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Abstract—With the increasing prevalence of IoT devices and
smart systems in daily life, there is a growing demand for new
modalities in Human-Computer Interaction (HCI) to improve
accessibility, particularly for users who require hands-free and
eyes-free interaction in contexts like VR environments, as well
as for individuals with special needs or limited mobility. In this
paper, we propose teeth gestures as an input modality for HCI.
We find that teeth gestures, such as tapping, clenching, and
sliding, are generated by various facial muscle movements that
are often imperceptible to the naked eye but can be effectively
captured using mm-wave radar. By capturing and analyzing
the distinct patterns of these muscle movements, we propose a
hands-free and eyes-free HCI solution based on three different
gestures. Key challenges addressed in this paper include user
range identification amidst background noise and other irrelevant
facial movements. Results from 16 volunteers demonstrate the
robustness of our approach, achieving 93% accuracy for up to
a 2.5m range.

Index Terms—mmWave, Sensing, Human-Computer Interface,
Teeth Gestures

I. INTRODUCTION

In Human-Computer Interaction (HCI), advancements are
continually sought to improve the interaction between humans
and technology. As the demand grows for interfaces that
require minimal effort on the part of users, innovative solutions
are emerging to streamline this interaction process. Among
these unique solutions, teeth gestures are an intriguing devel-
opment. This paper introduces a novel method to explore and
recognize different teeth gestures. Leveraging mmWave radar,
we aim to offer a non-invasive method for remotely sensing
teeth gestures, potentially alleviating discomfort associated
with traditional proximal or invasive devices.

There have been substantial studies related to facial sensing
in medical, HCI, and wearable domains. mmJaw distinguishes
itself by emphasizing the following aspects: unlike past works
that use dedicated hardware or invasive/intraoral devices re-
quiring attachment to the teeth, causing discomfort to the user,
we utilize mmWave radar for remote sensing of teeth gestures
ensuring no discomfort to the user.

By harnessing these distinctive movements, we can develop
an HCI system, named mmJaw, that offers versatility across
various applications. This approach capitalizes on natural and
intuitive motions, bypassing many limitations encountered
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with traditional HCI methods. Additionally, this solution holds
promise for enhancing user experience and accessibility, par-
ticularly for individuals with disabilities, such as those who
are paralyzed or partially paralyzed.

The teeth gestures like tapping, clenching, and sliding
result from lower jaw actions, primarily involving the muscles
of mastication: masseter, temporalis, medial pterygoid, and
lateral pterygoid [1]. These muscles are tightly connected
and contraction or relaxation of one muscle group can be
sensed in another. While the medial and lateral pterygoid
muscles are deep within the face, masseter and temporalis
muscles are located near the skin as shown in Fig. 1. Their
movements are strong enough to propagate to the edge of
the face and can be detected by mm-wave radar [2]. By
analyzing the phase variation pattern captured by the radar,
we demonstrate the feasibility of localizing teeth gestures,
thereby creating a human-to-machine interface. The challenges
include weak signals, background noise, and localization of
static targets. We address these issues with a series of sensing
techniques, enabling the detection of three distinct gestures
with high accuracy. Results from 16 volunteers show the
system’s robustness, despite mmJaw not requiring per-user
training. This offers seamless interaction across different users
and environments, ultimately paving the way for more intuitive
and efficient human-computer interaction experiences. In this
paper, we make the following contributions:

« We have proposed a novel HCI method that can be
adapted by anyone with minimum training.

« We have leveraged the sub-mm level accuracy of mm-
wave radar to detect minute motion patterns to develop
different gestures.
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« To overcome the challenge of noise and distortion due to
different activities, we did bio-metric verification of the
target and trained a model that can distinguish between
gesture and noise in different environments with high
accuracy

The rest of the paper is arranged as follows: we build our
case for the applicability of teeth gesture sensing in Sec. II.
Then we define the gestures and describe the capability of
mmwave radar to capture with preliminary experimentation in
Sec. III. Sec. IV presents the overall design in response to
the challenges during the implementation in real-life scenar-
ios. Implementation and Evaluation are presented in Sec. V,
followed by discussion and related work in Sec. VI and VII.
We conclude our paper in Sec. VIIL

II. POTENTIAL APPLICATIONS

Given the capabilities offered by mmJaw, various applica-
tions in multiple fields can be envisioned through teeth gesture
sensing. Although the user experience and usability surveys
are beyond the scope of this work, we explore the scenarios
where mmJaw-based solutions are highly desirable.

