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Abstract—mmWave-based activity recognition technology has attracted widespread attention as it provides the ability of device-free,
ubiquitous and accurate sensing. Recognition of human activities intrinsically demands to be real-time and continuous, but the state of
the arts is still far limited with the capacity in this regard. The main obstacle lies in activity sequence segmentation, i.e. locating the
boundaries between consecutive activities in an activity sequence. This is a daunting task, due to the unclear activity boundaries and
the variable activity duration. In this paper, we propose ZUMA, the first mmWave-based approach to real-time continuous activity
recognition. When resorting to a machine learning model for activity recognition, our insight is that the recognition confidence of the
recognition model is highly correlated to the accuracy of activity sequence segmentation, so that the former can be utilized as a
feedback metric to finely adjust the segmentation boundaries. Based on this insight, ZUMA is a coarse-to-fine grained approach, which
includes the fast coarse-grained activity chunk extraction and the find-grained explicit segmentation adjustment and recognition. We
have implemented ZUMA with the commercial mmWave radar and evaluated its performance under various settings. The results
demonstrate that ZUMA achieves an average recognition error of 12.67%, which is 65.08% and 71.87% lower than that of the two
baseline methods. The average recognition delay of ZUMA is only 1.86 s.

Index Terms—Wireless Sensing, Millimeter Wave, Continuous Activity Recognition

1 INTRODUCTION

Activity recognition plays a significant role in smart systems
like smart home, smart health, and smart office. With effi-
cient sensing of human activity, activity recognition becomes
an increasingly important function in many smart applica-
tions, such as elderly care, fitness monitoring, interactive
control, fall detection, and auxiliary rehabilitation.

A variety of technologies can provide the ability of
activity recognition, including vision based [1], [2], [3],
wearable based [4], [5], [6], wireless sensing based solu-
tions [7], [8], [9], [10], [11], [12], and etc. Compared with
vision based solutions, wireless sensing technology has the
privacy-preserving feature and is robust in dynamic lighting
conditions. The contactless feature of wireless sensing eases
the burden on the user, making it more attractive than
wearable based solutions.

Among the wireless sensing based approaches, millime-
ter wave (mmWave) based sensing appears to be a promis-
ing direction, owing to the high spatial resolution and fine-
grained sensing capacity of using mmWave signals as the
sensing medium. The existing works [9], [13], [14], [15], [16],
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Figure 1: Segmentation is critical for continuous activity recog-
nition.

[17] usually propose to use the mmWave radar(s) to collect
the activity-associated mmWave signals reflected from the
human body, and recognize the activity by processing and
analyzing those signals. In this way, the existing proposals
can recognize a single-shot activity with satisfactory accu-
racy.

Playing a pivotal role in interactive smart applications,
activity recognition intrinsically demands to be real-time
and continuous, since human activities are continuous in
most cases and need to be responded in a timely manner.
This fact is however often overlooked in the existing studies.
None of the existing works can satisfy the above demand.
The reason is that accurate and fast activity sequence seg-
mentation is critical for continuous activity recognition but
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has not been well resolved. As shown in Fig. 1, the activity-
associated mmWave segments are extracted from the entire
sequence as the recognition input, while the accuracy of
the segmentation largely determines the accuracy of final
recognition. A deviated segmentation may even lead to a
cascade of recognition errors.

Some of the existing works have identified this problem
but they generally over-simplify it. Some of them capture
the signal segments through fixed-length sliding windows
[9], [15], which cannot be adapted for variable-duration
activity recognition. Some others extract the signal segments
corresponding to a single activity from a signal sequence, by
tracing the change in simple low-level features, such as the
velocity [18] and the number of point clouds [13], which is
ineffective for consecutive activity recognition. As a whole,
the existing works have apparent limitations in continuous
activity recognition tasks, as they cannot accurately segment
variable-duration continuous activity sequences.

By looking into the above problem, we find three critical
challenges there: First, the boundaries between consecutive
activities are unclear and hard to be directly located in
the mmWave signals. Second, the duration of individual
human activities has large variations. In our experiments,
the duration of a single activity varies from 1 s to 3 s. Such
large duration variations further complicate the accurate
segmentation of the activity sequence. Last but not least,
practical application demands real-time recognition and
therefore requires a fast segmentation process.

In this paper, we rethink the above problem in a different
way. Instead of trying yet another metric to define the
boundaries between activities, which is difficult or even
impossible to find due to the complexity and diversity of
activities, we believe the machine learning model itself has
the potential to identify the boundaries. Specifically, our
insight is that the recognition confidence of the recognition
model is highly correlated to the accuracy of segmentation.
The recognition confidence can be directly obtained from
the logit output of the recognition model and indicates the
correct recognition probability. As the recognition model is
trained with the actual activity segments, the more accu-
rately the activity boundaries are located, the more complete
the activity semantic information is, and therefore the higher
the corresponding recognition confidence is.

Inspired by this insight, We propose ZUMA!, the first
mmWave-based approach to real-time continuous activity
recognition. ZUMA utilizes the recognition confidence as a
feedback metric to finely locate the segmentation bound-
aries and enable continuous activity recognition. Specifi-
cally, we first extract the range-Doppler spectrum around
the human body to capture activity-associated information.
We then detect the presence of activity sequences by cal-
culating the velocity entropy of each range-Doppler spec-
trum. After that, we utilize a modified Temporal Segment
Network (TSN) model for single-shot activity recognition
to obtain the recognition confidence. Since the recognition
confidence is positively correlated to the segmentation ac-
curacy, we transform the activity sequence segmentation
and recognition problem into the maximum recognition

1. ZUMA is a classic game of manipulating a frog-like creature to
detonate consecutive sequences of balls of the same color.

2

confidence searching problem. Finally, we propose a parallel
divide-and-conquer search algorithm to quickly search for
the largest recognition confidence, so as to locate the activity
boundaries and achieve continuous activity recognition.

Our contributions can be summarized as follows:

* We propose a novel scheme of explicit segmentation
adjustment, which exploits the potential of an activity recog-
nition model to accurately identify the boundaries between
consecutive activities. To the best of our knowledge, ZUMA
is the first mmWave-based approach to real-time continuous
activity recognition.

¢ ZUMA is a tailored design that includes velocity
entropy-based activity chunk extraction, single-shot activity
recognition with fixed-number sampling, and continuous
activity recognition based on parallel divide-and-conquer
searching. The design achieves timeliness and accuracy of
recognition at the same time.

¢ We implement ZUMA on the commercial device (TI
IWR6843ISKODS) and conduct extensive experiments. The
results demonstrate that ZUMA achieves an average recog-
nition error of 12.67%, which is 65.08% and 71.87% lower
than that of the two baseline methods. The average recogni-
tion delay of ZUMA is only 1.86 s.

The rest of the paper is organized as follows. Section
2 discusses the related work. Section 3 introduces the pre-
liminaries of our work. Section 4 elaborates on our design.
The implementation and evaluation results are presented
in Section 5 and Section 6, respectively. Section 7 discusses
some practical issues and future directions. We conclude this
work in Section 8.

2 RELATED WORK

In this section, we first introduce the related works about
mmWave-based activity recognition, including single-shot
and continuous activity recognition. Then we introduce
some continuous recognition works using other technolo-
gies to illustrate the unique challenges of mmWave-based
recognition.

