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Abstract—As an application of fine-grained wireless sens-
ing, RF-based material identification follows the paradigm of
RF computing that fetches the information during RF signal
propagation. Specifically, the RF signal accesses the objects’
material-related information and carries the information with
its electromagnetic properties. With a variety of important
applications, research on RF-based material identification has
gained significant progress in recent years. However, several
fundamental problems remain insufficiently studied, such as the
sensing models, signal processing approaches, performance and
future extensions. This paper presents the first comprehensive
survey of RF-based material identification. According to the
basic sensing model used for sensing, we propose a taxonomy
to classify the existing works into two categories: reflection-
based and penetration-based. The works in each category are
further grouped by the type of RF signals used, with elaborated
discussion of the detailed approaches and the common challenges.
We provide a framework that benchmarks the performance of
the existing works, followed by a thorough discussion of future
extensions.

Index Terms—Material identification, Wireless sensing, Con-
tactless sensing, Device-free sensing.

I. INTRODUCTION

Wireless sensing has been developing rapidly and has sup-
ported applications including object localization and tracking
[1], [2], 3D reconstruction [3] and vital sign monitoring
[4]. With the availability of fine-grained data such as Wi-
Fi channel state information (CSI) [5] and millimeter wave
in-phase/quadrature (I/Q) data in recent years, those spa-
tial properties of objects can be measured more precisely.
However, the fact that fine-grained data potentially convey
more properties of objects (e.g. the material composition) is
commonly overlooked.

Research on radiofrequency-based (RF-based) material
identification is essential to explore for deeper understanding
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of the interplay between the material and the signal propaga-
tion. Specifically, on the propagation path of communication
signals, the media and the reflectors consist of materials that
influence the signal according to the penetration and reflection
model, respectively. Meanwhile, the parameters of the model
depend on their material composition and shape.

Therefore, identifying material composition based on RF
signal propagation principles enables novel applications of
communication technologies in numerous industrial, research,
and civil domains. In the industrial domain, various appli-
cations rely on identifying material composition, including
product quality control, defect detection and hazardous sub-
stance detection. In the research domain, materials from living
organisms can be probed in biomedical sciences to detect
anomalies [6] and forecast health-related issues [7]. In the civil
domain, material identification can be used as a food security
tool to determine the expiration status of food products [8],
[9] as their chemical compositions change significantly after
the expiry period. Similarly, an authentic product can be
distinguished from a fake product based on the unique material
signature of the original product [10].

Moreover, understanding the impact of materials in commu-
nication channels can potentially enhance wireless communi-
cation. Inspired by the RF computing paradigm, the RF signal
can be regarded as operands that are editable by the in-channel
operators (i.e., media and reflectors). On the propagation path
of communication signals, the media and reflectors consist
of some material that influence the signal according to the
penetration and reflection model, respectively. Moreover, the
parameters of the model (i.e. dielectric permittivity, thick-
ness) depends on their material composition and shape. For
example, a reflective intelligent surface (RIS) can reprogram
the signal by elements made of specially designed materials.
Typically, each element changes the strength and phase of
the reflected/penetrated signal in a dedicated mode and the
superposed signal is boosted (e.g. magnified [11] or nullified
[12]).

A wide range of RF-based communication technologies
are capable of material identification. Furthermore, different
features of the technologies bring distinct benefits for material
identification. For example, a wide bandwidth (e.g. millimeter
wave (mmWave), ultra-wideband (UWB), Terahertz (THz))
can carry more information about the frequency-related re-
sponse of materials, enabling finer-grained material identifi-
cation; a shorter wavelength (e.g. mmWave, THz) leads to
phase information more sensitive to the effect of material
composition, while a longer wavelength (e.g. radio frequency
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identification (RFID), Wi-Fi, UWB, Bluetooth, long range
radio (LoRa), long time evolution (LTE)) bring greater pen-
etrability to probe inner layers of objects; low-cost devices
(e.g. RFID, Wi-Fi, Bluetooth, LoRa) are most likely to be
widely deployed. To the best of our knowledge, RFID [9],
[10], [13]–[16], mmWave [6], [17]–[21], Wi-Fi [22]–[24], and
UWB [25]–[27] signals have been used for RF-based material
identification, covering all the features and enabling a more
nuanced understanding of the objects in the environment.

Nevertheless, most existing RF-based material identification
works are based on design-specific observations, making them
hard to migrate and follow. A comprehensive study on RF-
based material identification could potentially solve this prob-
lem, yet existing literature only covers localization and track-
ing methodologies [28] or techniques including fingerprinting
[28], mobility [29] or spatial context-based [30] localization,
multi-object tracking [31], gesture or gait recognition [32],
activity recognition [33] and a comprehensive survey of the
recognition tasks above [34].

To fill this gap, we conduct a survey of RF-based material
identification in this paper. According to electromagnetic the-
ory, the RF signal can either reflect at or penetrate through
a piece of material during propagation. Based on that, we
proposed a taxonomy that categorizes prior works into the
reflection-based or penetration-based branches. Next, we ana-
lyze the common challenges for each category and each type
of RF signal. Afterward, we benchmark the performance of
RF-based material identification and propose research areas
for future exploration. The contributions of this paper are as
follows:

• We propose a novel, comprehensive taxonomy of RF-
based material identification that originates from electro-
magnetic laws.

• For the reflection-based and penetration-based modes, we
introduce feasible RF signal types for material identi-
fication, analyze prior works, and summarize common
challenges for each type.

• We point out possible extensions of RF-based material
identification for future endeavors, including adapting to
more real-life cases and optimizing the performance.

The rest of this paper is structured as follows: the main body
(Sections 2-5) focuses on RF-based material identification,
followed by a discussion on research spaces (Section 6), and
a summary of the paper (Section 7). In the main body, Section
2 introduces the scope and taxonomy of this paper after the
definition of material identification. Sections 3 and 4 delve
into theoretical analysis and existing work on reflection-based
and penetration-based material identification methodologies,
respectively. Section 5 compares these methodologies based on
several performance metrics. Following the main body, Section
6 discusses potential advancements in material identification
for the future, and Section 7 summarizes the whole paper.

II. SCOPE AND TAXONOMY

A. RF-based Material Identification in a Nutshell
RF-based material identification is the process of measuring

the frequency response of a material and then analyzing its
composition based on the frequency response.

Raw Signal

Domain 
Selection

DFT/Z-transform 

Frequency domain
processing

Filtering, Normalization, 
Denoising, Baseline correction

Time domain
processing

Feature extraction

Model-based
(e.g. damping)

Model-based
(e.g. Fresnel’s 

equations)

Data-driven
(e.g. CNN)

SamplesFrequency responses

Material classification: SVM/KNN/DNN/…

Fe
at

u
re

s

…

Fig. 1. The typical workflow of RF-based material identification.

To measure the frequency response, the RF signal is emitted,
and the reflected signal or the penetrated signal is received.
First, with a signal-specific hardware and software toolkit,
the amplitude and phase of each time-domain sample in the
intermediate frequency (IF) signal or the baseband signal
can be obtained. Afterward, frequency-domain or time-domain
analysis is applied to the IF or baseband signal. Frequency-
domain analysis is applied in most material identification
works. The frequency of each component in the signal is typi-
cally invariant within the wireless channel, while the amplitude
and phase of time-domain samples can be distorted by atten-
uation and multipath reflection. Moreover, the time-domain
dynamics of RF signals is hard to model. Consequently, time-
domain analysis can sometimes be applied to near-field signals
with data-driven approaches, while frequency-domain analysis
is applicable to most scenarios.

In frequency-domain analysis, the signal is first converted to
the frequency domain with a DFT operation or a Z-transform
operation. After the operation, the received signal strength
and phase of each frequency component can be obtained,
which is the frequency response. Furthermore, a feature ex-
traction model is built to generate features from the frequency
response. It is typically based on physical principles like
Fresnel’s Equation and Snell’s Equation [35], and the features
are defined as the dielectric permittivity, the attenuation factor
or other properties of materials. Alternatively, data-driven
methods like the convolutional neural network (CNN) can be
utilized to build an end-to-end feature extraction model.

In time-domain analysis, the features are directly extracted
from a series of time-domain samples. The feature extraction
model can be either based on physical principles or data-
driven.

After time-domain preprocessing and feature extraction, the
features are fed into a classification model. For features with
explicit physical meanings (e.g. the dielectric permittivity),
the model can be as simple as a lookup table that maps
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Fig. 2. The taxonomy of RF-based material identification consists of two levels. The first level is sensing mode, including reflection-based and penetration-
based material identification. The second level is signal type, which includes RFID, mmWave, Wi-Fi and UWB.

the features to the material composition. For features with
implicit connection to the material composition, data-driven
approaches like a support vector machine (SVM), a k-nearest
neighbor (KNN) model or a deep neural network (DNN) can
be applied. These models is typically trained with a pre-
collected dataset to estimate the material composition.

The signal propagation process in material identification is
similar to that in context recognition [34]. Specifically, the
signal typically propagates from the transmitter to the object in
free space, reflects at or penetrates through the object (where
the material is) and then propagates from the object to the
receiver in free space.

Nevertheless, they focus on distinct parts of the propagation
process. As spatial information (i.e. range, angle, scale, shape)
is crucial for most context recognition tasks like gesture
recognition, gait-based identification and vital sign monitoring,
the free-space propagation parts, which carry range infor-
mation, are considered in context recognition. In contrast,
they are irrelevant factors in material identification, and the
reflection/penetration part during propagation is considered.
Therefore, material identification works keep both the object
and device static at known positions, or calibrate the absolute
position and motion, while context recognition may utilize
features related to them (e.g. micro-Doppler features).