1) mmJaw as keyboard: mmJaw can be used as a text input
device (keyboard) where users can select scrolling text on
the screen and input it. Different gestures may correspond to
different text options, such as clicking to select text, clenching
to backspace, and sliding to save as shown in Fig. 2(a). This
functionality further expands the usability of mmJaw, making
it a versatile tool for a wide range of applications, from basic
computer interactions to more complex text input tasks.

2) mmJaw as mouse: For hands-free and eye-free interac-
tion, mmJaw can be utilized as a mouse to perform tasks such
as navigating, pointing, and clicking. This approach enables
users to control their computer using teeth gestures, offering
an alternative to traditional mouse interactions, all without the
need for physical hand movements or visual focus. A visual
representation of these tasks is given in Fig. 2(b), highlighting
the potential of mmJaw to enhance accessibility and user
experience in computing environments.

3) Medical applications: Symptoms preceding seizures,
like teeth chattering and lip-smacking [3] [4], can be detected
early by mmJaw, which doesn’t require mouth devices and can
monitor unattended patients. Dental disorders needing teeth
movement monitoring, and artifacts in EEG caused by teeth
clenching [5] can also be tagged using mmJaw.
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4) Accessibility: 10T platforms, like Google’s “Little Sig-
nals” [6], require physical button presses. IFTTT [7] based
switches also rely on physical buttons, which can be integrated
with mmJaw.

5) VR Sensing: Multiple studies [8] [1] use teeth gesture as
an additional input method in VR systems. In a threat model,
mmJaw can remotely eavesdrop on these subtle movements to
detect potential vulnerability.

III. BACKGROUND AND PRELIMINARIES

When humans move their mouth or jaw, it’s mainly the
lower jaw that moves, offering three degrees of freedom:
up/down, left/right, and in/out. However, these movements
are quite limited, especially the lateral and depth movements,
restricting the range of possible gestures

Furthermore, unlike hand gestures or facial expressions,
gestures relying on jaw and teeth tapping lack clear definitions.
Hence, we initiate our study to identify the most common
gestures that individuals can easily execute with minimal
effort and learning. While there are numerous facial gestures
performed by humans, we selected the gestures for this work
with the following criteria: first gestures should be universal
and secondly the gestures should not be prominently visible
to the naked eye. The most common gestures identified were
tapping, clenching, and sliding.

A. Gesture Definition

Tapping refers to brief, repetitive movements involving the
teeth or jaw, akin to light, rapid touch. Clenching denotes a
sustained, firm closure of the teeth, exerting pressure. While
there is no relative movement between the teeth during clench-
ing, the bulge of masseter muscle can be observed during
the gesture even with the hand. Sliding involves a smooth,
continuous movement of the lower and upper teeth along the
axis of the teeth. The movement of the jaws/teeth during the
execution of the gestures is shown in Fig. 3.

Normally in such systems, we expect to have two different
types of movements. i.e. the muscle movement in response to
the jaw movement and the bone-borne vibrations. These are
the vibrations produced as a result of a jaw gesture such as a
click and travel through the bone and manifest on the facial
skin. In mmJaw, we only focus on the pattern of the first type
of movement because firstly, among all the gestures, only the
Clicking gesture produces sound, so it can be applied to all
the gestures. Secondly, the bone-borne vibrations are too weak
to be picked up by mm-wave radar.
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While there are multiple approaches to sense the gesture
information, such as microphone-based teeth activity sensing
[9] [10] [4] [11] and IMU-based [12] [10], there is a need for
the gadget to be attached to the face.

B. mmWave based Sensing

mmJaw utilizes the commodity mmwave radar to sense the
facial motions caused by aforementioned gestures remotely.
The short wavelength of mmWave radar enables higher reso-
lution in both range and velocity measurements, making it a
suitable candidate for teeth gesture detection [13]-[15].

The fundamental concept of detecting teeth gestures using
mmWave Radar is to transmit mmWave signals toward the face
and analyze the reflected signals received by the antenna. The
transmitted signal xr,(7) and the received signal xg,(7) of
a Frequency-Modulated Continuous Wave (FMCW) mmWave
radar at time 7 within a chirp period 7" are shown in Fig. 4
and can be expressed as follows:
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where St and Sk, represent the signal strength (amplitude)
of transmitted and received signals, f, is the starting fre-
quency, B is the bandwidth, and ¢ is the round-trip time delay
between transmitting and receiving as shown in Fig. 4(b).
The FMCW radar further mixes z7(7) and xg,(7) and
outputs the intermediate frequency signal z(7) as follows:

.Z‘(T) ~ ST2SRz - ej(4ﬂ—B%T+4ﬂ—fO%) (3)

where d denotes the distance between reflecting objects and
radar, and c denotes the speed of light.