2.1 Activity Recognition via mmWave

With the development of commercial mmWave radars and
the growing attention to human behavior, there have been
many works [10], [13], [19], [20], [21], [22] utilizing mmWave
radars to achieve single-shot activity recognition. They
mainly focus on extracting features from well-segmented
activities and proposing tailored recognition models to rec-
ognize a single-shot activity with satisfactory accuracy. For
example, Soli [19] utilizes their customized mmWave radar
to extract a variety of features from the range-Doppler
spectrums of individual gestures and then utilizes differ-
ent machine learning classifiers to achieve accurate gesture
recognition. EI [10] employs a commercial 60GHz mmWave
transceiver system to acquire Channel Impulse Response
(CIR) measurements of individual activities for subsequent
recognition. Some works notice the importance of accurate
activity segmentation in their recognition tasks. DI-Gesture
[13] adopts variable-length gesture segmentation instead of
fixed-length segmentation within continuous range-angle
frames. It employs a motion indicator to discern whether the
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current frame is a motion frame and implements a dynamic
window mechanism for motion segmentation. Nonetheless,
this approach is tailored solely for single-shot activity ex-
traction. In real-world activities, there lacks a distinct sta-
tionary point between consecutive activities.

Several studies [9], [14], [18], [23], [24]have investigated
continuous activity recognition using mmWave radars.
However, none of them simultaneously fulfills the two
intrinsic requirements: real-time and continuous recogni-
tion capabilities. RFWash [23] proposes a sequence learning
approach devoid of explicit segmentation to forecast ges-
ture sequences from range-Doppler spectrums. Although
effective, this method is time-consuming since each frame
must be independently predicted. mHomeGes [9] takes the
superposition results of the fixed-length denoised range-
Doppler profiles as input and proposes a hidden Markov
model-based voting mechanism to handle continuous ges-
ture signals. While suitable for real-time single-shot activity
recognition, it encounters challenges in continuous activity
recognition due to the variable activity duration. M-Gesture
[18] also proposes a real-time gesture recognition approach
with a system status transition to determine the start and
end point of a gesture. However, it only functions when
there are stationary points between activity segments.

2.2 Continuous Recognition via Other Technologies

Numerous studies have explored leveraging various sens-
ing mediums for continuous activity recognition, such as
cameras, WiFi, wearable sensors and so on. However, most
of these approaches either rely on time-consuming deep
learning models or employ simple matching methods with
limited accuracy. They are not well-suited for mmWave-
based continuous activity recognition tasks due to the real-
time requirements and the complexity of mmWave signals.
For example, camera-based methods [1], [2], [3] have been
widely explored to achieve spatial-temporal activity detec-
tion and recognition. Many machine learning techniques
are used to achieve accurate region proposal extraction and
recognition. Nevertheless, such methods are not applicable
to mmWave-based real-time recognition tasks due to the
limited imaging resolution of mmWave radars and the ex-
cessive computational overhead. Some of them [2] propose
incorporating segmentation bias into the loss function to
enable the recognition model to identify appropriate seg-
ments for recognition. However, this necessitates traversing
the entire data sequence multiple times, resulting in sig-
nificant time consumption. Moreover, such methods lack
generality for variable recognition models as they require
modifying the loss functions. WiFi-based methods [25], [26],
[27], [28], [29], [30] utilize CSI measurements for activity
recognition, often employing low-level feature matching or
sequence template matching for activity segment extrac-
tion. However, due to the sensitivity of mmWave signals
to human activities, the suitable matching templates are
hard to select, rendering simple matching methods un-
suitable for mmWave-based continuous recognition tasks.
Similarly, wearable-based methods [5], [6], [31] exploit the
changes in sensor data to recognize activities. They utilize
template matching or learning-based matching for activity
segment extraction to achieve continuous recognition. How-
ever, these methods also encounter issues of data ambiguity
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Figure 2: The distribution of the activity duration

or huge computation overhead when applied to mmWave
signals.

In summary, due to the unclear boundaries between
consecutive activities in mmWave signals and the variable
activity duration, existing mmWave-based approaches are
difficult to apply to continuous activity recognition. Besides,
these methods using other technologies are unsuitable for
mmWave-based continuous recognition tasks because of
their high computation overhead and the complexity of the
mmWave signals. On the contrary, we propose an explicit
segmentation adjustment method to quickly locate the activ-
ity boundaries and enable continuous activity recognition.
This method is not reliant on specific recognition models
and has great generality.

3 PRELIMINARY

In this section, we first demonstrate the variability in activity
duration, which is a critical challenge for continuous activity
recognition. Then we focus on our preliminary studies on
the correlation between the segmentation accuracy and the
recognition outputs.

3.1 The Variability in Activity Duration

We first collect and construct an extensive mmWave activity
dataset, which is described in detail in Section 5. This
dataset consists of about 6000 samples of twelve predefined
typical activities. Each sample is obtained by manual seg-
mentation. The predefined activities encompass four fitness
activities, four interaction activities, and four rehabilitation
training activities: stretch (ST), arm curl (AC), squat (SQ),
boxing (BO), handclap (HC), hand waving (HW), hand
crossed (HC), pull down (PD), breast expansion (BE), right
stretch (RS), waist twist (WT) and stretch down (SD).

We measure the durations of these activity samples, and
the distribution of the activity duration is shown in Fig. 2.
We can find that the durations of these activities vary signifi-
cantly from 1 s to 3 s. The reason is that different individuals
(e.g., having different weights, heights or genders) and even
the same individual at various times (e.g., having different
fatigue and emotional states) can have disparate activity
durations. Such a large variation is extremely challenging
for continuous activity recognition. First off, the large du-
ration variance makes it difficult for these segmentation
methods based on fixed-length sliding windows to be ap-
plied. Furthermore, varying activity durations exacerbate
the difficulty of locating activity boundaries.
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3.2 The Correlation between Segmentation Accuracy
and Recognition Outputs

In this section, we present our preliminary studies on the
correlation between the segmentation accuracy and two
types of recognition outputs, the recognition accuracy and
the recognition confidence, respectively.

We take a TSN recognition model [32] as an example
to demonstrate the correlation between the segmentation
accuracy and the recognition outputs. The TSN model can
recognize a single activity of arbitrary length and is detailly
described in Section 4.4.1.

To explore the correlation between the segmentation
accuracy and the recognition outputs, we first build the
test datasets corresponding to different segmentation biases
based on the manual-segmented samples in the activity
dataset. The segmentation bias refers to the difference be-
tween the actual activity boundary and the segmentation
boundary, which is negatively correlated to the activity
segmentation accuracy. The smaller the segmentation bias
is, the higher the segmentation accuracy.

We assume that each sample in the manual-segmented
dataset corresponds to a segment within the time range
[ak, bg] in the raw data. To construct the test dataset cor-
responding to a specific segmentation bias (s, €5), we select
the segment within the time range [ax + $p, by + €p]. Here,
ay and by, denote the start and end timestamps of the k-
th sample, respectively, while s;, and e, represent the start
and end timestamp biases. We specifically set s; and e; to
vary at intervals of 0.033 s within the range of [—0.4,0.4]
seconds, respectively. The interval of 0.033 s corresponds to
the segment duration for a single range-Doppler spectrum
under the radar configuration. In this way, we can build the
test datasets corresponding to different segmentation biases.
Then the samples from these test datasets are input into the
recognition model to obtain the recognition outputs.