B. Taxonomy

As shown in Fig. 2, RF-based material identification meth-
ods can be categorized into a two-level structure. The methods
are first categorized by their sensing mode (i.e., the utilized
signal). Reflection-based material identification relies on the
reflected signal, while penetration-based material identification
utilizes the penetrated signal or the superposition of both
signals. Then, for either of these two categories, different types
of signal can be used, which accordingly requires different
signal processing techniques to infer the material composition
from the signal-type-specific fine-grained data. So we organize
the existing works on material identification into a two-level
structure, where the first level is classified by the sensing mode
(i.e., reflection-based or penetration-based), and the second
level provides the classification by the utilized sensing signal.

1) First-level Classification by Sensing Mode: RF sig-
nals exhibit different behaviors in the reflection-based and
penetration-based modes of sensing. The transmitter and re-
ceiver antenna are typically co-located in the reflection-based
mode yet distributed on both sides of the object in the
penetration mode. Moreover, in the reflection-based mode, the
amplitude and phase of the RF signal are relevant to the free-
space propagation distance and the material, while the time of
flight (ToF) is irrelevant to the material; in the penetration
mode, the ToF, amplitude and phase of the RF signal are
all relevant to the free-space propagation distance and the
material.

The difference further implies different challenges in ex-
tracting the material information from the signal. For example,
the reflection-based method suffers more from a multipath ef-
fect because the environment may contain multiple reflectors;
the penetration-based method requires more signal processing
techniques because the amplitude and phase of the signal are
affected by more factors.

2) Second-level Classification by Signal Type: Material
identification methods vary with the type of the utilized signal.
The method design corresponds to which signals can be
generated under control, how the signal interacts with the
material and the environment and what data can be acquired
at the receiver.

Various signals exhibit various merits related to their fea-
tures in material identification. First, the bandwidth positively
contributes to the upper limit of material-related information
carried by the signal. The material’s unique change to the
signal is relevant to the frequency of the signal, assuming the
signal is single-frequency; for a wideband signal, each fre-
quency component records a different material-related change.
Second, the wavelength has a two-sided impact. A longer
wavelength fits better for the majority of scenarios, as it
enables material identification at a longer range, provides
better penetrability to probe the inner layers of the object and
tolerates rougher surfaces of the object. Nevertheless, a shorter
wavelength implies greater phase sensitivity to the channel
variation, enabling finer identification of the penetrated mate-
rial. Third, the cost of devices has an impact on the ubiquity
of material sensing based on each technology.
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TABLE I
COMPARISON OF MMWAVE, WI-FI, RFID, AND UWB ON MATERIAL IDENTIFICATION PERFORMANCE.

Signal Bandwidth Scale Range Cost Modification Adaptability
RFID 500 MHz dm-level meters $ 1300 Tag attachment (tag-based) Multiple objects (tag-based), obstacles

mmWave 4000 MHz cm-level meters $ 900 Not required Multiple objects, multipath
Wi-Fi 160 MHz dm-level meters $ 24 Hardware/Software modification Obstacles
UWB 1500 MHz dm-level meters $ 250 Not required Obstacles

Moreover, to be applied to material identification, a commu-
nication technology should support controlled signal genera-
tion and raw signal magnitude or phase acquisition. Within
the spectrum of RF signals, a wide range of technologies
including RFID, mmWave, Wi-Fi, UWB, LoRa [36]–[38] and
Bluetooth satisfy the first requirement, while ambient LTE
and TV signals are excluded as they carry unwanted and
unpredictable information. Within the candidates, the RFID,
mmWave, WiFi and UWB technologies provide data in the
second prerequisite (i.e. the received signal strength and phase
of RFID and UWB, the I/Q samples of mmWave and the CSI
of Wi-Fi).

Considering representativeness and feasibility, RFID,
mmWave, WiFi and UWB are analyzed in this paper.

They cover all types of merits and provide different ben-
efits in material identification: RFID-based methods provide
flexibility in deployment; mmWave-based methods leverage
the high space resolution of the mmWave signal to extract
extra information from the received signal, such as the object-
to-radar distance, angle, and velocity; the ubiquity of Wi-Fi
signals supports pervasive material identification applications;
UWB-based methods utilize the ultra-wideband of the UWB
signal for more information on the relationship between ma-
terial properties and frequency. A detailed comparison of the
technologies is presented in Table I and Sec. V.

In this paper, we will discuss the design principle of
different sensing modes with their merits, which leads to the
selection of appropriate sensing modes or signals for certain
sensing applications and inspires the exploration of new types
of sensing methodologies.

III. REFLECTION-BASED METHODOLOGY

A. Reflection Channel Model

In reflection-based material identification, the TX antenna
transmits an RF signal S0 towards the object, which reflects
the signal to the RX antenna. In the frequency domain, the
signal received at the RX antenna is represented as [39]:

S = Hin ∗HI ∗Hout ∗ S0 (1)

where Hin and Hout denote the signal’s channel distortion
along the TX-to-object path and the object-to-RX path, re-
spectively; HI denotes the signal’s channel distortion caused
by its reflection at the surface of the object.

For most material identification methods, frequency-domain
analysis (the left part of Fig. 1) is applied. In the frequency
domain, the model can be represented as [40]:

S(f) = Hin(f)HI(f)Hout(f)S0(f) (2)

where f is the frequency of each frequency component.
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Fig. 3. The reflection model. The reflection model applies to both solid and
liquid. The point of reflection is on the surface of the solid or liquid. θ is the
angle of incidence. θ

′
is the angle of reflection. θ is equal to θ
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TABLE II
PARAMETER SETTINGS AND USAGES IN THE REFLECTION MODEL.

Parameter Setting Usage
θ θ = 0◦ single device and static setting

θ ̸= 0◦ multiple devices or dynamic setting
ε(f) ε(f) = C narrow band, e.g. Wi-Fi, RFID

ε(f) = −kf + b wide band, e.g. UWB, mmWave

In this way, the amplitude and phase of the RF signal are
affected by the material, as shown in Fig. 3. The effect, which
is modeled as the material-related channel distortion HI(f),
depends on the both composition and surface roughness of
the material. The former determines the reflection coefficient
of the material [35], while the latter determines the law of
reflection that the signal follows, i.e., whether the reflected
signal follows the specular reflection model or the diffuse
reflection model [41].

1) Specular Reflection: Specular reflection changes the
propagation direction, amplitude and phase of a RF signal
when it makes contact with a flat surface.

As shown in Fig. 3, the reflected signal travels in a direction
symmetric to the incident signal against the normal line (i.e.,
the line perpendicular to the material surface). That is to say,
we have the incident angle θ equal to the reflection angle θ′.

In practice, the incident angle is chosen according to the
setting. In the case where only one device is used in the
sensing application, the incident angle should typically be set
at θ = 0◦ to make sure that the reflected signal can be captured
by the RX antenna of the sensing device. In the cases where
multiple devices are used or the object is moving, θ is typically
non-zero.

The phase and amplitude change of the reflected signal is
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determined by Fresnel’s Law [35]:

HI(f) =

√
ε(f) cos θ −

√
1− (sin2 θ)/ε(f)√

ε(f) cos θ +
√
1− (sin2 θ)/ε(f)

(3)

where ε(f) denotes the complex dielectric permittivity of the
material. As a unique property of materials, the complex di-
electric permittivity can be utilized to identify them. Moreover,
it varies with the frequency of the incident signal, and the
variation can be modeled by the Cole-Cole model [42].

The complex dielectric permittivity-frequency curve can
be an important indicator of materials. In practice, a linear
approximation of the curve is commonly applied, as shown in
Tab. II. If a narrow-band signal is used, the dielectric permit-
tivity can be considered as a constant value C. In contrast,
if a wide-band signal is used, the dielectric permittivity ε(f)
should be considered as a function of the signal frequency
f . Specifically, since the bandwidth of a typical RF signal
is typically not higher than 4 GHz, the change in ε(f) of
common materials within the bandwidth can be approximately
considered as a linear function of f [43], [44].

2) Diffuse Reflection: Leveraging the diffuse reflected sig-
nals is hard because the signals are weak. If the surface is
rough, i.e., its surface roughness [45] approaches or exceeds
the signal wavelength, the signal will not follow the rules
of specular reflection. Instead, the incident signal will be
scattered at many angles rather than at just one angle as in
the case of specular reflection. Although the distribution of
received signal strength (RSS) over different reflection angles
is difficult to predict, it is clear that the received signal in
diffuse reflection mode is much lower than that in the specular
reflection [22].

B. Reflection-based material identification Designs

Reflection-based material identification designs share two
challenges:

• Sensing signal extraction. Besides the signal reflected
from the object, the RX antenna also receives interference
from multipath reflections. So, we need a method to
extract the object-reflected signal from the superposed
signal.

• Reflection effect modeling. The relationship between the
material of the object and the features of the reflected
signal is not clear. We need a clear and reliable model to
capture such a relationship.

The solution to the above challenges varies across different
signal types. In the rest of this section, we provide solutions to
these challenges when using different types of sensing signals.

1) RFID: The usage of RFID tags in material identification
can be highly flexible, including applying them to rough or
tilted surfaces. This feature comes from the unique mechanism
of RFID reflection. Unlike the common reflection-based mate-
rial identification model, the material composition affects the
reflected signal through capacitive coupling [46]. Specifically,
when a tag is attached to an object, the coupling effect between
the tag’s antenna and the material affects the impedance of
the tag [13] and further the strength of the reflected signal

[47]–[51]. The extent of the change is determined by the
dielectric permittivity ε of the material [52]. The reader can
then use this feature to identify the object’s material. Based
on this principle, numerous studies [9], [10], [13]–[15], [53]–
[55] have been conducted to identify materials with RFID
technology.