In practice, z(7) contains reflections from different objects
at various distances. To separate these reflections based on
their frequency components 47chi, a range-FFT is used.
When performing range-FFT, x(7) is sampled at discrete time
intervals z[r,], where n = 0,1,..., N, — 1, and N, is the
number of samples per chirp. The range-FFT (implemented as
Discrete Fourier Transform F) is then performed on z[7,] to
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The desired signal of the potential target X;,,q4¢; is selected

from the range bin d¢qr4ct Where the gesture information lies:
Xtarget = X[dtarget]~ (5)

Finally, the variations of X4, 4c¢ over slow time ¢ are
captured, denoted as X4 get(t):

Xtarget (t) = S<t) . ej¢(t), (6)

from the range within [

where S(t) and ¢(t) are the RSS and phase variation over
time. The range bin of the jaw diqrger can be approximated
as constant when extracting X;qrget (t).

C. Preliminaries

In our preliminary experiment, we established a controlled
environment within a quiet and unoccupied room, with only
one user present. Following the prompt of a beep sound,
the user was instructed to execute the designated gesture,
which was then automatically captured by the mmWave radar
system. This experiment’s primary objective was to assess the
feasibility of our approach and ensure a noise-free environ-
ment, thus preventing signal contamination from nearby object
movements. The results of the experiment revealed distinctly
clear waveforms corresponding to different gestures, namely
sliding, tapping, and clenching. This preliminary investigation
served as a foundational step in validating the usability and
intuitiveness of our approach, providing valuable insights into
users’ proficiency and comfort levels with the designated
gestures. All the experiments are IRB-approved.

The phase information captured during the experiment was
denoised as mentioned in Sec IV(A). The wavelet transform
analysis of the denoised signals reveals distinct patterns for
each gesture. In Fig. 6(a), the tap signal shows sharp, narrow
peaks, indicative of brief, high-frequency transients charac-
teristic of tapping. This is expected as taps produce short,
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Fig. 7. Preprocessing and classification of detected gestures

impulsive signals with significant high-frequency components.
In contrast, Fig. 6(b), representing the clench signal, displays
broader, continuous regions of energy, primarily in the lower
frequencies. This pattern aligns with the sustained muscle
activation typical of clenching, resulting in a more prolonged
and lower-frequency signal. Lastly, Fig. 6(c), which illustrates
the sliding gesture, exhibits sustained, continuous energy over
time with variable frequency content. This continuous band
of energy reflects the nature of the sliding motion, where the
signal varies in frequency depending on the speed and pressure
of the gesture. These distinct wavelet transform patterns en-
able the differentiation between the gestures, highlighting the
utility of wavelet analysis in gesture recognition and signal
processing applications

IV. DESIGN

Although our initial experiments showed promising results,
real-world scenarios present additional challenges. One such
challenge involves detecting subtle facial muscle movements
induced by activities like tapping or clenching teeth, which
occur at the millimeter level and are imperceptible to the
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naked eye. However, indoor environments introduce significant
ambient noise to the raw mmWave signals. This noise stems
from dynamic and stationary objects, including people moving
around, as well as multi-path reflections from home appliances
and walls.

To address this challenge, we comprehensively assess the
impact of ambient noise, we conducted experiments in a living
room measuring approximately 2.9m x 4.2m, using the same
experimental setup as our preliminary study. Participants were
instructed to move randomly within the room, allowing us
to evaluate the effectiveness of our system under realistic
conditions.

As illustrated in the Fig.7, our system design approach
has 3 modules. Module 1 is the pre-processing step where
we start with obtaining the phase signal and process it to
eliminate the dynamic background noise. After this step, we
are left with the static objects only. We apply bio-metric
verification using heart-beat and breathing signals from the
user. Upon the confirmation of the bin, we proceed with phase
de-noising, followed by Gesture Detection (Module 2) and
Gesture Classification (Module 3).

A. Dynamic Object Removal

Since the subjects performing the gestures are assumed to
be static, we need to eliminate all the moving targets such as
people walking in the background, door opening, moving fan
etc. By visualizing the range information over time as shown
in Fig. 8, the second FFT(Doppler FFT) enables the distinction
between stationary and moving objects based on their velocity
such as people walking [16].