Segmentation accuracy v.s. recognition accuracy. The
average recognition accuracies of these test datasets are
shown in Fig. 3. Each value in the plot represents the av-
erage recognition accuracy of all individual activities in the
corresponding dataset. The results show that the recognition
accuracy is positively correlated to the segmentation accu-
racy. When there is no segmentation bias (i.e., the manual-
segmented dataset), which corresponds to the highest seg-
mentation accuracy, the recognition accuracy is the highest
and reaches 97.84%. With an increase in the start timestamp
bias or the end timestamp bias, the segmentation accu-
racy becomes lower and the recognition accuracy decreases
monotonically. The reason is that as the segmentation bias
increases, the activity semantic information becomes incom-
plete and noisy, thereby causing misunderstandings by the
recognition model regarding the activity segment.

While the recognition accuracy is indeed positively cor-
related with segmentation accuracy, it serves as an outcome
measure rather than a predictive indicator. Given that the
recognition accuracy is the ultimate target of our recognition
system, it cannot be used to infer segmentation accuracy
beforehand. To address this, we require an indicator directly
derived from the recognition model that can aid in inferring
segmentation accuracy.

Segmentation accuracy v.s. recognition confidence. We
find that the logit output of the recognition model [33],
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[34] is a suitable indicator for inferring segmentation ac-
curacy. In typical recognition models, the logits represent
unnormalized predictions and are often processed by the
Softmax module to generate final recognition probabilities.
Unlike recognition accuracy, the logits corresponding to
each class can be directly obtained from the recognition
model. we further observe a significant correlation between
the logit corresponding to the correct recognition class and
the segmentation accuracy. Inspired by this observation, we
exploit this unique pattern to locate the activity boundaries
and determine the correct recognition class. Specifically, we
take the logit corresponding to the correct recognition class
in the recognition output as the recognition confidence.

We evaluate the correlation between the segmentation
accuracy and the recognition confidence. The average recog-
nition confidence of these test datasets is shown in Fig. 4. We
observe that in the absence of segmentation bias, the average
recognition confidence is highest. As the segmentation bias
increases, the average recognition confidence experiences a
rapid decline. We carefully analyze the underlying mech-
anisms of the relationship between segmentation accuracy
and recognition confidence. When the recognition model is
trained to withstand the environment noise and accurately
recognize discrete activities, the completeness of activity
segments emerges as the primary factor influencing contin-
uous recognition outputs. A larger segmentation bias leads
to more incomplete activity segments and noisier seman-
tic information, subsequently leading to lower recognition
probability and recognition confidence.

These experimental results show that it is feasible to
utilize the recognition confidence to infer the segmentation
accuracy. Consequently, it can serve as a suitable feedback
metric for explicit segmentation adjustment. Note that the
recognition confidence is part of the logit output and there-
fore can be directly obtained from the recognition model.
However, obtaining the recognition confidence correspond-
ing to all segmentation biases is highly time-consuming.
Furthermore, the correct recognition classes are not available
in advance, which makes the calculation of the recognition
confidence more difficult. We solve these problems in the
following section.

4 DESIGN

In this section, we first provide the overview of ZUMA and
then introduce its three key modules.

4.1 Overview

The overview of ZUMA is shown in Fig. 5. ZUMA adopts a
coarse-to-fine grained approach to achieve real-time contin-
uous activity recognition. After signal preprocessing, ZUMA
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Figure 5: The overview of ZUMA

first quickly locates the activity sequences in the entire
mmWave sequence to reduce computation overhead. It em-
ploys the velocity entropy as an indicator for fast coarse-
grained activity chunk extraction. Subsequently, ZUMA it-
eratively adjusts the segmentation of each activity within
the activity chunk to achieve accurate continuous activity
recognition. In each adjustment, ZUMA utilizes the recog-
nition confidence corresponding to the current segments as
the feedback metric for further fine-grained segmentation
adjustment. Specifically, ZUMA consists of three modules
to realize this coarse-to-fine approach: signal preprocessing,
activity chunk extraction, and continuous activity recogni-
tion. We introduce each module below:

e Signal preprocessing. ZUMA first utilizes the mmWave
radar to scan the environment to obtain the range-Doppler
spectrum around the human body. After localizing the po-
sition of the human body, ZUMA applies the spectrum de-
noising technique and normalization to the human-around
range-Doppler spectrums to construct the range-Doppler
spectrum sequence for further recognition.

o Activity chunk extraction. For each range-Doppler spec-
trum, ZUMA calculates its velocity entropy value to obtain
the velocity entropy sequence. As the velocity entropy un-
dergoes significant changes in the presence of activity but
remains relatively constant when the human is stationary,
ZUMA locates the start and end frames of the activity se-
quences by comparing the velocity entropy variance within
a sliding window with a predefined threshold, and then
extracts activity chunks.

» Continuous activity recognition. To obtain the recogni-
tion confidence of the segments from the activity chunk,
ZUMA employs a modified TSN model for quick single-
shot activity recognition. Since the segmentation accuracy is
positively correlated to the recognition confidence, ZUMA
transforms the activity sequence segmentation and recog-
nition problem into the maximum recognition confidence
searching problem. With the recognition confidence corre-
sponding to the current segments serving as the feedback
metric, ZUMA iteratively adjusts the segmentation of each
activity and quickly locates the largest recognition confi-
dence. Specifically, ZUMA employs a novel parallel divide-
and-conquer search algorithm to expedite the process of
locating the largest recognition confidence.

4.2 Signal Preprocessing

ZUMA first scans the environment surrounding the human
body using the mmWave radar and captures the reflected
signal. The reflected signal is mixed with the transmitted
signal to obtain the intermediate frequency (IF) signal. Then
ZUMaA applies the classic range-FFT and Doppler-FFT op-
erations [35] to the IF signal to obtain the entire range-
Doppler spectrum, which contains the activity-associated
information.

To enhance the saliency of activity-associated informa-
tion in the range-Doppler spectrum, ZUMA first eliminates
the spectrum components irrelevant to the human body.
We notice that the magnitude of the range bins where the
human body is located undergoes periodic changes due to
human micro-movements such as breathing. Conversely, the
magnitude of other range bins remains stable due to en-
vironmental consistency. Leveraging this insight, we locate
the maximum variance of the magnitude within a second
to pinpoint the position of the human body. Considering
the potential significant displacement of human body parts
during activities, ZUMA reserves the range-Doppler spec-
trum corresponding to 100 range bins around the position
of the human body as the human-around spectrum.

To further mitigate the interference of the human-around
environment on the activity-associated information, we em-
ploy the spectrum subtraction algorithm [36] to suppress the
environment noise in the human-around spectrum. The core
idea is to subtract the estimation of the average background
noise spectrum from the measured spectrum, where the
average background noise spectrum can be estimated from
the environment where no human is present.