Nevertheless, sticking RFID tags may bring unacceptable
deployment overhead in some scenarios. To solve this issue,
the reflection-based material identification model can be ap-
plied. Specifically, the reader and the tag are fixed, and the
reader-object-tag path is utilized for sensing.

The first in the line of RFID-based material identification
studies is RFIQ [9]. It was designed to identify the properties
of a container’s contents without physically opening it or com-
ing into contact with its contents. This enables non-invasive
sensing of food quality and safety. RFIQ’s underlying principle
is given as follows: an RFID antenna on a filled container as
shown in Fig. 4 can reduce the antenna’s efficiency and alter its
optimal operation frequency, as the antenna design does not
account for the new substrate material. Specifically, a filled
container couples with nearby RFID tags and alters the signal
strength and phase at each frequency point. Therefore, the
optimal operation frequency (a.k.a. tuning frequency) changes
according to new signal strength values. To capture the new
tuning frequency as the characteristic of the contents, RFIQ
uses a two-frequency excitation technique to sense changes in
the tag’s response over a wide bandwidth. By sweeping over
a range of sensing frequencies and using a classifier to extract
the most salient features, RFIQ can discover the new tuning
frequency. Experimental results demonstrate that RFIQ can
classify between different mixtures with an average accuracy
of 97% [9].

One problem of RFIQ is that the measured tuning frequency
is sensitive to environmental factors like tag-reader distance
and multipath, thus it suffers poor environmental generaliza-
tion and only supports coarse-grained material identification.
To solve this problem, Tagtag [13] proposes to use the
tag’s phase shift measured under different frequencies as a
unique pattern for material identification. This design is based
on the fact that the impedance of a tag’s antenna changes
when it is close or attached to an object, which further
leads to a change in the tag’s phase shift and the amount
of change is related to the object’s material type. Therefore,
the impedance-related phase change can be used as a metric
for material identification. To further remove the tag-reader
distance dependency, Tagtag measures the phase shift of the
tag at two different locations and combines the measurement
results to cancel out the distance-related phase shift. Then a
Dynamic Time Warping (DTW) algorithm is used to process
the material pattern of the tags and identify the material
type accurately. Experimental results demonstrate that Tagtag
achieves an average identification accuracy of 93.7% for 7
solid materials and 95.1% for 16 liquids, with an average
accuracy of 95.3% for similar liquids [13].

One common problem of the prior proposals is that they
require strict measurement conditions. Specifically, in the
measurement process, they either require users to extract liquid
samples and place them in specialized containers (which often
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Fig. 4. The principle of RFIQ. RFID tags are coupled with the material
that alters the strength and phase of the incident signal.
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involves a complex calibration process), or they can only
operate correctly in a single lab setup. This is because the
reflected signal is not only impacted by the liquid inside the
container but also by the container and the environment where
the measurement is made. Besides, most prior proposals can
hardly extend to new objects (i.e., unseen material or liquid).
In this condition, RF-EATS [10] is proposed to improve the
generalization of RFID-based material identification, making it
immune to environmental variations and can generalize well
to unseen environments. The core of RF-EATS is a neural
learning model that can effectively learn signal features that
are solely attributed to a container’s content while ignoring the
ones resulting from environmental factors. However, training
such a model usually requires a very large dataset, which is
especially challenging in the wireless sensing context due to
the limited availability of RF datasets. To solve this problem,
RF-EATS further proposes an autoencoder to generate a vast
amount of realistic multipath-affected data. To enhance the
efficiency of extending a model to new contents, RF-EATS
employs a transfer learning model, which divides a multi-
layered network into common layers and task-specific layers.
When learning a new task, RF-EATS can inherit the common
layers from a well-trained model and focus on fine-tuning
task-specific layers. This largely reduces the training cost. RF-
EATS was evaluated in 20 different environments with differ-
ent measurement conditions. Experimental results demonstrate
that RF-EATS achieves an accuracy of up to 90% [10] in
most applications, even when tested in unseen environments.
Furthermore, the transfer model employed by RF-EATS allows
it to achieve a level of accuracy that is close to optimal, even
when trained on as few as 4 data samples [10].

Sensing one object can involve multiple RFID tags. In recent
years, intelligent reflective surfaces (IRS) [56], [57] have wit-
nessed rapid development, and the one-tag-one-reader (1T1R)
structure is revisited. By combining multiple RFIDs into a
tag array, Lv et al. [14] leverage the weak coupling between
RFIDs and their immediate surroundings to analyze how the
signals from the tags correlate with the characteristics of the
objects being tagged. While the resonant frequency of UHF
RFID tags varies among various objects, such information
alone is insufficient to differentiate between materials with

high accuracy, as the weak coupling is limited. Thus, this work
focuses on analyzing the mutual coupling between tags in an
array. In a tag array, the mutual coupling is mainly influenced
by material properties, and any quality changes in the material
are manifested in the signals simultaneously emitted by the
tags in the array. Experimental results demonstrate that the
input impedance of the antennas is more complex in the RFID
tag array than a single tag,providing more useful information
in examining tagged material quality.

Also powered by RFID tag arrays, RF-ray [15] is a non-
invasive system that enables the simultaneous recognition of an
object’s shape and material. Unlike other methods that require
tags to be attached to the object, the RF-ray system utilizes
an array of 7x7 RFID tags and places the object in proximity
to it. Therefore, the RFID signals are affected not only by
the object’s shape, primarily through propagation effects, but
also by its material, primarily through coupling effects. RF-ray
utilizes a sensing capability enhancement module, along with
a two-branch neural network, to analyze the signals generated
by its tag array for shape profiling and material identification.
To further enhance the system’s ability to recognize unseen
materials, the authors have incorporated a zero-shot embed-
ding module that utilizes linguistic features. The performance
of the system was evaluated on 7 solid objects and 14
liquids. Experimental results demonstrate that RF-ray achieves
high accuracy rates for material identification (99.9% [15]).
Moreover, the system accurately predicted unseen materials,
with an accuracy rate of above 92.9% [15].

Except for the coupling-based methodology above, the clas-
sical reflection model is also applied to RFID-based material
identification in emerging works [58], [59] to realize device-
free material identification and enable handheld material iden-
tification devices. Instead of being attached to the material or
container, the tag is statically placed relative to the reader.
Emitted from the reader, the RFID signal is reflected at the
material surface, backscattered by the tag, and then reflected
again at the material surface towards the reader.

However, leveraging the link with the three reflections above
is challenging because the line-of-sight (LOS) path between
the reader and the tag introduces severe interference. Existing
works [58], [59] simply yet effectively solve the problem by
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blocking the LOS path. For instance, Tamera [58] simultane-
ously tracks and recognizes the object with two independent
groups of reader and tag array. Each group estimates an AoA
of the object with the phase of received signals at each tag.
Therefore, the object can be localized, and the movement of
objects can be detected. When the object moves, the amplitude
and phase of the reflected signal change, and the ratio of the
amplitude change to the phase change indicates the reflectivity
and the material composition of the object.

2) mmWave: mmWave-based sensing has an advantage in
precision [60]–[63] and ubiquity [64]–[68]. However, some
of such works require a specified experimental setup and the
system could be more expensive than systems operating at
lower frequencies. It’s also challenging to find features related
to the material instead of the environment.

The foremost origin of precision is the mm-level wavelength
and GHz-level large bandwidth. Such properties enable pre-
cise detection of objects. Besides, the majority of mmWave-
based material identification relies on the frequency-modulated
continuous wave (FMCW). The critical advantage of FMCW
is its ability to separate reflections of multiple reflectors and
focus on the object. By comparing the transmitted and received
FMCWs, information about the range, velocity, and angle of
the objects can be available [69]. With the three indicators
above, the reflectors are projected into a three-dimensional
space, and the object is unlikely to collide with other reflectors.
Moreover, mmWave radar provides precise strength and phase
measurements of received signals. The strength can classify
materials by reflection coefficients [70]–[72], while the phase
is a fine-grained indicator of the distance [21], [73].

On the other hand, the compact and lightweight nature of
mmWave radar makes it a more feasible option for widespread
implementation in comparison to bulky RFID readers. More-
over, contrasted with RFID-based sensing, mmWave-based
material identification is device-free at the material side, as
the mmWave signal directly reflects on the material surface.

As a pioneering work, RadarCat [17] explores the out-
standing information capacity of mmWave to classify a large
set of materials and objects, paving the way for new possibil-
ities for seamless interaction with digital devices in everyday
contexts. RadarCat is based on time-domain analysis of near-
field mmWave reflected signal. The system capitalizes on
the multi-channel FMCW radar signals emitted by a Project
Soli sensor, which exhibit distinct characteristics of different
objects depending on their material, thickness, and geometry
when the signal is bounced off. The signals themselves are
quite distinctive due to the informative near-field propagation
and 4 GHz bandwidth, and by applying machine learning to
them, RadarCat can accurately extract information about the
material composition of the object, enabling a range of innova-
tive interaction capabilities. Experimental results demonstrate
that the system achieves classification accuracy of 99.97%
when categorizing 26 different materials [17].

Replacing near-field reflection with the far-field one intro-
duces an analytical model of signal and yields model-driven
methods. For example, mSense [18] quantitatively character-
ize the material’s reflection coefficient for mobile material
identification. Guided by the observation that various objects

reflect incident electromagnetic waves to different degrees
depending on their constituent materials, mSense introduces
a novel material reflection feature (MRF) that provides a
quantitative characterization of a material’s reflectivity, which
is unaffected by environmental factors. With the sanitized
Channel Impulse Response (CIR), mSense calculates the MRF
to identify the material type by selecting the best-matched
record. Experimental results demonstrate that the system is
capable of categorizing five commonly occurring material
types with an average accuracy of 93% [18], regardless of
their respective sizes and thicknesses.