B. Static Object Removal

For static objects, we’ve implemented a bio-metric verifica-
tion approach, which involves testing for both heartbeat and
respiration signals. The procedure of biometric verification
is given as follows: after the elimination of the dynamic
objects, we are only left with static range bins which are our
potential range bins. In these range bins, two low-pass filters
are applied in parallel for the detection of breath and heartbeat
micromotion signals. since the breath rate of a normal human
being is 12 to 18 breaths per minute and the heart rate is 60
to 100 beats per minute, the first filter passed the frequencies
of 0.1 Hz to 0.6 Hz. The other filter passing frequencies were
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0.8 to 4.0 Hertz. Once the breathing rate or heart rate signal is
detected in a specific bin, With the known range resolution of
Rs, we can infer that the facial data will likely appear in the
neighboring range bins of the heartbeat and respiration bins
as shown in Fig. 9. All other range bins are ignored.

C. Noise removal from identified bin

The signal we obtain from the static and dynamic object
removal is noisy. We use a wavelet-based denoising method
to eliminate the undesired noise. It begins with the discrete
wavelet transform (DWT), which decomposes the signal y into
approximation coefficients A;(y) and detail coefficients D, (y)
at each level j. The DWT can be represented as:

y:ZAj(y)+ZDj(y)v (7

where A;(y) captures the coarse-scale information and D (y)
represents the detail or high-frequency components.

Next, the noise level o in the signal is estimated using a
method that assumes independence from the wavelet decom-
position level. This estimate o serves as a crucial parameter
in thresholding the wavelet coefficients to suppress noise
effectively.

For thresholding, a Bayesian approach is employed, specif-
ically using the median of the wavelet coefficients. The
threshold A is calculated as:

A =0v/2log(n) - Q" (p), (8)

where n is the number of wavelet coefficients and Q~*(p)
is the quantile function of a standard normal distribution
corresponding to a chosen confidence level p. This threshold
A determines which wavelet coefficients are set to zero based
on their magnitudes relative to .

After thresholding, the denoised signal ¢ is reconstructed
using the inverse discrete wavelet transform (IDWT), combin-
ing the modified approximation coefficients A;- (y) and detail
coefficients D’ (y):
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The IDWT integrates the filtered approximation and detail
coefficients back into the time domain, yielding a denoised
signal ¢ that retains essential features while reducing noise.

After the identification of the target bin by static object re-
moval and biometric range bin selection, the wavelet transform
of the target bin is carried out. The rationale for employing
the wavelet transform in our analysis lies in its exceptional
capability to provide both time and frequency localization of
signals.

We again apply the wavelet transform to the denoised signal
to better visualize both temporal and spatial features:

Wa(a,b) = \/%l/_o; 2t (’j’) i, (10)

where W (a,b) are the wavelet coefficients,a is the scale
parameter,b is the translation (or shift) parameter and ¢*(t)
is the complex conjugate of the mother wavelet.

Unlike traditional Fourier transform methods, which only
offer frequency domain information, wavelet transform allows
us to examine how signal characteristics evolve. This is
particularly crucial for our application, as the gestures we are
analyzing—taps, clenches, and sliding motions—have distinct

temporal patterns and frequency components as evident in Fig
6.

D. Gesture Detection

Once the target is located after static and dynamic irrelevant
object removal approaches mentioned in the aforementioned
section, we find that the teeth signal is affected by various
mouth movements, such as chewing, speaking, swallowing,
smiling, yawning, coughing, sneezing, bruxism (teeth grind-
ing), sucking, whistling, and different breathing patterns.
These movements produce signals that can overlap or mimic
the teeth-tapping signal, complicating the task of accurately



Fig. 10. Data collection and evaluation setup for different ranges, orientations, backgrounds, locations and with various accessories such as mask, glasses,

etc.

distinguishing between them. The complexity arises from the
diverse and dynamic nature of these activities, each generating
unique yet sometimes similar signal characteristics. For this,
we employed a binary classifier consisting of two LSTM layers
followed by a dense output layer. Each LSTM layer, equipped
with 128 units and tanh activation, sequentially processes input
data, capturing intricate temporal dependencies. A fully con-
nected layer with ReLU activation is added to further process
the LSTM outputs before a final dense layer with sigmoid
activation produces a probability score for binary classification
The final dense layer employs a sigmoid activation function
to produce a probability score, indicating the likelihood of the
binary class.