After removing the environmental noise, we normalize
each spectrum to ensure uniform magnitude ranges across
all spectrums. This normalization step is crucial for sub-
sequent calculations of the velocity entropy sequence and
single-shot activity recognition.

4.3 Activity Chunk Extraction

With continuous signal preprocessing, we can obtain a se-
ries of denoised range-Doppler spectrums. To reduce the
computation cost and facilitate further recognition, ZUMA
extracts the activity chunks from the entire mmWave se-
quence. These activity chunks contain an arbitrary number
of continuous activities. Specifically, ZUMA first calculates
the velocity entropy value of each range-Doppler spectrum,



IEEE TRANSACTIONS ON MOBILE COMPUTING

«ST>l«<AC!

L~ HC —<HW>! «SQ->«<BQ->!

4.605

4.6

4.595

Entropy Value

4.59

0 3 6 9 12 15 18
Time (s)

Figure 6: The velocity entropy sequence of continuous activities

then ZUMA analyzes the velocity entropy variance to detect
the presence of activity chunks.

4.3.1 Velocity entropy calculation

We note that the velocity distribution in the range-Doppler
spectrum can serve as a unique metric to detect the presence
of activities, which characterizes the intensity distribution
in the Doppler spectrum. The entropy is typically used as
the metric of dispersion, and we define the velocity entropy
to measure the dispersion of the Doppler spectrum. When
a human is stationary, the velocity of all the body parts are
nearly zero, and the intensity of the Doppler spectrum tends
to concentrate in the center bin, resulting in a low velocity
entropy. Conversely, when an activity occurs, different body
parts typically have different velocities, and the intensity
of the Doppler spectrum disperses across non-center bins,
resulting in a high velocity entropy. Inspired by existing
works in video and wearable sensor data analysis [37], [38],
[39], we calculate the velocity entropy value of the range-
Doppler spectrum to characterize the velocity distribution
and thereby detect the presence of activities. Specifically,
we first aggregate the range-Doppler spectrum along the
range dimension to obtain the corresponding column sums.
Assume that the column sum v; represents the aggregation
intensity value of the i-th Doppler bin, the velocity entropy
can be calculated by:

D
VE = —Zvi*logvi @)
i=1
where D represents the number of the Doppler bins.

We analyze a mmWave sequence containing multiple
activities and calculate the corresponding velocity entropy
sequence, illustrated in Fig. 6. In this sequence, six typ-
ical activities are executed in sequence, with each pair of
activities executed continuously. The ground truth of each
activity duration is clearly marked in the plot. We find that
whenever an activity chunk occurs, there is a significant
change in the velocity entropy sequence. This is attributable
to the distinct velocity distribution during human activities
compared to stationary periods. Besides, as there are few
stationary intervals between consecutive activities, the ve-
locity entropy exhibits continuous fluctuations within the
activity chunks, making it challenging to precisely locate
boundaries between consecutive activities using solely such
a low-level feature.

4.3.2 Entropy-based extraction

The subsequent task involves accurately extracting the ac-
tivity chunks from the entire range-Doppler spectrum se-
quence. Although the velocity entropy changes significantly
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when the activity occurs, directly applying a velocity en-
tropy threshold often leads to high rates of false alarms and
missed alarms due to its high variance. To address this issue,
we calculate the short-term variance of the velocity entropy
using a sliding window of length 10 frames. Unlike directly
applying a velocity entropy threshold, the velocity entropy
variance maintains a high value during activities and is
resistant to the transient noise, which frequently appears
in the velocity entropy sequence.

The velocity entropy variance sequence corresponding to
the aforementioned mmWave sequence is shown in Fig. 7. In
ZUMA, we utilize an empirical threshold of 10~7 to detect
the presence of activities. We can find that all of the activity
chunks in the mmWave sequence are successfully detected
with limited start and end biases. The threshold applies to
various locations and orientations of the person, assuming
that the user faces the device within a moderate range
of orientation angles. As Eq.1 in Section 4.3.1 shows, the
velocity entropy is determined by the quantity and reflector
signal strength of body parts with different velocities, and it
is irrelevant to the velocity values. Therefore, as a moderate
orientation angle deviation changes the radial velocities
while keeping the body parts in different Doppler bins,
the velocity entropy is approximately invariant with the
orientation.

In the extraction process, some short-term static seg-
ments may exhibit velocity entropy variances higher than
the threshold, while certain activity segments may have
velocity entropy variances lower than the threshold. These
instances lead to wrong chunk extraction, referred to as
brief false alarms and brief missed alarms, respectively. To
mitigate brief false alarms, we compare the durations of
these segments with the minimum activity duration (i.e., 1
s in our preliminary study). If these segments are shorter
than the minimum activity duration, they are flagged as
false alarms and can be neglected. For brief missed alarms,
we utilize a duration threshold of 10 frames to determine
whether it represents a continuous activity chunk or two
separate activity chunks.

4.4 Continuous Activity Recognition

The extracted activity chunks contain an arbitrary number
of continuous activities, necessitating accurate segmentation
and sequential recognition. To accomplish this task, we
first select a predetermined number of overlapping seg-
ments from the start of the activity chunk. These segments
are stacked together and fed into a single-shot activity
recognition model to obtain the corresponding recognition
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confidence. Based on the distribution of the recognition
confidence, ZUMA iteratively refine the segment selection
process for the next round of adjustment. Through multi-
ple iterative adjustments, ZUMA can locate the maximum
recognition confidence, thereby determining the boundaries
of the first activity and obtaining the corresponding recogni-
tion results. ZUMA then repeats this process for the remain-
der of the activity chunk, resulting in continuous activity
recognition.

4.4.1 Single-shot activity recognition

Considering the variability in activity duration and the
requirement for real-time continuous recognition capability,
a straightforward recognition model capable of accommo-
dating variable activity durations is essential. In ZUMA,
we leverage a modified Temporal Segment Network (TSN)
model [32] to fulfill these needs. The TSN model operates
by extracting a fixed number of frames from the activity
segment of arbitrary length and subsequently extracting
features from these frames, enabling straightforward and
efficient single-shot activity recognition.

To improve the sensitivity of the TSN model to the
segmentation, we modify the sampling method to fixed-
position sampling. The modified TSN model structure is
shown in Fig. 8. Specifically, we divide the activity segment
into ten equal parts, one third of the number of frames in
one second. Based on the observation that adjacent frames
are quite similar and make activity segmentation harder, we
set the number of parts as 10 to avoid adjacent frames to be
selected in a typical activity that lasts no less than 1 second
(30 frames). Subsequently, we select the first frame from the
beginning part, the last frame from the end part, and the
middle frame from each of the remaining parts as the se-
lected frames. This fixed-position sampling method ensures
that the trained model is more sensitive to segmentation
and yields higher recognition confidence when the activity
is accurately segmented.

Then each selected frame passes through the sample fea-
ture extraction module to obtain the corresponding features.
They are first processed via three convolutional layers with
a 3 x 3 range-Doppler kernel, 2 strides, and 1 padding,
each of which follows a batch normalization layer and a
ReLu layer. The channel numbers of the three Convolutional
layers progressively increase from 8 to 16 to 32. After that, a
flatten layer and a dense layer with 128 units are employed
to obtain the feature vector.