Models can be combined with data-driven methods. FG-
LiquID [19] aims at fine-grained and robust classification
of materials. This innovative method utilizes a dataset of
non-material factors to suppress their impact on the material
measurement. Such a dataset is more convenient to collect
with FMCW mmWave signal than others because FMCW
carries the most common non-material factors including range,
angle, and velocity information. As shown in Fig. 5, FG-
LiquID utilizes a 60 GHz mmWave Radar equipped with
a 2×4 antenna array to collect the RSS, rotation, and dis-
placement over 100 different settings. With RSS as reflec-
tion (R) input and the rest data as calibration (C) input,
FG-LiquID incorporates an elaborate neural network called
RC-Net to automatically remove interference and generate
material-dependent features. Experimental results demonstrate
that FG-LiquID can effectively differentiate among 30 distinct
types of liquids, achieving an average accuracy rate of 97%
across five distinct scenarios [19]. Moreover, the system is
capable of discriminating very similar liquids, such as liquors
with only a 1% difference in alcohol concentration by volume.

The mmWave-based model can also be combined with
vibrometry. With a 77-GHz mmWave radar, RFVibe [74]
classify materials by mechanical features after the material is
stimulated by an audio sound. Specifically, the amplitude of
vibration is related to the frequency of the audio sound, and the
maximum amplitude as well as its corresponding frequency are
indicators of the material. Moreover, the duration of vibration
after the audio sound stops can also be an indicator named
the damping feature. Combining the three indicators yields a
81.3% classification accuracy of 23 objects made of 7 distinct
materials.

The state-of-the-art material identification precision is
achieved by a mmWave-based combined method. By carefully
designing the sensing device and signal processing techniques,
Liu et al. [6] have developed an FMCW-based method for mea-
suring glucose concentration that resolves up to 0.1 mg/mL for
ex vivo glucose measurements using a 77-GHz FMCW radar.
To ensure accuracy, the authors utilized a 3D printed device to
secure the position of the radar and container and a microwave-
absorbing sponge to minimize external interference. The con-
tainer was paired with an injector for solution replacement
to eliminate any effects caused by surface mismatch and to
ensure consistent monitoring of the same volume of solution.
The system relies on the fact that variations in the dielectric
constant of glucose produce corresponding changes in the
amplitude and phase of the radar echo signal. Therefore, the
amplitude and phase of the radar echo signal can be used
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Fig. 6. Illustration of IntuWition. With three orthogonally polarized
receiving antennas, the polarization of the reflected wave can be measured
and translated to the textures and materials of the objects.
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Fig. 7. The overview of SiWa. SiWa uses the penetration of UWB signals
to identify object materials within the wall and moves the UWB radar to
image the objects.

to differentiate solutions of varying glucose concentrations.
However, glucose concentration cannot be determined with a
single fitting curve. To address this, they employed a method
that combines Continuous Wavelet Transform (CWT) and
Neural Network to explore the correlation between glucose
concentration and the radar echo signal. Similarly, AgriTera
[8] leverages a broadband sub-THz signal (100-400 GHz) to
measure the fruit ripeness indicators Brix and Dry Matter with
a relative mean squared error of 0.55%. After collecting a
dataset containing the reflectivity at each frequency in the
spectrum and the real Brix and Dry Matter values, AgriTera
trains a Partial Least Square Regression (PLSR) model which
is leveraged to predict the Brix and Dry Matter of apples,
persimmons and avacados.

3) Wi-Fi: Wi-Fi can be an outstanding choice for indoor
and cost-sensitive scenarios [75]–[77]. Compared to mmWave
technology, which is susceptible to signal blockage by walls
due to its short wavelength, Wi-Fi signals have the advan-
tage of being able to penetrate walls and occlusions [78],
making them a more competitive option for detecting oc-
cluded objects. Furthermore, Wi-Fi technology is relatively
inexpensive, lightweight, and already integrated into many
mobile platforms. As a result, there has been a growing interest
among researchers in leveraging commodity Wi-Fi for sensing
purposes [79]–[83].

In the realm of material identification, the reflected Wi-
Fi signals can be utilized. It is feasible to place one Wi-
Fi transceiver facing the object, or place a transmitter and
a receiver on the same side of the object. Nevertheless, the
strong penetration ability of Wi-Fi signals makes it difficult to
use them for material identification based on reflection. Wi-
Fi signals can easily penetrate common objects, resulting in a
reflected signal from the inner surface of the object and su-
perimposing with the outer signal. This superposition requires
a complex extension of the reflection model in Sec. III, which
impedes the development of related material identification.

Fortunately, another signal property called polarization can
solve the problem. Wi-Fi signals are naturally linearly polar-
ized (i.e. have a specific polarization angle), and reflection
changes the polarization angle or makes the signal unpolarized
according to the reflector’s material composition. Furthermore,
the superposition challenge can be tackled with the principle
that two polarized signals combine into a polarized signal,
and an unpolarized signal yields an unpolarized superposition
with any signal in most cases. As a validation of the principles

above, IntuWition [22] enables the sensing of the location and
material properties of objects, even when they are occluded.
At its core, IntuWition infers material properties by measuring
the wireless signals that reflect off objects, specifically by
capturing the polarization of the reflected waves. Because of
the texture and material differences among objects, distinct
polarization changes are observed in the reflected waves after
reflection off the surfaces of different objects. By measuring
the polarization of reflected waves from surrounding objects,
one can infer their material composition. IntuWition is inspired
by radar polarimetry [84] and employs a vertically-polarized
transmitter antenna and three mutually-perpendicular polarized
receiving antennas to measure the Wi-Fi signal, as shown
in Fig. 6. The measured power is then used to infer the
material composition via a multi-layer perceptron model [85].
Additionally, the system can accurately locate surrounding
objects by measuring the time of flight along different paths.
Experimental results demonstrate that the system can dis-
tinguish between 5 types of materials of various sizes and
orientations with high accuracy rates. Specifically, the system
achieves an accuracy rate of 95% in line-of-sight scenarios
and 92% in non-line-of-sight settings [22].

The polarization-based principle can be integrated with
classical CSI-based techniques. Shi et al. [23] have developed
an object identification system for in-baggage items that can be
easily deployed in various environments. The system utilizes
Wi-Fi signals bouncing off an object’s surface, with the polar-
ization of the reflected signals providing valuable information
about the material of the object. As a result, analyzing the
polarization of reflected Wi-Fi signals enables the system to
distinguish objects made of different materials. Specifically,
the system uses calibrated CSI measurements to extract two
sets of features: polarization features and CSI complex differ-
ence statistics. Based on these features, a deep learning model
is developed for object identification. Furthermore, the system
incorporates a material-based domain adaptation technique
that employs adversarial learning to facilitate rapid deployment
in diverse environments. Experimental results demonstrate that
the system can achieve object identification accuracy exceed-
ing 97% [23] when operating within the same environment.
Moreover, when the system is deployed in a new environment
with minimal training, the domain adaptation technique can
improve object identification accuracy by as much as 42%
[23].
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4) UWB: Ultra-Wideband (UWB) technology, which has
been widely used in various sensing applications [86]–[89],
can also be an effective choice. It is capable of transmitting
signals across a broad bandwidth. Based on their response to
signals with significantly different frequencies, UWB signals
can be utilized in material identification [25], [26]. In UWB
signals, the frequencies are transmitted simultaneously, result-
ing in quicker sensing than mmWave. However, this comes at
the cost of reduced ability to filter interfering objects in the
range, velocity, and angle dimensions.

Besides, the UWB signal has strong penetration capabilities
and supports in-wall material identification. A typical setup of
reflection-based UWB sensing is to place a UWB transmitter
and a receiver at the same side of a buried object. SiWa [25]
is an affordable and portable system designed for wall inspec-
tions that can create a synthesized image of a wall’s structure
and identify its material status. This capability is achieved
by simply swiping the SiWa probe along the wall surface
without requiring repetitive parameter tuning or calibration,
as shown in Fig. 7. The system’s hardware front-end, which
comprises an IR-UWB chip and antennas, acquires a Synthetic
Aperture Radar (SAR) data matrix composed of two-channel
polarized and wideband signals. Subsequently, this SAR data
matrix is input into the Imaging Network (I-Net) to generate a
structural image. The output of the I-Net serves as a guide for
further processing of one-dimensional signal samples through
the Material Identification Network (M-Net) to identify and
diagnose the material. To assess SiWa’s ability to identify
materials, its performance was evaluated on different in-
wall structures. Experimental results demonstrate that SiWa
achieves an overall accuracy of 95.2% [25] for identifying the
material.

5) Summary: The reflection-based methodologies cover a
broad range of scenarios. These methodologies can be a
suitable choice for material identification in most cases, and
the signal type can meet various requirements: RFID supports
flexible solutions and can be the default choice; mmWave
helps to achieve high sensing precision; Wi-Fi and UWB are
recommended if the object is not exposed to air.

IV. PENETRATION-BASED METHODOLOGY

A. Penetration Channel Model

In reflection-based material identification, the TX antenna
transmits an RF signal S0 towards the object, wherein the
signal propagates towards the RX antenna. For most material
identification methods, frequency-domain analysis is applied.
In the frequency domain, the signal received at the RX antenna
is represented as:

S(f) = Hin(f)HI(f)Hout(f)S0(f) (4)

where Hin(f) and Hout(f) denote the signal’s channel dis-
tortion along the TX-to-object path and the object-to-RX path,
respectively, which is a function of the signal’s frequency f .
HI(f) denotes the signal’s channel distortion caused by its
interaction with the surface and interior of the object during
the penetration process.