E. Gesture Classification

In our study, an LSTM network is employed to classify
high-dimensional sequence data with labels ranging from 1
to 3 corresponding to the 3 defined gestures. Similarly, the
testing data consists of 65 samples with the same feature count
and corresponding labels. The LSTM network architecture
includes a sequence input layer for fixed-length sequences,
followed by three LSTM layers: the first two with 200 hidden
units each, outputting sequences, and the third with 200 hidden
units, outputting the last hidden state. This is followed by
two fully connected layers with 200 units each and ReLU
activations, and an output layer consisting of a fully connected
layer for 3 classes, a softmax layer, and a classification
layer. The model is trained using the Adam optimizer, with a
maximum of 50 epochs, a mini-batch size of 16, and an initial
learning rate of 0.001, which gradually decreases. Validation
checks are performed every 5 iterations to monitor perfor-
mance on unseen data. Post-training, the model’s classification
accuracy is evaluated on test data, confirming its effectiveness
in classifying high-dimensional sequences and demonstrating
its potential for similar tasks.

V. IMPLEMENTATION AND EVALUATION

A. Implementation

We implement our system on a commercial mm-Wave radar
Texas Instruments (TT) IWR6842 [17]. The ADC samples from
the radar are captured by a TI DCA1000EVM data acquisition

board [18]. For data processing, Intel Core 17-6500u was used
with 32GB RAM. Python 3.7 and Matlab2022a are used for
data processing. The configuration of mmWave radar is shown
in Table 1.

B. Evaluation

The evaluation has been done in various settings for dif-
ferent mainly Detection and Classification modules shown in
Fig. 10 with the following matrices.

C. Classification

For both classifiers (Gesture Detection and Gesture Clas-
sification) we use accuracy as a performance metric to eval-
uate the performance of mmJaw. It is calculated from True
Positive(TP), True Negative(TN), False Positive(FP) and False
Negative(FN) as follows: The accuracy A of a model is given
by:

B TP+TN
~ TP+TN+FP+FN

1) Impact of distance: In our experiments, we varied the
distance between the subjects and the mm-wave radar, ranging
from Im to 2.5m. We noted a slight degradation in accuracy
as the distance increased.

2) Impact of other activities: We now evaluate our system
against different kinds of background noises. First, we check
for the comparison of the system when there is a plane wall
and when multiple people are walking behind the target as
shown in Fig. 11 (e). mmJaw shows resilience against multiple
background noises such as human movement or a moving fan
and a door constantly opening and closing.

TABLE I
RADAR CONFIGURATION PARAMETERS

Parameter Value Parameter Value
Frequency Slope 29.982 MHz/pus  Frame Periodicity — 20.5 ms
ADC Samples/Second  5000K Idle Time 20 ps
Chirp Cycle Time 80 us Start Frequency 77GHz
Frames 735 Sample/Chirp 256
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3) Impact of posture: It has been observed that as long as
the user is facing the radar, irrespective of neck position, the
gestures are detectable. This provides freedom to the user to
move his/her neck from shoulder to shoulder. Fig. 10 shows
the placement of the radar at multiple orientations relative to
the users.

4) Impact of different facial accessories: Intuitively, facial
accessories such as glasses and face masks should hinder the
mmWave contact with the face, rendering it unusable under
these circumstances. However, it has been observed that a
mask touching the skin moves along, providing the same
symmetric temporal pattern as the skin. Glasses, on the other
hand, don’t hinder the facial area of movement.

D. Results

The results presented in Fig. 11 illustrate the classifica-
tion accuracies of Module 2 and Module 3 under varying
conditions and distances. Fig. 11(a) and Fig. 11(b) depict
the accuracy of a binary classifier in indoor and hallway
settings, respectively. Both settings show a general trend of
decreasing accuracy as the distance increases from 1 meter to
2.5 meters. This suggests that the classifier’s performance is
slightly sensitive to the proximity of the subject, with closer
distances yielding higher accuracy.

Accuracy
o
(9]

0
Tap Slide Clench
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Fig. 12. Gesture accuracy for 16 users

In Fig. 11(c), the binary classifier’s accuracy with masks
and glasses is examined, showing a similar decreasing trend
with increasing distance. This indicates that wearing masks
and glasses does not significantly alter the overall trend of
accuracy drop with distance, though it slightly affects the
absolute accuracy levels.

