predicting. By incorporating this feedback
mechanism, the prediction algorithm can rectify and improve
its predictions based on actual observed velocity data.

Table I illustrates the difference between the Reactive
Scheduling Scheme and the Predictive Scheduling Scheme. In
the scenario described, a UE remains stationary during the
first cycle, accelerates from the 2nd to the 3rd cycle, and
moves rapidly from the 4th to the 6th cycle. As the UE’s
velocity is high in the 4th cycle, it should ideally obtain a

high sampling rate SRS during that cycle. However, due to the
inherent delay of the Reactive Scheduling Scheme, the base
station only recognizes the UE’s velocity increase in the 4th
cycle, causing the UE to obtain the high sampling rate SRS
in the subsequent cycle. In contrast, the Predictive Scheduling
Scheme predicts the velocity of the next cycle in the 3rd cycle,
thereby eliminating scheduling delays.

E. Multi-target Sensing: Localizing and Tracking

After the resource scheduling process, the base station
extracts CSI from the received SRS, analyzing it to determine
the UE’s serial number, time slot, and associated frequency.
Leveraging this information, the base station can offer
customized sensing applications for individual users. In
ELASE, we take localizing and tracking as sensing tasks.
We adopt and modify the localization algorithm from SpotFi.
SpotFi utilizes the value of Received Signal Strength Indicator
to estimate the distance, but we utilize the CSI amplitude.
Besides, ELASE samples densely in the time domain. So we
employ the continuity of movement to discard outliers and
minimize localization errors.

IV. IMPLEMENTATION AND EVALUATION
A. Implementation

First, we build a complete 5G testbed including a 5G base
station and multiple commercial 5G UEs. The 5G base station
consists of the 5G vRAN and the 5G core network. Details of
these components are listed as follows:

e 5G vRAN: We adopt the most widely deployed open-
sourced VRAN project named OpenAirlnterface (OAI) [28].
The hardware-based RU of OAI runs a USRP N310 with 2
TX antennas and 2 RX antennas. The software-based vDU
and vCU of OAI run on a PC equipped with an i9-13900K
CPU and 16GB RAM. The USRP and the PC are connected
through a 10 GBE optic fiber due to the heavy traffic of the
raw IQ samples.

e 5G core network: We deploy the commercial version of
free5GC [43] for its better stability and easier operation than
the open-sourced one. Since ELASE requires the raw CSI
samples for a better sensing quality, we do not use the Location
Management Function (LMF) provided by the 5G core. The
core network runs on a Linux industrial computer directly
connected to the VRAN PC with a 2.5 GBE network cable.
o 5G UEs: We choose the commercial 5G Customer Premise
Equipment (CPE) instead of the smartphone because it can
access the private 5G network in non-public network frequency
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bands like N77. No hardware and software modifications are
applied to these UEs in ELASE.

Second, we implement the three key components of ELASE
and deploy them on the same PC that hosts the OAI’s protocol
stack.

B. Baselines and Comparison Methodologies

The baseline is a scheme that uses the original SRS with
a sampling rate of 100 Hz and a whole bandwidth, evenly
allocated to UEs. We compare the baseline with two other
scheduling schemes: reactive scheme and predictive scheme.

We use trajectory tracking error and resource allocation
error as the metrics for evaluation. The trajectory tracking
error measures the end-to-end performance of ELASE. The
resource allocation error is defined as the absolute difference
between the number of SRS allocated to one UE and the
real demand in one cycle. The number of SRS is derived by
multiplying the number of RBs by the number of slots. We use
resource allocation error as the metric because ELASE focuses
on elastic and real-time sensing resource scheduling. Besides,
if the delay in scheduling increases, the value of allocation
error will be larger.

C. Overall Performance

Trajectory tracking error. We first evaluate ELASE’s
performance of trajectory tracking in various environments,
as illustrated in Fig.10. Three representative indoor scenarios
are selected for testing purposes: 1) a meeting room with few
multipath effects (Smx4.2m); 2) a narrow corridor(Smx2m);
3) a laboratory with rich multipath effects (Smx4m).

During each experiment, we connect three UEs to the
base station and adopt the predictive scheduling scheme.
Fig.10(a)(b)(c) depicts the system’s tracking trajectory of UEs
in these three environments, compared with the ground truth.
Additionally, Fig.10(d) presents the cumulative distribution
function (CDF) of the tracking error. It is evident that the
laboratory environment showcases the highest tracking error,
as indicated in Fig.10(c), mainly attributed to the heavy
multipath. In the meeting room, corridor, and laboratory, the

median trajectory tracking error is 60.24 cm, 63.57 cm, and
78.31 cm, respectively.