The material-related channel distortion HI(f) belongs to
one of the three cases below determined by the diameter
and roughness of the material surface. Specifically, if the
diameter of the material surface is significantly longer than
the wavelength of the RF signal, spectral refraction [35] or
diffuse refraction will take place according to the surface
roughness [41]. Otherwise, refraction-diffraction [90] will take
place where the diffraction signal travels around the object and
sums up to the refracted signal.

1) Penetration with Spectral Refraction: Penetration with
spectral refraction is widely used in material identification as
it has the simplest model among the three penetration modes.
As shown in Fig. 8, an RF signal penetrates a piece of material
in three steps: refraction in, propagation inside, and refraction
out.

Refraction at Material-Air Interfaces. Refraction changes
the direction, amplitude, and phase of the incident signal.

The refracted signal travels along a direction other than the
incident one [35]:

θ′′(f) = arcsin
sin θ√
|ε(f)|

(5)

where θ′′ represents the angle between the normal line and
the refracted signal.

The amplitude and phase of an incident signal are also
changed after refraction, namely the refraction-related channel
distortions HI,in(f) and HI,out(f). A refracted signal is
always paired with a reflected signal, and the electromagnetic
boundary condition [91] implies:

1 +HI,in(f) =
√
ε(f)Hr

I,in(f) (6a)

1 +HI,out(f) =
√
ε(f)Hr

I,out(f) (6b)

where Hr
I,in(f) and Hr

I,out(f) denote the material-related
channel distortion HI(f) in the reflection model in Sec.
III-A1.

Propagation Inside. The material composition determines the
time of flight (ToF) and attenuation during propagation within
the object. The speed of a RF signal is dependent on the
medium’s material composition. In vacuum or air, a RF signal
travels at a speed of c0 = 3 × 108m/s; in another medium
with a dielectric permittivity of ε(f), the speed is

c =
c0√
ε(f)

(7)

Therefore, through a layer of material with thickness d, the
ToF is

t =
d

c
=

d
√
ε(f)

c0
(8)

and the phase shift is

∆φ = 2πft =
2πfd

√
ε(f)

c0
(9)

Besides, the attenuation of the signal during propagation
within the object can be represented as [26]:

A

A0
= e−βd (10)
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Liquid

Fig. 8. The penetration model. Take liquid as an example of the object:
the signal is refracted at the interfaces between the liquid and the
container. θ is the angle of incidence. θ

′′
is the angle of refraction. The

effects of the container on the signal can be neglected because of its low
thickness.

Liquid

Reflective
surfaceReceived signal from liquid
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Received signal from 
reflective surface

mmWave
Radar

Fig. 9. The overview of mmLiquid. The transmitted signal is received in
two paths. One is the signal reflected by liquid. The other is the signal
penetrates the liquid and is reflected by the reflective surface. TS is the
transmitted signal. RS1 is the received signal from the liquid. RS2 is
the received signal from the reflective surface.

TABLE III
LIST OF NOTATIONS IN THE PENETRATION-BASED MODEL. THE FIRST

THREE LINES ALSO APPLY TO THE REFLECTION-BASED MODEL.

Notation Meaning
f Signal frequency
S(f), S0(f) Strength and phase of received signal and

transmitted signal at frequency f
Hin(f), Hout(f) Channel distortion from the transmitter to the

material, and from the material to the receiver
HI(f) Material-related channel distortion
HI,in(f), HI,out(f) Refraction-related channel distortion when en-

tering and leaving the material
HI,pro(f) In-material channel distortion

where β is the attenuation factor and d is the distance of
propagation. This equation shows that a RF signal attenuates
exponentially in liquid or solid mediums [92], which is differ-
ent from the inverse square attenuation in free space [93].

Summing up the components above, the channel distortion
HI,pro(f) within the object can be represented as

HI,pro(f) =
A

A0
e∆φ = e−βd+j

2πfd
√

ε(f)

c0 (11)

Putting Things Together. According to the three steps in Sec.
IV-A, the material-related channel distortion for the frequency
f is

HI(f) = HI,in(f)HI,pro(f)HI,out(f) (12)

Furthermore, unfolding the entire penetration channel model
yields:

S(f) = Hin(f)HI,in(f)HI,pro(f)HI,out(f)Hout(f)S0(f)
(13)

This matches the five steps involved in signal propagation
through the air and material.

Parameter Settings. Different settings of parameters fit differ-
ent scenarios as shown in Tab. IV. As in the reflection model,
the incident angle θ depends on settings and the model of
dielectric permittivity relies on signal bandwidth. Additionally,
whether the material thickness d is fixed depends on the
application purpose. If the objects are arbitrary, it will be
unrealistic to fix their thickness d. In cases where precision is
a dominant metric, rather than ubiquity, it may be effective

TABLE IV
PARAMETER SETTINGS AND USAGES IN THE PENETRATION MODEL.

Parameter Setting Usage
θ θ = 0◦ static setting

θ ̸= 0◦ dynamic setting
d fixed for fine-grained measurement

variable for ubiquitous sensing
ε(f) ε(f) = C narrow band: Wi-Fi, RFID

ε(f) = −kf + b wide band: UWB, mmWave

to set d to a fixed value by applying a certain container.
Alternatively, the thickness d can be determined by fixing one
side of the object and localizing the other side with existing
precise localization techniques [94]–[98].

2) Penetration with Diffuse Refraction: Diffuse refraction
typically produces extremely weak and unpredictable pene-
trated signals that are hard to use. As a side product of diffuse
reflection occurring at rough surfaces, the diffuse refraction
signal is also scattered and unpredictably oriented. After prop-
agation inside the material, the scattered signals reach the other
surface of the material with unpredictable incident angles, thus
producing scattered and unpredictable penetrated signals. No
research works have implemented material identification based
on this penetration mode to the best of our knowledge.

3) Penetration with Refraction-Diffraction: The penetrated
signal via refraction-diffraction is probably not the best choice
for penetration-based material identification, as refraction-
diffraction is harder to model yet conveys no extra information
about the material composition. When the diameter of the
material surface is shorter than or approximately equal to the
wavelength of the signal, a portion of the signal will diffract
across the material while another portion refracts into the
material [90]. On the other side of the material, the diffraction
signal and the refraction signal superpose, resulting in the pen-
etrated signal. The strength of the diffraction signal is relative
to the ratio between the distance from the material’s edge to the
TX-RX line and the wavelength (i.e. Fresnel clearance [99]).
Compared to the penetrated signal via spectral refraction, the
signal implies more about the scale of the material yet nothing
more about the composition of the material.
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B. Penetration-based Material Identification Designs

The above model associates the material information (i.e.
permittivity) with RF signal properties, enabling penetration-
based material identification. When it comes to design, two
common challenges occur:

• Penetrated signal accessibility: the signal should be able
to propagate through the material to the receiver.

• Penetration effect modeling: the relationship between
material and modification on signal should be clear, and
the modification should be represented as a signal feature.

The solution to those challenges varies among different signal
types. Therefore, the rest of this section is grouped by RF
signal type.

1) RFID: Instead of attaching tags on materials or contain-
ers, tags are regarded as detached transceivers in penetration-
based designs [16], [100]. In such designs, the RFID signal
travels around between the reader and the tag, penetrating
the material. Therefore, the signal properties (e.g. strength,
phase, ToF) indicate both the composition and the scale of
the material, while reflection-based designs can only sense
material composition. However, it is challenging to identify
the material composition and object size at the same time.

For instance, TagScan [16] can simultaneously image hor-
izontal sections of an object and identify its material com-
position with an Impinj RFID reader and two linear tag
arrays. As shown in Fig. 10, the reader moves along a given
trajectory. The basic idea underlying TagScan is that when
RF signals penetrate an object, variations in the received
signal strength (RSS) and phase are induced by the object’s
size and material composition. TagScan suppresses multipath
signals by weighting the signals received from different tags
and different channels. TagScan characterizes each material
type with a unique characteristic called the ratio of RSS
change and phase change (RP-rate), which is independent
of object size. Moreover, the material composition and size
can be obtained concurrently using either RSS or phase
variation. Finally, TagScan searches for the starting point of all
propagation distances and combines all propagation distances
to construct the image. Experimental results demonstrate that
TagScan achieves a material recognition accuracy of over 94%
for 10 different liquids and can distinguish between highly
similar liquids such as Coca-Cola and Pepsi [16]. Furthermore,
TagScan can generate horizontal cross-sectional images of
multiple objects located behind a wall.

2) mmWave: The penetration model introduces more infor-
mation that helps to adapt to complex scenarios, yet applying
the model to mmWave-based designs requires deployment
modification.

To leverage the penetration model, it is straightforward to
place the object between two radars. However, implementing
such designs is challenging due to the difficulty in synchro-
nizing the two radars. Alternatively, the reflective nature of
metals can be leveraged to create an equivalent sensing system
using a single radar and a metal plane [21]. Specifically, a
radar on one side of a metal plane can act as two symmetric
radars on two sides. Furthermore, by covering the backside of

the material with a metal layer, a radar at the front side can
perform penetration-equivalent material identification.

For example, to address the interference of container move-
ment on liquid recognition, mmLiquid [20] uses a container
position information filtering (CPIF) scheme to eliminate the
impact of container location. The system then utilizes a deep
complex model (DCN) to classify the liquid. As shown in
Fig. 9, mmLiquid uses two steel plates as reflective surfaces,
which are placed behind the container and the mmWave radar,
respectively. By reflecting some of the mmWave signals off the
container and others off the reflective surface, the system can
obtain more information about the liquid.

3) Wi-Fi: The penetration model fits Wi-Fi signals well
as Wi-Fi has strong penetration ability. The objects on the
line-of-sight (LOS) path between the TX and RX antennas
have an impact on the Wi-Fi CSI [101], [102]. Therefore, the
CSI implies the material on the LOS path, yielding a typical
setting involving a transmitter and a receiver with the object
in between. However, the low bandwidth and the noise caused
by hardware and multipath make it difficult to extract effective
material information from Wi-Fi signals.