Fig. 11(d), (e), and (f) focus on the gesture recognition clas-
sifier and its performance under various conditions. Fig.11(d)
compares the accuracy across different distances in an indoor
setting, using three types of gestures (T, C, and S). The
accuracy remains relatively stable across different distances,
though there are minor variations among the different gestures.
Similarly, Fig. 11(e) shows the classifier’s performance in a
realistic setting (hallway), maintaining a consistent accuracy
across distances with some fluctuations among gesture types.

Fig. 11(f) examines the classifier’s accuracy when subjects
wear additional face accessories such as glasses, masks, and
a VR headset. The results indicate that these accessories do
not dramatically affect the classifier’s accuracy, which remains
relatively consistent across different distances.

Fig. 12 shows the individual user accuracy for all users.
Overall, the results highlight the robustness of the classifiers
under various conditions. The presence of face accessories like
masks and glasses appears to have a minimal impact on the
overall accuracy, underscoring the classifiers’ adaptability to
real-world scenarios where such accessories are common.

VI. DISCUSSION

The primary limitation of this work lies in the restricted
number of gestures, stemming from the inherent difficulty
humans face in performing concealed movements. Our study
specifically focused on three basic teeth gestures: tapping (T),
clenching (C), and sliding (S). However, by repeating these
actions, additional gestures can be derived, such as double tap
(TT), double clench (CC), and double slide (SS). Furthermore,
combining these gestures in various sequences—Ilike TS, TC,
ST, SC, CT, and CS—expands the total number of recogniz-
able gestures to 12. Extending this further to include gestures
with up to three repetitions could significantly increase the



number of possible gestures, though it might affect user
comfort and ease of use.

This approach can also be extended to handle multiple users
in different range bins. Moreover, the fixed Doppler threshold
currently limits the system to recognizing the target only as
a static object. Addressing this limitation remains a task for
future research.

VII. RELATED WORK

Multiple studies have focused on detecting and monitoring
teeth activities. We categorize these studies into intraoral,
involving sensors placed inside the mouth, and extraoral
approaches, where sensors are positioned outside the mouth,
such as over the face or in the ears.

A. Intra-Oral devices:

TongueBoard [19] is an oral interface that allows for subtle
gestures and silent speech input through a palate retainer
embedded with sensors to track tongue movements, enabling
discreet and non-obtrusive interaction with digital devices.
CanalSense [20] captures subtle changes in air pressure caused
by movements such as smiling, frowning, or speaking, and
translates these signals into recognizable patterns. TeethVib
[12] introduces a novel method for monitoring teeth occlusion
(the contact between teeth) by using vibration sensors em-
bedded in dental retainers. It captures and analyzes vibrations
during occlusion to reveal the functional dynamics of teeth
interactions. Another study [21] directly embeds sensors into
teeth to monitor oral activities. ChewlIt [22] introduced an ed-
ible intraoral input interface that detects chewing movements,
enabling hands-free, discreet inputs using the natural act of
chewing for interaction with digital devices, eliminating the
need for external sensors.

B. Extra-oral devices:

Bity [9] achieves high accuracy in distinguishing between
different tooth clicks, enabling applications such as list nav-
igation and keyboard input methods. This work highlights
the potential of subtle, wearable devices for intuitive and
accurate user input. Clench Interface [1] introduced a system
that utilizes biting gestures for input. This technique leverages
the act of clenching the teeth to interact with digital inter-
faces, providing a hands-free and subtle method of control.
TeethTap [10] uses motion and acoustic signals to recognize
discrete teeth gestures, improving gesture recognition with less
obtrusive hardware. WiFace [23] recognizes facial expressions
by detecting changes in Wi-Fi signals caused by facial muscle
movements without the need for cameras or physical sensors
placed directly on the face. mmFER [16] uses millimeter-
wave radar for facial expression recognition in IoT. EarSense
[4] monitors teeth activity via earphones. SonicFace [11] uses
sound for facial expression detection.

VIII. CONCLUSION

In this paper, we demonstrate that jaw clenching tapping,
and sliding teeth movements can be detected by mmwave radar

with high accuracy. The pattern of these voluntary movements,
though barely visible to the naked eye, can be analyzed
to recognize muscle-related gestures for Human-Computer
interaction. Despite challenges such as weak signals and
interference from other movements, our sensing techniques
achieve robust detection of three distinct gestures in different
settings and distances up to 2.5m.
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