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Abstract—mmWave-based human tracking is a key enabling
technology for smart applications. Most of the existing works on
this topic employ the conventional approach of device-free object
localization, which treat any person as a general moving target
rather than distinguish different persons. As a result, the existing
approaches have poor performance in the scenarios of multi-
person tracking, especially when there are crossovers among
different persons’ trajectories. This paper presents MMTAI,
a novel approach for multi-person tracking with a mmWave
radar. By exploiting mmWave sensing to capture a human’s
biometric features, MMTAI augments mmWave radar based
human tracking with the ability of identifying different persons.
Specifically, MMTAI is able to sense persons’ scalp responses
to the signals and their head-shoulder distances, which are
then continuously mapped to their trajectories using a bipartite
matching algorithm. We implement MMTAI with a commercial
mmWave radar and evaluate its performance under various
settings. The results show that in the multi-person tracking
scenarios, MMTAI has a median tracking error of 12.33 cm,
which is 35.88% lower than that of the state-of-the-art approach.

Index Terms—multi-person tracking, millimeter wave radar,
human identification

I. INTRODUCTION

Location information is crucial for many indoor and outdoor
applications [1]–[4]. Since most people’s activities are indoors,
indoor human tracking has many attractive applications such as
smart home [5], elderly care [6] and so on [7]–[9]. Moreover,
this technique can be extended to multi-person tracking, pro-
viding much more practicability. Conventional multi-person
tracking approaches like mmTrack [10] and m3Track [11]
achieve high accuracy in most cases, yet they are prone to
trajectory crossovers which may hinder the operation of such
approaches.

The root cause of this problem is the lack of information to
identify persons after the crossovers. If the persons are differ-
entiable, they can be re-associated with their past trajectories,
and the tracking solution can work smoothly with crossovers.
Recent efforts have explored different biometric features to
distinguish persons, including persons’ gait [12] and skeleton
[1]. These methods are effective in differentiating persons, yet
they rely on exposure of the lower half of the body to the
radar, which is likely to be blocked by indoor blockages in
complex indoor scenarios.
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Fig. 1: The application scenario of MMTAI.

Based on the above discussion, one may find that a reliable
and accurate approach for indoor multi-person tracking is still
missing. Inspired by the research progress on material identifi-
cation in recent years [13], [14] and the high spatial resolution
of mmWave radar, we propose MMTAI1, a mmWave-based
technique which tracks multiple persons more resiliently and
accurately by extracting their unique biometric features. The
high-level idea of MMTAI is illustrated in Fig. 1. As persons
walk in the monitoring area of the mmWave radar, MMTAI
extracts the following two distinct biometric features of each
person from the reflected signals: the scalp response and
the head-shoulder distance, which help to match the persons
before and after the crossover.

However, it’s non-trivial to put this high-level idea into
practice, where several critical challenges in design should be
tackled, which are summarized as follows:
Subtle Biometric Features. Generally, there is only a 2-
cm difference among persons’ head-shoulder distance, smaller
than the typical range resolution of mmWave radar. What’s
worse, the impact of scalp characteristics on the received
signal is much smaller than that of the head-radar distance.
To differentiate persons with these biometric features, MMTAI
improves the accuracy of biometric features measurement with
a novel usage of the Multi-Signal Consolidation technique
[15]. Specifically, a group of chirps with different starting

1MMTAI is the abbreviation of mmWave-based Tracking Assisted by
Identification.
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Fig. 3: Estimated head-shoulder distances of
four persons.
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Fig. 4: Estimated scalp responses of four
persons.

frequencies are applied, and the change in received signal
strength (RSS) and phase with the starting frequency implies
the two biometric features respectively.
Dynamic Interference on Measured Biometric Features.
The position, posture and mutual interference of persons
are unpredictable and affecting the biometric features. For
instance, the measurement of the scalp response is interfered
with multipath signals which vary across different positions.
Fortunately, the effect is negligible during a short time. There-
fore, MMTAI exploits the bipartite graph to match persons
between adjacent time instants, and then re-identifies persons
after a short-time crossover based on the biometric features.

In this paper, we make the following contributions:

• We propose MMTAI, a novel technique to achieve re-
silient and accurate indoor multi-person tracking. At the
core of MMTAI is the exploration of persons’ unique
biometric features, the scalp response and the head-
shoulder distance, to re-identify persons after crossovers
or other forms of trajectory breaks.

• MMTAI has a tailored design to deal with the challenges
in biometrics-assisted multi-person tracking, including
utilizing the Multi-Signal Consolidation technique to
distinguish subtle biometric features and employing the
bipartite graph to reconstruct the trajectories.

• We implement MMTAI using a commercial mmWave
radar and evaluate its performance in various settings. The
results show that in the multi-person tracking scenarios,
MMTAI has a median tracking error of 12.33 cm, which
is 35.88% lower than that of the state-of-the-art approach.

The rest of this paper is organized as follows: Sec. II
introduces the biometric features we use and unfolds their
feasibility. Then, Sec. III elaborates on the detailed design of
MMTAI. The implementation and evaluation results of MMTAI
are presented in Sec. IV. We discuss practical issues in Sec.
V and summarize related works in Sec. VI. This work is
concluded in Sec. VII.