Drawing the LOS path through a liquid container, WiMi
[24] implements contactless material identification using ubiq-
uitous and low-cost commercial off-the-shelf (COTS) Wi-Fi
devices. Based on the observation that the signal is highly
correlated at different frequencies while the noise is not, WiMi
removes the impulse noise and reconstructs the useful signal
by integrating the correlated signal. For other signal noise
that may still be present, the system uses a second antenna
to obtain a more stable amplitude ratio than the amplitude
readings of a single antenna. To identify materials of different
sizes, WiMi uses a material feature that is only related to
the material type and not to the object size. This feature
contains only the phase difference and amplitude ratio and
applies to multi-antenna systems common to 802.11n/ac Wi-
Fi access points. Experimental results demonstrate that WiMi
can identify 10 common liquids with an overall accuracy
higher than 95% [24], even in indoor situations with strong
multipath. Additionally, WiMi can distinguish between very
similar products such as Pepsi and Coca-Cola.

4) UWB: The interference resistance of UWB signals can
be strengthened with the penetration model and proper de-
ployment. In a typical setting, the object is fixed between two
antennas that are connected to the same device. Therefore, the
multipath effect is likely to be weak, while noise becomes the
most significant source of interference. The impact of material
penetration on the amplitude and phase of UWB signals is
robust to noise because the responses are averaged across all
frequencies, and only a few frequencies are affected by noise
interference. Therefore, penetration- and UWB-based material
identification can be quite robust. It provides the possibility
to obtain fine-grained material properties. However, obtaining
fine-grained material property needs accurate material-related
information. So hardware features that may introduce errors,
such as time synchronization and antenna height, should be
taken into account.

LiquID [26] uses physics to model the behavior of radio
signals inside liquids and estimate the permittivity of liquids to
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Fig. 10. The system deployment setup of TagScan. The reader moves
along the trajectory for imaging. At each position, the reader can make
one observation of the object size. D1, D2, and D3 are the observations
by the reader at different positions, respectively.
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Fig. 11. The system overview of LiquID. The wireless transmission splits
between the wire and the wireless antenna. The wired received signal is
not attenuated. The amplitude and phase of the wireless received signal
are attenuated by the refraction of liquid.

identify them. The basic idea of LiquID is that wireless signals
undergo significant slow-down and attenuation as passing
through liquids, as manifested by the phase, intensity, and
propagation delay of the outgoing signal. As shown in Fig. 11,
LiquID connects a wire between the transmitter and receiver,
allowing the wireless transmission to be split between the wire
and the wireless antenna. By carefully ”double-differencing”
the wire and air, LiquID measures the relative time of flight
(ToF), phase, and RSSI of the liquid with consistent accuracy.
To obtain the signal slowdown in liquid, LiquID jointly
estimates the phase and ToF. later on, after going through
the stages of channel difference, container compensation, and
RSSI modeling, LiquID derives an estimate of the permittivity.
Experimental results demonstrate that LiquID can calculate
the permittivities of 33 different liquids with a median error
of 9% [26], which are distributed over the entire spectrum
of permittivity. Additionally, LiquID can distinguish between
Coke and Diet Coke or Pepsi, whole milk and 2% milk, and
other very similar liquids.

UWB-based designs can utilize the relationship of dielec-
tric permittivity and frequency [42] ignored in other works.
Inspired by the relationship, UWB-like methodologies are
proposed, for example, LiqRay [27] analyzes the difference
of response at 4 distinct frequencies across 1.7-2.6GHz and
enables non-invasive and fine-grained liquid identification
without requiring prior knowledge of the container and antenna
heights. LiqRay adopts a dual-antenna model based on radio
frequency (RF) signals to eliminate the effects of container
material and antenna gain. Specifically, LiqRay employs the
relative frequency response factor of the liquid material as
a feature, which is independent of the container width, as
the attenuation factor of the material is related to the signal
frequency. Additionally, to eliminate the effect of antenna
height, LiqRay models the transmit and receive antennas as
thin straight antennas instead of points. When the transmit
antenna moves slightly, the electric field below the solution
height undergoes a change, which is used to extract the relative
frequency response factor. Experimental results demonstrate
that LiqRay can accurately identify alcohol solutions in eight
distinct solvents with a concentration difference of 1% without
prior knowledge, achieving an accuracy rate of 94.92% [27].

5) Summary: The penetration-based methodologies are
compatible with scenarios where interference from the envi-

ronment is a major concern. In different interference-sensitive
scenarios, different signal types are recommended: RFID and
Wi-Fi are low-cost and easy to deploy; mmWave and UWB
can achieve high precision, and mmWave can penetrate small
objects.

V. PERFORMANCE COMPARISON

This section aims to compare and contrast the perfor-
mance of material identification models (i.e. reflection and
penetration) and signal types (i.e. mmWave, Wi-Fi, RFID,
UWB), which primarily links to the gap between material
identification research and real-life applications.

A. Metrics

1) Precision and Accuracy: The precision of a material
identification method refers to the minimal difference between
the identification results. It is usually the most important
metric because of its strong link to the usability of material
identification methods. In this paper, the precision is evaluated
with the number of supported types of material.

The accuracy of a material identification method refers to
the ratio of correct identification results in all results. Since
most works claim an accuracy over 90%, it has less impact on
usability than precision, and we mainly focus on the precision
in the following sections.

2) Device Deployment Overhead: The device deployment
overhead of a material identification method refers to the
cost of the necessary devices, their occupied space and their
required modification to run normally.

3) Adaptability: The adaptability of a material identifica-
tion method refers to its usability in complex scenarios. This
metric can be evaluated by the maximum range between the
device and the object, the resilience to multipath and obstacles
and the performance when multiple objects coexist.

B. Comparison of Material Identification Models

1) Precision and Accuracy: If the thickness of the material
is known, the penetration model can achieve higher precision
than the reflection model; otherwise, the reflection model
should be preferred considering the precision.

The precision is boosted by information about the material
composition of the object yet degraded by that about unknown
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factors, and both information components rely on the material
identification model. In the reflection model, the dielectric
permittivity of the material is the only boosting factor, and the
distance of signal propagation is the only degrading factor. In
the penetration model, the attenuation factor of the material
acts as another boosting factor, while the unknown thickness
of the object further degrades the precision.

2) Device Deployment Overhead: The cost, space occupa-
tion and modification overhead are all heavier for penetration-
based methods than reflection-based methods, as the former
typically requires two devices clamping the object.

To employ the penetration channel model, it is typical to
position the transmitting and receiving antennas on opposite
sides of the object [26] to acquire information about the
signal as it penetrates the material. This requires a transceiver
split device that consists of both transmitting and receiving
antennas placed in the same straight line, with the object
placed in between them. In this way, the RF signal is emitted
from the transmitting antenna, propagates to the surface of
the material under test, penetrates inside the object, and
ultimately exits from the object to be received by the receiving
antenna. Material identification is then achieved by analyzing
the difference between the transmitted and received signals.
The limitations of the reflection channel model are generally
lenient, as there is no need to position devices on both sides
of the material, and objects on the ground [103], beside the
wall [25], or on human skin [4], [104] are available.

3) Adaptability: The penetration model can support a
longer maximum range and better resilience to obstacles, while
the reflective model better fits in multi-object scenarios.

Given identical transmission power and receiver sensitivity,
the penetrated signal can theoretically be received at a longer
range in most scenarios. The same free-space propagation path
corresponds to two attenuation terms in the reflection model
yet one term in the penetration model, thus the penetration
model has an advantage that is hardly diminished by attenua-
tion inside the material.

Besides, the impact of an obstacle on the signal propagation
path is non-fatal for the penetration model yet fatal for the
reflection model. Another attenuation term in the penetration
model can compensate for the impact, while the reflection
model is disabled because the reflective surface belongs to
the obstacle instead of the object.

Conversely, when simultaneous material identification of
multiple objects is required, the reflective model outperforms
the penetration model. To meet the requirement of the pen-
etration model that the object lies on the line between two
devices, the devices should be moved to different locations
for each object, which is infeasible in most scenarios.

C. Comparison of Signals

1) Precision and Accuracy: The difference in bandwidth
results in the difference in the precision of material identi-
fication. A wider bandwidth implies more information about
the material that boosts the precision. The channel distortion
equations in both the reflection mode (Eq. 2) and the penetra-
tion mode (Eq. 4) are relative to the frequency of frequency

components in the RF signal. A wider bandwidth contains
more frequency components, generating more equations and a
more precise estimation of the dielectric permittivity.

According to Table I, mmWave-based methods can achieve
the best precision, followed by UWB, RFID and Wi-Fi.

2) Device Deployment Overhead: The signals have distinct
advantages regarding the cost, space occupation and modifi-
cation overhead.

As a highly pervasive communication technology, Wi-Fi
chips cost the lowest, followed by UWB, mmWave and RFID.

Besides, mmWave-based methods require the least space
due to minimized transceiver and short minimal distance to
the object. The short wavelength of mmWave contributes to
both advantages above. The size of the transceiver is limited
by the size of the antenna, and the latter is proportional to
the wavelength. On the other hand, the minimal distance is
required by the far field assumption. As propagation rules in
the far field [93] are much simpler than those in the near field
[105], most prior works assume that the signal propagates in
the far field and requires propagation distances of λ/2 [106],
assuming an antenna size of D = λ/2. This results in a shorter
minimal distance of mmWave than other signals.