These features are further concatenated and fed into a
fully connected module to obtain the recognition results.
The fully connected module comprises two layers: the first
layer consists of 32 units, followed by a second layer with 7
units. Its output is exactly the logits corresponding to each
class. Finally, a Softmax layer is applied to obtain the final
recognition scores.

4.4.2 Explicit segmentation adjustment

As we mentioned before, the recognition confidence (i.e.,
the logit corresponding to the correct class) increases as
the segmentation bias decreases. We exploit this property
to transform the continuous activity sequence segmentation
and recognition problem into the maximum recognition
confidence searching problem. The problem formulation is
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Figure 8: The single-shot activity recognition model structure
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Figure 9: The continuous activity recognition problem is trans-
formed into maximum recognition confidence searching.

shown in Fig. 9. Each selected segment corresponds to a
sample in the recognition confidence space. Its x-coordinate
and y-coordinate represent the start frame and the end
frame respectively, and its value represents the correspond-
ing recognition confidence of the selected segment. In this
way, the activity boundaries can be located by searching the
maximum value in the recognition confidence space.

We further determine the search space based on the
distribution of activity duration and the coarse-grained
initial start frame obtained from activity chunk extraction.
Specifically, assuming the activity duration varies within the
range of [Minp, Maxp] frames and the initial start frame
is denoted as Init,, we select the initial start frame as the
initial anchor to locate the search space. Since the initial
start frame may not precisely align with the actual activity
boundary, we select M frames before and after the initial
start frame to encompass the potential activity boundary. We
define the number of search frames around the initial start
frame M as the search margin. Considering the constraints
of activity duration, the search space is calculated as follows:

Init, — M <x<Init, + M o)
Minp <y—x < Maxp

where x and y represent the start frame and the end frame
of the selected segment, respectively. In ZUMA, the search
margin M is set to 10 according to our experiment results,
which is detailed evaluated in Section 6.3.7.

In this way, the continuous activity sequence segmenta-
tion and recognition problem can be transformed into the
problem of searching for the largest recognition confidence
in such a diamond search space. However, obtaining the
recognition confidence corresponding to each sample in the
diamond search space can only be done after inputting the
corresponding segments into the recognition model. This
process is time-consuming and impractical to perform for
all samples in the search space. Additionally, the recognition
confidence relies on knowing the correct recognition class,
which cannot be determined in advance. This limitation
prevents us from selecting the logit space corresponding to
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Figure 10: The process of divide-and-conquer search

the correct recognition class as the recognition confidence
space to locate the activity boundaries.

To handle these challenges, we design a novel parallel
divide-and-conquer search algorithm to accurately search
the maximum recognition confidence with minimal search
iterations. Our core observation is that in the recognition
confidence space, the closer the selected segment is to the
actual activity segment, the higher its corresponding recog-
nition confidence. Additionally, the maximum value across
the logit spaces corresponding to all classes is usually the
recognition confidence of the actual activity segment and
is surrounded by relatively large logits. Inspired by this
observation, we parallelly search for the maximum logits
in the logit space corresponding to all classes, and utilize
the maximum value among these logits as the maximum
recognition confidence to locate the activity boundary and
obtain the recognition result.

For each logit space. we employ the divide-and-conquer
search algorithm to quickly locate the maximum logit, The
search process is shown in Fig. 10. Specifically, we first
divide the search space into multiple parts evenly and take
the center sample in each part as the search sample to
obtain the corresponding logits. It is worth noting that these
samples are stacked into a batch and fed into the recognition
model simultaneously to get the logits, which significantly
accelerates the process compared to processing one sample
at a time. Then we select the parts corresponding to the
top T largest samples from the obtained logits as the new
search space for the next round of searching. In this way, the
part containing the largest logit can always be selected and
the largest logit can be quickly located. Sometimes the local
maximum values of the logit corresponding to incorrect
segmentations may be temporarily selected. However, as
the iterative search progresses across multiple selected parts,
these local maximum values are discarded when the global
maximum logit is located, which corresponds to the actual
activity segment.

Furthermore, we notice that the majority of the logits
corresponding to the correct class in the search space are
larger than those of the other classes. Since we can obtain the
logits corresponding to all classes of these search samples,
we select the five classes with the highest average logits
in the first round as the candidate classes for subsequent
searches. The subsequent searches of these classes are con-
ducted in parallel to obtain the largest logit corresponding
to each class. Finally, the largest logit among these classes
is selected, which corresponds to the correct segmentation
boundary and recognition result.

In rare cases that the logits corresponding to a wrong

mmWave Radar
i

Figure 11: The experiment scenairo

class is larger than the correct class, the classification and
segmentation are both unreliable. However, the error is un-
likely to interfere the recognition of the following activities.
As discussed in Section 4.4.2, the searching mechanics is
likely to guarantee the correctness of the next segmentation
and avoid an accumulated error. Even if centered at a wrong
frame, the search space still possibly includes the right
segmentation for the next activity.

With such a search algorithm, ZUMA can accurately seg-
ment and recognize the first activity in the activity chunk.
After that, the first frame after the recognized activity is
utilized as the new initial anchor for the next activity recog-
nition. Considering that the search space of the maximum
recognition confidence contains a certain number of frames
around the initial anchor, ZUMA can effectively prevent the
occurrence of cascade recognition errors. In addition, we
carefully choose the parameters to reduce unnecessary logit
calculation, thereby reducing the computation overhead.
Since the total number of logit calculations is determined
by the number of selected samples, the number of search
rounds, and the size of the part selected in each round, we
minimize the values of these parameters while maintaining
recognition accuracy. Specifically, the number of selected
samples T is set to 5, which is enough to obtain the part
where the largest logit is located. The number of search
rounds is set to 3, and the size of the part selected in each
round is set to 5 x 5, 2 x 2, and 1 x 1, respectively.

5 IMPLEMENTATION

In this section, we introduce the implementation of ZUMA.

Configuration. We implement ZUMA based on a com-
mercial mmWave radar Texas Instruments IWR6843ISKODS
[40]. 3 Tx antennas and 2 x 2 Rx antennas are built on
the radar board. In our implementation, three Tx antennas
take turns transmitting FMCW signals starting at 60.25 GHz
with a bandwidth of 3.11 GHz. Each chirp consists of 512
samples and the ADC sample rate is 6250 kHz, achieving a
range resolution of 4.8 cm and a maximum sensing range
of 24.68 m. The chirp duration is set to 330 us and each
frame includes 100 chirps, providing a Doppler resolution
of 0.075 m/s and a maximum Doppler range of 7.52 m/s.
This configuration adequately covers typical daily activity
scenarios. The raw data from the radar is captured by
a Ti DCA1000EVM board [41] and then transmitted to a
computer equipped with an Intel Core i9-11900H processor
for further processing. Our recognition model is trained
using the Adam optimizer with a learning rate of 0.000005
and a batch size of 16. We employ the cross-entropy loss
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function during training, and the training epoch is set to 200
to prevent overfitting The model is implemented in PyTorch
[42] and is trained and evaluated on an NVIDIA GeForce
RTX 1080ti GPU.

Experiment setup. The experiment scenario is shown
in Fig. 11. The radar is placed on a table to capture the
reflected signals from volunteers and a commercial camera
is employed to collect the ground truth data. The mmWave
signals are aligned with the ground truth data by the local
timestamps. All the experiments are IRB-approved, and all
data are anonymized.