In the baseline scheme, the median trajectory tracking error
is 90.25 cm, 94.53 cm, and 110.69 cm respectively. The
median trajectory tracking error of ELASE in the predictive
scheme is 34% lower than that of the baseline scheme.

Resource allocation error. Then we evaluate the
performance of our allocation scheme under different motion
states of UEs. The acceleration and velocity of UEs vary in
different motion states. We analyze ELASE’s performance of
resource allocation in a 10-second motion of each UE.

Fig.11(a)(b)(c) illustrate the real demand for SRS by
the three UEs and the changes in allocation over time in
reactive, predictive, and baseline schemes. By comparing the
real demand with the reactive scheme, we observe that the
allocation results of the reactive scheme are generally close
to the real demand in the previous cycle. This indicates a
scheduling delay in the reactive scheme. In Fig.11(a), when
the UE’s velocity changes most of the time, it is evident that
the allocation curve of the reactive scheme lags behind the
real demand. However, in Fig.11(b), when the UE’s velocity
remains unchanged, the results of the reactive scheme align
with the real demand value.

Fig.11(d) provides statistical results of the resource
allocation error of the three schemes. The resource allocation
error of the reactive scheme is 78% lower than that of
baseline scheme, furthermore, the resource allocation error
of the predictive scheme is 92% lower than that of baseline
scheme. This is because the baseline scheme does not consider
the state changes of the UE, resulting in insufficient sensing
resources being allocated to the UE. The results illustrate that
the prediction algorithm effectively predicts the velocity of the
UE in the next cycle.

D. Impacting Factors

In order to comprehensively evaluate the performance of
the system, we have identified some internal and external
factors that affect it. Internal factors include the length
of the scheduling cycle and the length of the prediction
window, which affect the accuracy of UE state recognition and
velocity prediction. External factors include the velocity and
acceleration of UE motion, which have an impact on trajectory
tracking.

Length of the scheduling cycle. We set different cycle
lengths while keeping the UE’s motion state the same. We
normalize the resource allocation error in one cycle to obtain
the allocation error in one second. The experimental results
are presented in Fig.12(a).

For the reactive scheduling scheme, the resource allocation
error initially decreases and then increases as the cycle length
grows, reaching its minimum value at a cycle length of 0.4
seconds. When the cycle length is short, there are insufficient
sampling points for state recognition, leading to inaccurate
velocity calculation. Besides, when the cycle spans a longer
duration, the recognition result is the average velocity during
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Fig. 12: Evaluation of the four main factors’ impacts on the performance of ELASE.

past period, which causes resource allocation error because the
UE may change state in one long cycle.

Length of the prediction window. We evaluate the impact
of the length of the prediction window on allocation error.
A smaller resource allocation error indicates more accurate
velocity prediction. We set the cycle length to 0.4 seconds and
vary the length of the prediction window from 2 cycles to 5
cycles in our experiments. The results are shown in Fig.12(b).

The resource allocation error of the reactive scheme is
not affected by the prediction window length and remains
consistent. For the predictive scheme, the resource allocation
error is minimized when the prediction window length is 3
cycles. This suggests that in the experimental scenario, there is
the highest correlation between the UE’s motion and its motion
state within the previous 1.2 seconds. Using more historical
velocity data, on the other hand, can decrease the accuracy of
the prediction.

Velocity of UEs. We select the optimal parameter values
for the following experiments. The length of the scheduling
cycle is set to 0.4 seconds, and the prediction window length is
three cycles. We further evaluate the influence of UE’s velocity
on tracking error. The UE’s velocity range is set from 1.2
m/s to 2 m/s with an interval of 0.2 m/s. We analyze the
process of uniform motion and present the results in Fig.12(c).
As the UE’s velocity increases, the trajectory tracking error
remains relatively constant. This observation illustrates that the
system’s scheduling scheme ensures the stability of trajectory
tracking error by allocating more sensing resources to high-
speed UEs.

Acceleration of UEs. We set the UE to speed up from 0 m/s
to 2 m/s with different accelerations and analyze the trajectory
tracking error during the acceleration process. The results are
shown in Fig.12(d). As the UE’s acceleration increases, both
reactive and predictive schemes show an increase in tracking



error, with the increase being more gradual in the predictive
scheme. The reactive scheme has a scheduling delay of one
cycle. Therefore, as the UE’s acceleration increases, the delay
leads to an increase in tracking error. The predictive scheme
can better adapt to motion with a constant acceleration.