Moreover, hardware and/or software modification is re-
quired when some signals are applied to material identification.
On the material side, some RFID-based works [9], [10], [13]
require extra attachments since they depend on RFID tags.
Regarding the device side, Wi-Fi-based works may require
hardware modification, while mmWave-based ones are the
least likely to require such modification. For instance, In-
tuWition [22] employs orthogonal antennas in the receiver to
extract the polarization state of the reflected signal, while a
collection of mmWave-based solutions, including RadarCat
[17], mSense [18], and FG-LiquID [19], employ different
types of mmWave radars, yet no hardware modification is
performed.

3) Adaptability: Millimeter-wave-based and some RFID-
based methods make it possible to handle scenarios with
multiple objects. With well-designed FFT operations that sep-
arate signals from different reflectors [107], mmWave-based
methods have the best adaptability to multiple-object and
multipath-rich scenarios. Besides, with the capability to sepa-
rate signals through tag-wise activation of RFID tags, RFID-
based methods with tags attached to objects are compatible
with multiple objects.

Moreover, RFID, Wi-Fi and UWB signals are more resilient
to obstacles on the penetration path. According to the Friis
Equation [93], the propagation attenuation through an obstacle
is proportional to the square of the wavelength.

As the end of the detailed analysis of methodologies for
material identification in Sec. III, IV and V, we present Tab.
V to recap and summarize prior works.

VI. LESSONS LEARNED

This section discusses shared misconceptions among exist-
ing material identification works, as well as common pitfalls
for researchers.
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TABLE V
PRIOR WORKS ON MATERIAL IDENTIFICATION

Research Work Model Features Frequency
(MHz)

Devices Material Accuracy

SiWa [25] (2021) Reflection Dispersion and po-
larization

6540-8040 1 movable UWB
radar

PVC and rebar 95.2%

RadarCat [17]
(2016)

Reflection Reflection and
transmission
properties

57000-
64000

1 Soli mmWave
radar

26 (air, steel, glass, ceramic, porcelain,
water, sponge, ...)

96.0%

mSense [18]
(2020)

Reflection Reflection
coefficient

58740-
61260

2 mmWave radars
with 32 antennas
each

Wood, plastic, ceramic, water, alu-
minum

93%

FG-LiquID [19]
(2021)

Reflection Dielectric permit-
tivity

57000-
64000

1 mmWave radar 30 liquids (Fanta, Pepsi, Coke, Sprite,
milk, 52%/53%/55%/56% alcohol, ...)

97%

RFVibe [74]
(2023)

Reflection Resonant
frequency,
resonant amplitude
and damping
feature

77000-
81000

1 mmWave radar Metal, wood, ceramic, glass, plastic,
cardboard, foam

81.3%

Glucose [6] (2022) Reflection Dielectric permit-
tivity

77000-
81000

1 mmWave radar Human blood (glucose concentration
0.69/0.81/0.91/1.03/1.08 mg/mL)

95%

AgriTera [8]
(2023)

Reflection Reflectivity 100000-
400000

1 set of TeraMetrix
T-Ray

Avocado, apple, persimmon 0.55%
ripeness
error

RFIQ [9] (2018) Reflection Dielectric permit-
tivity

400-800 1 tag on the
container, 1 RFID
reader as Tx, 1
USRP N210 as Rx

0%/25%/50%/75%/100% tainted al-
cohol; 0%/10%/20%/30% adulterated
baby formula

96%

Tagtag [13] (2019) Reflection Dielectric permit-
tivity

902.75-
927.25

1 RFID tag, 1
reader

23 (Fanta, Pepsi, Coke, vinegar, wood,
plastic, ceramic, rubber, ...)

93.7%

RF-EATS [10]
(2020)

Reflection Dielectric permit-
tivity

500-1000 1 RFID tag, 1
reader

16 (wine 2009, Wine 2012, alcohol,
alcohol+methanol, perfume, ...)

85.8%

RF-ray [15] (2021) Reflection Dielectric permit-
tivity

920.625-
924.375

1 RFID reader,
7×7 tag array

Glass, wood, ceramic, cardboard, wa-
ter, wine, Coke, oil, perfume

99.8%

Tamera [58]
(2023)

Reflection The reflection am-
plitude feature

920-926 1 RFID reader, 1
tag

Metal, plastic, paper, glass 96%

IntuWition [22]
(2019)

Reflection Polarization 2402-2482,
5030-5835

2 Wi-Fi devices Copper, aluminum, human, plywood,
birch

95%

In-baggage [23]
(2021)

Reflection Polarization 2402-2422 2 Wi-Fi devices Fiber, metal, cotton, water in bags or
boxes

97%

LiquID [26] (2018) Penetration Refractive index
and loss factor

3744-4243.2 Wire-connected
UWB Tx/Rx

33 liquids (Distilled water, mineral
water, grape juice, apple juice, ...)

11.9% per-
mittivity er-
ror

TagScan [16]
(2017)

Penetration RP-rate 920.625-
924.375

1 RFID reader, 2
detached tags

16 (vinegar, coke, liquor, beer, apple,
orange, chocolate, ...)

91%

WiMi [24] (2019) Penetration Phase and ampli-
tude change mea-
surements

5170-5330 2 Wi-Fi devices Vinegar, honey, soy, milk, Pepsi,
liquor, water, oil, Coke, sweet water

95%

LiqRay [27]
(2022)

Penetration Relative frequency
response factor

1700-2600 1 USRP Water, Sprite, Coke, Pepsi, black tea,
green tea, peach juice, orange juice
with 0/1/.../20% alcohol

94.9%

A. Misunderstanding of the Impact of Frequency

It is widely and implicitly utilized that the channel impulse
response regarding the material is relevant to the frequency
of the signal. Specifically, the majority of existing material
identification works aggregate channel impulse responses at
different frequencies, and their evaluation results show that a
wider bandwidth containing a wider range of frequencies tends
to support more precise identification.

However, they assume such relevancy to be invariant in the
sensing model. In theory, the difference in the channel impulse
response comes from the distinct reflection or penetration
coefficient, and the coefficient is determined by the material’s
dielectric permittivity that varies with the frequency. Never-
theless, those works share an approximation that the dielec-
tric permittivity remains constant across frequencies, which
limits the precision of material identification. The dielectric

permittivity can vary by over 10% [43] across the frequency
range of 5-9 GHz or 77-81 GHz, making this approximation
a nonnegligible source of precision loss.

To get rid of the coarse approximation, LiqRay [27]
proposes a method to model the dielectric permittivity as
a function of frequency, change the sensing goal into the
permittivity-frequency curve and potentially diminish the loss.

B. Insufficient Validation of Material Features

It is likely to discover some features that distinguish a col-
lection of objects through experiments. However, the majority
of the features are invalid from the perspective of material
identification because they distinguish objects mainly by their
scale, shape and location instead of their material composition.

To validate a material feature, it is required to ensure that
the material composition is the only major variable. In other
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TABLE VI
COMMON EQUIPMENT AND SOFTWARE TOOLKITS FOR MATERIAL IDENTIFICATION.

Signal Equipment Software Toolkit Model Analysis Feature
RFID Impinj Reader R420 Octane SDK Reflection Frequency RSS+phase

USRP N210 GNU Radio Companion Reflection Time/Frequency RSS+phase
Any TX + Impinj RX Octane SDK Penetration Frequency RSS+phase
Any TX + USRP RX GNU Radio Companion Penetration Time/Frequency RSS+phase

mmWave TI IWR1642+DCA1000 mmWaveStudio Both Frequency RSS+phase
TI IWR6843+DCA1000 mmWaveStudio Both Frequency 2D RSS+phase heatmap

Google Soli Ripple Reflection Time/Frequency RSS+phase
Wi-Fi Intel WiFi Link 5300 PicoScenes Reflection Frequency CSI

Any TX + Intel WiFi Link 5300 RX PicoScenes Penetration Frequency CSI
UWB Decawave Trek1000 DecaRangeRTLS ARM Source Code Both Frequency RSS+phase

words, two conditions should be met: 1) the feature is con-
sistent among objects with the same material composition yet
different scales, shapes and locations; 2) the difference of the
feature among objects with distinct material compositions is
significantly larger than the measurement error of the feature.

To validate the first condition, raw reflected or penetrated
signals of multiple objects under multiple settings are required.
One recommended data source is open-source datasets that
provide reliable data of various objects and settings. For
example, the Wallabot material classification dataset [108]
provides raw UWB signals (6.3-8.3 GHz) sampled at 100 GHz
reflected from cement walls, ceramic floors, glass and 2 types
of wood at different 3D positions relative to the transceiver.
Another dataset RFVibe [74] provides raw mmWave signals
(77-81 GHz) reflected from 23 objects made of cardboard,
metal, glass, ceramic, plastic, foam and wood vibrating under
the stimulation of different acoustic waves. If the signal or the
materials in existing datasets do not satisfy the requirements,
a custom dataset will be necessary. When recording the
custom dataset, it is recommended to suppress interference
from diffraction, diffuse reflection and multipath reflection by
choosing large, smooth and thick objects.

To validate the second condition, accurate measurement
of the indicator based on high-quality raw signal is criti-
cal. Commercial equipment and software toolkits are reliable
and recommended for better accuracy. When choosing the
equipment and software toolkit, it is required to consider the
signal type, material identification model, analysis type and the
utilized features in Table VI. For RFID developers, the Impinj
Reader R420 [109] with the Octane SDK [110] can be applied.
If the material identification method requires time-domain
analysis, the Universal Software Radio Platform (USRP) series
[111] with GNU Radio Companion [112] can be taken. For
mmWave developers, commercial evaluation boards and data-
capture adapters like TI IWR1642 [113] and DCA1000 [114]
can be used with the mmWaveStudio software. When the
spatial distribution of signal features is required (e.g. the object
consists of multiple parts, or the object’s location is unknown),
the evaluation board can be replaced with TI IWR6843 [115].
If time-domain analysis is required, it is recommended to use
Google’s Soli radar with the Ripple [116] toolkit. For Wi-Fi
developers, network interface cards like Intel WiFi Link 5300
[117] can be applied with a CSI-tool software like PicoScenes
[5]. For UWB developers, evaluation kits like Decawave UWB
Trek1000 [118] can be used with DecaRangeRTLS ARM

Source Code [119].