Dataset. To construct our dataset, fifteen volunteers per-
formed twelve types of typical activities within a range
of 1 m to 2 m from the radar. These activities include
stretch (ST), arm curl (AC), squat (5Q), boxing (BO), hand-
clap (HC), hand waving (HW), hand crossed (HC), pull
down (PD), breast expansion (BE), right stretch (RS), waist
twist (WT) and stretch down (SD). The angle between the
volunteer and the radar varies from 0° to 45°. To further
enhance the dataset diversity, volunteers participated in
multiple data collection sessions over three months, and
data were collected in various experimental scenarios such
as conference room, hallway, and laboratory. We collected a
total of approximately 600 mmWave sequences, with a total
recording duration of approximately 20000 s. Each mmWave
sequence may contain multiple activity chunks, and each
activity chunk consists of a varying number of consecutive
activities. Among them, the number of consecutive activities
within a single activity chunk varies between 1 and 10, and
the duration of a single activity varies between 1 s and 3 s.
In total, we collected approximately 6000 activity samples
through manual segmentation. We use 70%, 20%, and 10%
of these samples as the training set, validation set, and test
set of the activity recognition model.

6 EVALUATION

In this section, we evaluate the performance of ZUMA in
practical continuous activity scenarios.

6.1 Methodology

As ZUMA is tailored for real-time continuous activity recog-
nition, we evaluate its performance across a spectrum of
continuous activity scenarios. These scenarios encompass
variations in the number of distinct activities, the number
of repetition activities, activity durations, distances between
the volunteer and the radar, angles between the volunteer
and the radar, and experiment scenes. We further evaluate
the latency of each module in ZUMA to verify its real-time
recognition capability.

Specifically, we use Activity Error Rate (AER) to evaluate
the performance of ZUMA. AER is defined as the minimum
number of insertions, deletions, and substitutions required
to transform the predicted activity sequence into the ground
truth activity sequence, divided by the number of activities
in the ground truth. For example, If an activity sequence
[A1, Ag, As] is recognized as [A1, A3), the AER can be calcu-
lated as 1/3 = 33.3%. If it is recognized as [A1, A4, A2, the
AER is 2/3 =~ 66.7%.

6.2 Overall Performance

We evaluate the continuous activity recognition accuracy by
comparing the performance of various recognition methods.
Specifically, we select three single-shot activity recognition
models: TSN, CNN and LSTM (Long Short-Term Mem-
ory) [43], and three segmentation methods: EAS (Explicit
Adjustment-based Segmentation), ES (Equal Segmentation)
and RS (Random Segmentation), for comparison. The struc-
ture of the CNN model is the same as the feature extraction
module in TSN. It averages all of the feature vectors to
obtain the recognition results. In contrast, the LSTM model
takes these feature vectors as sequential input and outputs
the final recognition results. Among the selected segmen-
tation methods, the ES method takes every 50 consecutive
frames as a segment, which is the most common in our
activity dataset. This method is similar to the methods [9],
[15] based on the fixed-length sliding windows and can
be used to evaluate the impact of variable activity dura-
tion. Meanwhile, the RS method randomly selects a frame
number from the activity duration candidates for extraction.
It's worth noting that the methods [13], [18] based on the
changes in simple low-level features, such as velocity and
point cloud number, are ineffective in continuous activity
scenarios and are thus not included in the segmentation
methods.

We separately evaluate the AER of each method. The
Cumulative Distribution Functions (CDFs) of the AERs of
these methods are shown in Fig. 12. Our approach achieves
the lowest average AER of 12.67% and outperforms other
methods. On the one hand, the results show that our
EAS method significantly improves the continuous activity
recognition accuracy across all three models. Taking the TSN
model as an example, the average AERs of the ES method
and the RS method are 36.28% and 45.04%, respectively.
Our approach reduces the average AER by 65.08% and
71.87% respectively compared to these two methods. These
results verify that our EAS method can be applied to various
activity recognition models and significantly improve their
performance in continuous activity recognition scenarios.

On the other hand, the performance of the TSN model
is much better than the other two models. The average
AERs of the LSTM model and the CNN model with the
EAS method are 24.81% and 42.36%, respectively, much
higher than our approach. The reason is that the TSN model
fully preserves the segmentation sensitivity through fixed-
position sampling and feature vector aggregation, while
the CNN model and the LSTM model are less sensitive
to activity segmentation, resulting in poor performance
in continuous activity recognition tasks. Nevertheless, our
EAS method effectively exploits their limited segmentation
sensitivity to significantly improve their performance in
continuous activity scenarios. Due to space constraints, we
only present the results of the TSN model in the following
sections.

We further demonstrate an example of the continuous
activity recognition result of ZUMA to analyze our recogni-
tion process. The mmWave sequence contains two activity
chunks and each chunk contains six distinct activities. The
ground truth and the recognition result are shown in Fig.
13. ZUMA first extracts the activity chunks and then applies
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explicit segmentation adjustment to each chunk. It can be
found that all activities are correctly recognized and the
segmentation biases are tiny. The average start bias and the
average end bias are 0.093 s and 0.096 s, respectively. The
recognition results further show that there are some blank
segments between the recognized activities. This is because
none of these activities encompass these parts during recog-
nition. These blank segments don’t affect the recognition
results and can be easily distinguished.

6.3

To evaluate the performance of ZUMA in continuous activ-
ity scenarios, we first apply it to the mmWave sequences
that contain multiple distinct or repetitive activities within a
single chunk. The mmWave sequences may contain multiple
activity chunks. We vary the number of activities in a chunk
to verify the performance of ZUMA under different activity
sequence lengths, which are variable in actual scenarios.

Impact Factors

6.3.1 The number of distinct activities

We apply ZUMA to the mmWave sequences containing
consecutive 1, 2, 3, 6, and 10 activities within a chunk
respectively to evaluate the impact of the distinct activity
number. The adjacent activities in each chunk are distinct.
The average AERs are shown in Fig. 14. We find that ZUMA
can adapt to various activity numbers and achieve accurate
activity recognition. The average AER of ZUMA varies from
11.83% to 17.89% with different activity numbers. The rea-
son is that ZUMA can explicitly adjust the activity sequence
segmentation to handle various activity sequence lengths.
In contrast, the other two methods exhibit much higher
average AERs. We further notice that the ES method is
superior to the RS method only when the activity number
is 1. The reason is that the ES method can retain most of
the activity information when the activity is discrete, while
the RS method is likely to divide a single activity into two
activities, resulting in a larger average AER. We further
note that since the RS method is more likely to segment
the activity sequence into the wrong number of activity

Figure 17: The impact of the
distance between people and
radar

Figure 16: The impact of activ-
ity duration

segments than the ES method, using the RS method often
leads to a larger average activity error rate.

6.3.2 The number of repetitive activities

The same experiment configuration is used to evaluate the
impact of the repetitive activity number on ZUMA. The
only difference is that the activities in each chunk are the
same. The average AERs are shown in Fig. 15. We find that
the performance of ZUMA in repetitive activities is similar
to that in distinct activities. The average AER of ZUMA
varies from 7.58% to 15.04%, significantly outperforming
the other two methods. These results verify that ZUMA
can achieve accurate continuous activity recognition across
arbitrary activity sequences.