V. DISCUSSION AND FUTURE WORKS

In this section, we discuss practical issues concerning
the applicability and efficacy of ELASE and propose
corresponding future research directions.

A. Applying ELASE fto other sensing cases

In the cases of localization and tracking, velocity is
considered as an effective metric for describing the dynamic
demands of UEs. However, not all cases can apply velocity
as a general metric. For example, in gesture recognition or
fall detection, the spectral characteristics of the target have
been proven to be an effective indicator. In system design,
we particularly pay attention to this point and decouple the
user state recognition and SRS resource scheduling modules
by using reference signals in different time slots. This loose
coupling ensures the effectiveness of resource scheduling
and also provides flexibility for choosing new metrics when
applying ELASE to other sensing cases.

B. Combining Multi-stream 5G Reference Signals for a Better
Sensing Quality.

First, ELASE uses the uplink SRS signals only mainly
because of the inaccessibility of the CSI processing module
of the commercial 5G UEs. The first category of extension is
to utilize the uplink DMRS. Since that the DMRS symbols
only experience one more layer of precoding than the SRS
symbols, successive works can convert the DMRS-based CSI
into the SRS-based CSI and extend the total amount of
sensing resources. Besides, successive works can utilize the
link symmetricity and use the downlink CSI-RS and DMRS
signals provided by white-box UE devices for the further
extension. Note that such multi-stream extensions are quite
straightforward to be implemented in ELASE with our defined
scheduling interface and logic. Challenges like handling the
dynamics caused by the binding between DMRS to data
streams and quantifying the quality of multi-channel sensing
signals before the integration need to be further addressed.

VI. RELATED WORKS
A. Wireless Sensing with LTE/5SG

Nowadays, ISAC with LTE and 5G has attracted growing
research attention. Many works model the localization errors,
discuss the impacts of modulation methods and sensing
algorithms on the errors, and conduct extensive simulation-
based evaluations [14], [15], [44]. Besides, Feng et al. propose
the interference cancellation [19] and the noise reduction
[18] algorithms to address the practical issues when applying
traditional signal processing based solutions like AoA/DoA in
real-world applications like the pedestrian tracking. Except for
improving traditional algorithms, several works utilize classic

machine learning algorithms and emerging deep learning
algorithms to further reduce the sensing errors [21] and defend
the replay attacks [20]. Last, recent innovations in the sensing
infrastructure like the uniformed linear array antenna [22], the
multi-cell RS integration [23] and multi-source RS integration
[45] manage to bring the ISAC’s capability to a new level.
Although these works have tried their best to reduce the
sensing errors and some have claimed the feasible extension
in the multi-target sensing scenarios, they only use the vanilla
RS signals with default settings. This priori condition hinders
them from offering fairness among the targets when the
RS resources are very limited. Different from them, ELASE
dynamically recognizes the resource demand of different
targets and elastically schedules the limited RS resources
among them, which is in parallel with the related advances in
the algorithm optimization and the infrastructure upgrading.

B. Multi-target Wireless Sensing

Various wireless signals exhibit the ability to sense multiple
targets simultaneously, such as WiFi signals [46]-[48],
acoustic signals [49]-[52], mmWave signals [13], [53] and
so on. WiPolar [47] leverages the different polarization of
reflected signals to accurately separate the multipaths from
different targets, which, in turn, allows it to track them
simultaneously. Symphony [50] exploits the layout of the
microphone array to distinguish acoustic signals from different
targets along different paths as well as signals from the same
target, then calculates their locations concurrently.

Despite their inspiring abilities of sensing multiple targets,
all usable resources (e.g., frequency) are employed in the
existing works without a resource allocation mechanism. In
contrast, ELASE elastically allocates sensing resources among
the multiple targets to achieve better scalability.

VII. CONCLUSION

In this paper, we present the first sensing resource scheduler
in 5G networks, ELASE, to schedule SRS resources for
UEs elastically and in time. ELASE benefits from the
programmability of 5G vRAN and utilizes the interface of
its protocol stack. It uses the velocity of UEs to represent
the time-variant sensing demands. ELASE saves sensing
resources by minimizing the number of used sensing slots
to preserve communication capabilities. It adopts a predictive
scheduling scheme to eliminate scheduling delays. Extensive
experiments under real-world scenarios show that ELASE
can schedule sensing resources appropriately in different
situations, achieving small trajectory tracking errors and
resource allocation errors.
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