C. Inappropriate Use of Classifiers

A classifier commonly takes the indicator of the material
(e.g. CSI-based feature) as its input and outputs the material
composition. A variety of classifiers have been proposed over
the past decades, including the K-Nearest Neighbors (KNN)
classifier, the Support Vector Machine (SVM), the Gradient
Boosting Tree, the Multi-Layer Perceptron (MLP) and the
Deep Neural Network (DNN). In recent years, deep learning
based on DNNs has become a trend in material identification.

Nevertheless, it is not always appropriate to apply deep
learning to material identification. First, the training process
can be extremely costly. The architecture of a DNN can
be greatly flexible and a large collection of hyperparameters
needs to be optimized. Furthermore, for each collection of
hyperparameters, the weights of the DNN are required to
be optimized. As a result, both optimizations yield a high
computational cost.

Moreover, deep learning can be more prone to interference
if some feature extraction efforts are offloaded to learning.
With the power of deep learning, it is possible to implement
material identification with lower-level features that require
less modeling effort. However, the deep neural network may
identify materials through the spatial difference (e.g. the
distance between the object and the transceiver) recorded in
the dataset, which is undesired and hard to detect.

In most material identification tasks, the signal model con-
tributes more than the classifier, and a lightweight machine
learning model is recommended, including the KNN classifier
and the Gradient Boosting Tree classifier. Those classifiers can
be implemented with minimal effort using libraries like scikit-
learn [120] and XGBoost [121], then trained with minimized
time consumption. Moreover, if those models have poor per-
formance, deep learning can be applied with minimal effort
via toolkits like Keras [122].

VII. FUTURE DIRECTIONS

Despite the promising developments, there remain some
open problems that impede the widespread application of
material identification.

From the perspective of sensing, a wide range of objects
in real life are not supported, including multi-layered objects
(e.g. baggage [23], [123], bottled drink, the human body [104],
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[124]), metallic objects, mixtures, thin or small objects and
rough objects. Besides, the adaptability to complex environ-
ments is limited. Home and industrial environments involve
material identification from a long range, in a non-line-of-
sight (NLOS) scenario, or with multiple objects in the same
space.

From the perspective of communication, it is potentially
feasible to enhance communication by reconfiguring the en-
vironment according to the material composition information
of objects, yet the model and algorithm for such enhance-
ment/reconfiguration are unclear.

In this section, we will discuss some possible solutions to
the open problems.

A. Extensions of the RF-based Material Identification Model
1) Identification of Multi-layered Material: The reflected or

penetrated signal from a multi-layered object is the superposi-
tion of signals from each layer. In analyzing the superposition,
two challenges occur: 1) the number of unknown variables
increases as the dielectric permittivity and thickness of each
layer are required to be solved; 2) different multi-layered
materials may yield identical signal properties. Formally, let
a1, a2, ..., aM denote an observed feature based on the RF-
based model, x1, x2, ..., xN be the required variables and
F1, F2, ..., FM be the RF-based model, then the equations
Fi(x1, x2, ..., xN ) = ai(1 ≤ i ≤ M) can be underdetermined
and the models Fi can be many-to-one.

To tackle the challenge, more equations are required. Equa-
tions can be established by tuning the parameters of existing
models or building new models, and the variables can be
determined when the number of equations is larger than or
equal to the number of variables.

2) Quantitative Material Identification: Quantitative mate-
rial identification refers to building a mathematical mapping
between the RF signal properties and the material composition.
Instead of collecting samples of all possible results as required
in data-driven material classification [17], [22], human activity
recognition [125] and so on, quantitative sensing investigates
the physical mechanics of the interaction between the object
and the RF signal. Therefore, it is possible to identify mixtures
that have great significance to human health [126].

Quantitative material identification works in a two-phase
way. In the first phase, the impact of the property (e.g. the
mixture’s dielectric permittivity) on the RF signal properties
is modeled by electromagnetic rules; in the second phase, the
property is translated to the concentration of each component
with empirical formulas or lookup tables. For example, recent
works on soil moisture sensing [21], [127], [128] measure the
light of speed within the soil by the time of flight (ToF) of
the RF signal, convert it to the dielectric permittivity with Eq.
7 and empirically translate the dielectric permittivity into the
soil moisture.

The two-phase scheme in developing model-based methods
can be promising as it offloads the link between material
properties and material composition to third-party laboratories.
Afterward, it is sufficient to develop a model-based material
identification method only with a model connecting material
properties and RF signal properties.

B. Novel Material Identification Models Based on Physical
Principles

The scale and roughness constraints on the object come
from the limitation of RF signals and the corresponding
sensing model based on Snell’s Law and Fresnel’s Law. By
innovating the sensing model with other physical principles
[38], it is possible to break the constraints.

1) Polarimetry-based Model: Generated by common RF
devices, the majority of RF signals are linearly polarized
and can be decomposed into two orthogonal components,
namely, the p-polarized and s-polarized one. According to
Fresnel’s Law, the impact of the reflection/penetration on the
p-polarized and s-polarized components are different, which
can be modeled and utilized for an indicator of materials.

The polarimetry-based sensing model can be utilized in
various sensing applications [76], [129], including detection
of metallic materials [22].

2) Diffuse-reflection-based Model: The assumption that the
reflected signals are spectral limits the range of material
identification. It requires the transceiver to face the object
surface perpendicularly, taking the single-device setting as an
example. When the object is far from the transceiver or the
line of sight is blocked, the requirement can be unrealistic.

As no surfaces are absolutely smooth, there are reflected
signals toward directions other than the spectral reflection
direction. The Bidirectional Reflectance Distribution Function
(BRDF) can model the reflected signal strength in each direc-
tion relative to the spectral-reflected signal strength. Further-
more, the BRDF can be instantiated as the Phong Model [130]
when the object has a flat or convex surface, or the Lambert’s
Model [131] when the object has a roughness significantly
larger than the wavelength of the signal.

Afterward, the long-range or NLOS material identifica-
tion problem can be converted to a multi-variable sensing
problem where the incident angle and the BRDF parameters
are unknown, which can be solved by multi-variable sensing
techniques.

3) Acoustic-based Model: Acoustic signals apply mechan-
ical forces on objects and fetch a novel set of material
properties that are inaccessible in RF-based sensing models,
such as viscosity [132], surface tension [133] and resonant
frequency [74], [134], [135].

The surface tension factor and viscosity are limited to
liquids, while the polarization change and resonant frequency
exist in both solid and liquid materials. Therefore, for all
materials, the acoustic-based sensing model applies and may
enable material identification in scenarios where RF signals
cannot reach the object.

4) Visible-light-based Model: Looking into the microscope,
visible light is compatible to extremely small objects, includ-
ing a drop of human blood [6]. The RF-based techniques can
also be migrated to visible light, as the diffraction loss [99]
is negligible while the directionality [136], [137] and range
resolution [138] are sufficient.

Moreover, some microscope physical effects can be ob-
served by visible light, yielding novel models. First, the
Brownian motion of speckles inside a drop of liquid can
be detected with the range resolution of visible light. The
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fluctuation of speckle intensity over time implies the viscosity
of the liquid and the liquid’s material composition. Second,
visible light triggers photoacoustic effect [139]–[141] at the
surface of the material. Specifically, the atoms can absorb
the photons in visible light and transmit the light energy into
mechanical energy. Afterward, by detecting the mechanical
energy with a piezoelectric layer, small objects with different
material compositions can produce different electric signals.
Third, the molecules in dielectric materials can be resonant
with terahertz signals, and the strength of resonance at certain
frequencies indicates the concentration of certain molecules
(e.g. water [8]).

C. RF Channel Reconfiguration Based on Material Identifica-
tion

It is possible to improve certain communication channels
in an indoor space by understanding the materials’ impact
on communication signals. Similar improvement has been
achieved in the acoustic field that decorates a theatre with
well-designed materials of certain composition and scale to
optimize the sound effects in the audience area [142].

With the reflection and penetration model, the channel
impulse response of each path can be calculated given the
positions, scales and compositions of all materials within the
path. Afterward, the superposed signal at the receiver can be
modeled with the channel impulse responses. Furthermore, to
enhance the superposed signal, a possible approach is to re-
configure some of the channel impulse responses by replacing
materials. Physically trying and replacing materials can be
exhaustive, yet reflective intelligent surfaces can reduce the
complexity by emulating the reflection behaviors of common
materials [143].

VIII. CONCLUSION

This paper provides a comprehensive survey of RF-based
material identification methods. In the taxonomy, we catego-
rize material identification models into the reflection-based
and penetration-based ones. Methods with each model are
further classified by the utilized signal type, including RFID,
mmWave, Wi-Fi and UWB. For each branch, we illustrate the
physical principle and present detailed descriptions of existing
works. Afterward, we propose common evaluation metrics of
material identification methods, including precision, accuracy,
device deployment overhead and adaptability. According to
the metrics, we then discuss the advantages and disadvantages
of the reflection/penetration model and the four signal types.
Moreover, we discuss common misconceptions and pitfalls
for researchers, including misunderstanding of the impact
of frequency, insufficient validation of material features and
inappropriate use of classifiers. Furthermore, we explore future
trends in material identification from the perspective of the
sensing model and the signal. Material identification enables
the connectivity of objects to the information domain and is
deemed an extension of the current Internet of Things to be
further explored in the coming years.
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