6.3.3 Activity duration

We further evaluate the impact of activity duration on the
performance of ZUMA. We ask volunteers to execute activ-
ities at two speeds separately and then alternate the two
speeds in a single chunk. The recognition results are shown
in Fig. 16. Since our explicit adjustment-based segmentation
can accurately locate the largest recognition confidence in
the search space, ZUMA can achieve stable recognition
accuracy under various activity durations, varying slightly
from 10.93% to 14.17%. In contrast, the other two methods
perform poorly under variable durations as they cannot lo-
cate the boundaries of the variable-duration activities well.

6.3.4 Distance between people and radar

After evaluating the impact of activity sequence length
and activity duration, we further evaluate the impact of
the distance between the volunteer and the radar on the
performance of ZUMA. The distance between the volunteer
and the radar varies from 1 m to 2 m. The recognition results
are shown in Fig. 17. The results show that ZUMA can
maintain a low AER under different distances between the
volunteer and the radar. As the distance between the vol-
unteer and the radar increases, the AER of ZUMA increases
from 12.67% to 16.75%. This increase can be attributed to the
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diminishing SNR of the reflected signal with the increasing
distance, consequently leading to a decrease in the average
recognition accuracy of ZUMA.

6.3.5 Angle between people and radar

We then evaluate the impact of the angle between the
volunteer and the radar on the performance of ZUMA. The
angle between the volunteer and the radar varies from 0° to
45°. The average AERs are shown in Fig. 18. We find that
as the angle between the volunteer and the radar increases,
the AER of ZUMA increases from 12.67% to 25.46%. This
increase can be attributed to the weakening intensity of the
reflected signal received by the mmWave radar with the
increasing angle, which reduces the integrity of activity-
related information in the reflected signals, resulting in a
significant increase in the average recognition error.

6.3.6 Experiment scene

We further evaluate the impact of experimental scenes on
ZUMA'’s performance. We ask volunteers to execute activ-
ities in three experimental scenes: meeting room, hallway,
and laboratory. Among them, the meeting room scene is the
simplest and the laboratory scene is the most complex. The
recognition results are shown in Fig. 19. ZUMA achieves its
lowest AER of 12.67% in the meeting room scene, whereas
it achieves the highest AER of 20.38% in the laboratory
scene. As the scene layout becomes more complex, the radar
is subject to more pronounced multipath effects, thereby
diminishing the effectiveness of spectrum subtraction in
signal preprocessing to suppress environmental noise.

Besides, we evaluate the generalizability of ZUMA to
unseen scenes. We generate an alternative training dataset
TS1 containing data collected in the meeting room and the
hallway, while the original training dataset TS contains data
collected in all three scenes. Training with TS1 and testing
with data in the unseen laboratory yields an AER of 24.20%,
slightly larger than training with TS (20.38%). The AER
does not rise significantly, showing good generalizability of
ZUMA to unseen scenes.

6.3.7 The size of search space

The size of search space in the explicit segmentation ad-
justment module is an important impact factor for the
performance of ZUMA and is determined by the search
margin M. It significantly affects the accuracy of locating
the largest recognition confidence with the parallel divide-
and-conquer search algorithm. In this part, we respectively
set the search margin to 5, 10, 15, and 20 to evaluate the
impact of the search space size. The recognition results of
ZUMA with different search margins are shown in Fig. 20.
The average AER reaches the minimum value of 12.67%
when the search margin is 10. When the search margin
is small, the search space may not encompass the actual
activity segment, leading to higher recognition errors. When
the search margin is large, the search space may include a
large part of another activity segment, thereby leading to
increased recognition errors.

6.3.8 The size of selected part

The size of the selected part in each search round is another
important impact factor for ZUMA. It has a large impact on
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the accuracy and efficiency of explicit segmentation adjust-
ment. We respectively set the size set as [10, 5,2, 1], [5,2,1],
[5,1], and [1] to evaluate its impact on the performance of
ZUMA. Each number in these sets represents both the width
and height of the selected part in a certain round, which are
always the same in ZUMA. The size set of [1] represents a
traversal search in the search space. The recognition results
are shown in Fig. 21. We find that the average AER under the
size set [5, 2, 1] is the lowest. When the size is too large, the
center sample of the part where the actual activity segment
is located may be distant from the actual activity segment,
causing this part to not be selected for the next search round.
Conversely, when the size is too small, the searching process
is close to or equal to a traversal search, making it more
likely to locate the local extreme points of other classes in
the search space, leading to higher recognition errors.

6.4 Latency

We measure the recognition latency as the time between
the moment the human ends the activity and the moment
the corresponding recognition result is obtained. The ag-
gregated recognition latency consists of four components:
i) the waiting (WA) delay, that is, the time required to accu-
mulate sufficient mmWave sequence to construct the search
space; ii) the signal preprocessing (SP) delay, which equals
the computation time of the Range-Doppler spectrums; iii)
the Chunk extraction (CE) delay, that is, the time taken for
calculating the velocity entropy sequence and conducting
threshold comparisons; and iv) the explicit adjustment-based
segmentation (EAS) delay that is the time ZUMA requires to
locate the activity boundaries.

The aggregated latency of activity recognition using
ZUMA with different activity durations is shown in Fig.
22. The only varying latency component is the WA delay.
Longer activity durations entail capturing less additional
mmWave sequence, resulting in shorter waiting delays. Our
measurements indicate that the average SP delay is 0.75
s with a standard deviation of 0.06 s. Additionally, the
average FE delay and EAS delay are measured as 0.005 s and
0.091 s, respectively. The plot illustrates a linear relationship
between the aggregated latency and the activity duration.
This is because ZUMA necessitates sufficient search space to
ensure the accuracy of explicit segmentation adjustment. As
a whole, the average recognition delay is measured as 1.86
s. Furthermore, the entire computation delay is measured
as 0.85 s, which is less than the duration of any activity, af-
firming ZUMA'’s capability to achieve real-time continuous
activity recognition in practical deployment scenarios. The
low computation delay is achieved by selecting range bins
with human activities and parallelizing signal preprocessing
operations and logit value computation.

6.5 Ablation Study

We finally conduct ablation studies to verify the necessity
of each module in ZUMA. Given that the TSN model and
the explicit segmentation adjustment module have been
comprehensively evaluated previously, we focus on evalu-
ating the activity chunk extraction module and the feedback
metric selection individually.
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6.5.1 Activity chunk extraction

We evaluate the chunk extraction accuracy by calculating
the segmentation bias between the ground truth and the
extracted chunks. We separately calculate the start bias and
the end bias to show the extraction results. The CDFs of
segmentation biases are shown in Fig. 23. The average start
bias is 0.1 s and the average end bias is 0.38 s. The results
show that both the start and end boundaries are well located
by our chunk extraction module, and the start boundary
is located more accurately. The reason is that the mutation
of velocity entropy variance is always synchronized with
the human state change at the activity start, while it may
be delayed at the activity end due to potential redundant
swinging or shaking movements by the volunteer.

To further evaluate the necessity of the activity chunk
extraction module. We directly disable this module and set
the first frame of the entire mmWave sequence as the initial
start frame in the first segmentation adjustment. In this case,
ZUMA achieves a much higher average AER of 83.53%. The
reason is that if the initial start frame is not well located, the
segmentation adjustment will be confused and may even
start from the middle of an activity, which leads to a cascade
of recognition errors. Besides, when this module is disabled,
the computational overhead increases significantly due to a
lot of unnecessary logit calculations.

6.5.2 Recognition confidence v.s. recognition score

To evaluate the necessity of selecting recognition confidence
as the feedback metric, we replaced it with recognition
scores obtained directly from the logits via the Softmax
module. The Softmax module takes logits as input and nor-
malizes them to the recognition scores proportional to the
exponentials of the logits. In this case, ZUMA achieves an
average AER of 14.98%, which is higher compared to using
recognition confidence. The reason is that the Softmax mod-
ule tends to over-amplify larger values in recognition scores
through exponential normalization. As a result, recognition
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scores become less sensitive to the segmentation, leading to
a higher recognition error.

7 DISCUSSION

In this section, we discuss some practical problems and po-
tential opportunities, including generalization, multi-target
recognition, and system limitations.

7.1 Generalization

As shown in Section 6.2, we have verified that our explicit
segmentation adjustment method significantly enhances the
activity recognition accuracy of three recognition models in
continuous activity scenarios. In fact, ZUMA has the po-
tential to extend any single-shot activity recognition model
to one suited for continuous activity recognition, provided
the model can handle variable-duration data and is sensi-
tive to activity sequence segmentation. This is because the
explicit segmentation adjustment method only uses these
recognition models as black boxes, feeds activity segments
into them, and collects corresponding logits. In ZUMA, we
choose the TSN model since it satisfies the above conditions
and characterizes lightweight implementation as well as
excellent recognition capability.

Moreover, ZUMA can be extended to various modalities
like Wi-Fi, RFID, acoustic and IMU if two challenges can
be tackled. First, a low-level feature should be found to
distinguish the frames with and without human activities.
In ZuMa, the variance of the velocity entropy within a time
window acts as the low-level feature to clip out the human
activities. Second, a feedback model tailored to the modality
should be developed. In ZuMa, the Doppler spectrum of
the mmWave signal can be processed by convolutional
neural networks and the logit value indicates the accuracy
of segmentation; in another modality, another indicator of
the quality of segmentation is required.

It is also possible to perform authentication of persons
with ZuMa after some modifications. For the authentication
task, a new training dataset is required and the model
should be retrained. The human activity recognition solu-
tion in ZuMa stresses the common features of each activity
and ignores the personal details of activities. However, the
authentication task relies on the personal details and ignores
the common features. Moreover, different activities of the
same person will be labeled as the same class (the class
label for the authentication task is the person’s ID), which
requires are more accurate segmentation method.
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7.2 Multi-target Recognition

As the mmWave radar can track and sense multiple targets
simultaneously [14], [24], [44], multi-target activity recog-
nition can be implemented by extending our design. The
signal preprocessing module can be modified to simultane-
ously extract the reflected signals of multiple targets by us-
ing multiple Tx and Rx antennas. Once the multiple targets
can be separated, their corresponding range-Doppler spec-
trums can be obtained, enabling multi-target recognition
by individually analyzing each range-Doppler spectrum
sequence. However, the multipath issue and limited angle
resolution of the mmWave radar may prevent multiple
target separation, which need to be carefully addressed but
are beyond the scope of this paper.

7.3 Deep Learning Model Selection

We choose the TSN model considering the computational
overhead and the classification accuracy.

The computational overhead should be minimized to
achieve real-time human activity recognition, as the model
is frequently used for inference in the divide-and-conquer
search in Section 4.4.2. Compared to LSTM, RNN and
attention-based models like the transformer, the TSN model
has less layers and neurons, resulting in less computational
overhead and time cost.

Besides, we make a trade-off between the classifica-
tion accuracy and the dataset size. With the same training
dataset, we achieve a better classification accuracy with
the TSN model than LSTM (a specific instance of RNN)
and CNN as shown in Section 6.2 and Fig. 12. A better
accuracy can be achieved by training the LSTM with a much
larger dataset. Nevertheless, a long collection process of the
large dataset reduces the flexibility of ZUMA and prevents
frequent updates to support new activities.

7.4 Analysis and Improvement of Recognition Accu-
racy

The recognition errors are mainly caused by deviation of
activities, environmental changes and environmental noise.
To mitigate these errors, some measures can be taken to
improve the dataset. When collecting the dataset, it is
recommended to record the activities in various indoor or
outdoor environments. Different types of deviation from the
standard activity pattern should also be recorded. Moreover,
data augmentation techniques can be applied to improve the
size and coverage of the dataset.

7.5 mmWave Signal Preprocessing

mmWave-based sensing solutions are typically based on the
point cloud or the Doppler spectrum, and ZUMA applies to
both of them. The point cloud-based and Doppler spectrum-
based solutions have different advantages and disadvan-
tages when applied to continuous activity recognition.

The point cloud is easier to obtain than the Doppler
spectrum. The point cloud is available in more hardware
toolkits, for example, a single TI IWR1642 radar provides the
point cloud, while collecting the Doppler spectrum requires
the radar to cooperate with a TI DCA1000 data capture
board.
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Nevertheless, the Doppler spectrum is more accurate
and leads to better activity classification accuracy. Based on
the range-FFT operation and the angle-FFT operation (or
beamforming), the accuracy of the point cloud is limited
by the radar’s angle resolution (typically 15 degrees). On
the other hand, the Doppler spectrum comes from the
range-FFT operation and the Doppler-FFT operation, and
its accuracy is determined by the velocity resolution (0.075
m/s in the configuration in ZuMa).

7.6 System Limitations

While our system can quickly locate the activity boundaries
and enable accurate continuous activity recognition, it does
suffer from some practical limitations. Firstly, the coverage
of the mmWave radar is constrained due to the rapid signal
attenuation and the limited Field of View (FoV), which
necessitates careful deployment of the radar to cover critical
sensing scenarios. Secondly, as the received signal of the
mmWave radar contains complex environment background
noise, background noise estimation is required for the
spectrum subtract algorithm in signal preprocessing when
deploying our system in new scenarios. Fortunately, this
collection process is a one-time task and easy to implement.
Finally, although our system can operate in real-time as the
entire computation delay is less than the activity duration,
there is a certain recognition latency due to the necessity of
acquiring sufficient mmWave sequences for searching.

8 CONCLUSION

In this paper, we present ZUMA, the first mmWave-based
approach for real-time continuous activity recognition,
which leverages explicit adjustment of activity sequence
segmentation to achieve high recognition accuracy. We first
point out that unclear activity boundaries and variable ac-
tivity durations are the main obstacles preventing accurate
continuous activity recognition. Then we provide an in-
depth analysis of the correlation between the segmentation
accuracy and the recognition outputs. Inspired by this ob-
servation, we propose our coarse-to-fine grained approach
including a series of modules, from signal preprocessing
to explicit segmentation adjustment. Extensive experiments
under real-world scenarios show that ZUMA can achieve
accurate continuous activity recognition in real time.
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