II. PRIMER OF BIOMETRIC FEATURES USED IN MMTAI

This section introduces biometric features utilized in MM-
TAI and their feasibility.

A. Principles of Biometric Feature Selection

The biometric feature are designed to distinguish different
persons in the application scenario of MMTAI. Based on the
application, a biometric feature should have:

1) Accessibility. The body parts regarding the biometric
feature should be visible to the radar.

2) Diversity among people. Great diversity of the biometric
feature among people makes it easy to distinguish them.

3) Short-time invariance. During the moving period of
multiple persons, the biometric feature and its measured value
should be stable for each person.

Although the commonly used biometric features including
the skeleton, gait and vital signs are highly differentiating
and invariant, they are inaccessible in some scenarios. To
maximize the accessibility and maintain acceptable diversity
and invariance, MMTAI employs the head-shoulder distance
and the scalp response. In the following section, we assess
their feasibility in greater detail.

B. The Head-Shoulder Distance

The head-shoulder distance is highly accessible to the radar,
diverse among people and nearly invariant with their activities.

There is likely to be a line-of-sight (LoS) path between
the head/shoulders and the radar, especially when the radar is
deployed on the ceiling. Besides, the head-shoulder distance
typically spans from 30 cm to 43 cm across individuals with
a standard variance of 2 cm. Moreover, the head-shoulder
distance serves as a relatively stable metric. Although the
head movement is highly flexible, it follows the rules below
in most cases: 1) the neck only tilts front and back, not
left and right; 2) both side of the neck does not stretch or
compress significantly; 3) the head rotates freely. Under these
rules, the absolute position of the reflector on the head is
nearly constant unless the person is right under the radar.
Similarly, the reflection point on the shoulder exhibits minimal
movement in absolute coordinates as shown in Fig. 2.

Therefore, the height of the head, the height of the shoulder,
the shoulder-shoulder distance and the head-shoulder distance
are all short-time invariant features. As discussed later in Sec.
III-C, the height of each reflector is more error-prone than the
distance between two reflectors; besides, one of the shoulders



may be invisible to the radar. Consequently, we take the head-
shoulder distance as one of the biometric features in MMTAI.

Leveraging the mm-level ranging technique discussed in
Sec. III-B, it becomes feasible to distinguish between indi-
viduals based on their unique head-shoulder distances. Exper-
imental results in Fig. 3 also validate this feature.

C. The Scalp Response

The head-shoulder distance is highly accessible to the radar,
diverse among people and nearly invariant with their activities.
The reflectivity of the human scalp is approximately linearly
associated with the frequency of the mmWave signal, and
the linear coefficient (named the scalp response) is a distinct
feature among people as shown in Fig. 4. Although the
hairstyle and clothing of the scalp affect the scalp response,
those factors can be assumed invariant within a short period.

The reflectivity |Hr(f)| is determined by the thickness and
tissue of human skin. The skin can be simplified as a single-
layer structure, as the major portion of the reflected signal
originates from the epidermis, the top layer of human skin
[16], [17]. Furthermore, the reflectivity can be derived using
Fresnel’s Equation:

|Hr(f)| = |
√
εaf + εb − 1√
εaf + εb + 1

| , (1)

where εaf+εb representing the complex dielectric permittivity
of the epidermis at frequency f .The scalp response can be
defined as the RSS ratio of signals at different frequencies.

III. DESIGN

A. Overview

MMTAI comprises three sequential modules: human detec-
tion, biometric feature measurement, and multi-person track-
ing, as depicted in Fig. 5.
Human Detection Module identifies all persons from the raw
mmWave signal. After removing background reflections, the
reflectors are localized accurately with the proposed ranging
technique and grouped by their corresponding person.
Biometric Feature Measurement Module provides estima-
tions for both the head-shoulder distance and the scalp re-
sponse of each person. After detecting the head and shoulders,
each person’s head-shoulder distance and scalp response are
estimated by analyzing the RSS and received phase.
Multi-person Tracking Module matches the persons at the
current time instant with those at the previous time instant. By
continuously running this module, a trajectory of each person
can be reconstructed. Furthermore, this module accounts for
potential trajectory breaks caused by joining, leaving, block-
age, and crossover with human re-identification mechanics.

B. Human Detection

To obtain the 3D position of each reflector on each human
body, the human detection module involves the stages below.
Signal Preprocessing. This stage removes the background
reflections and decomposes the raw I/Q signal regarding the
range, azimuth angle and elevation angle. The composition
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Fig. 5: Overview of MMTAI.

of all background reflections can be estimated by averaging
the raw signal over the measuring period and then removed
by subtracting the average from the raw signal. Afterward,
the reflected I/Q signal components from different ranges
are separated with a range-FFT operation. The i-th range
bin contains the reflected signals

[
(i−1/2)c

2B , (i+1/2)c
2B

]
away

from the radar, where c denotes the speed of light and B
denotes the bandwidth of the FMCW signal. Subsequently, the
robust Capon beamforming technique is applied to estimate the
distribution of the received signal strength and phase over the
azimuth and elevation angles for each range bin.
Point Cloud Generation. This stage identifies the reflectors
and estimates their 3D coordinates. The head and shoulders
among the reflectors will be further detected and utilized to
calculate the head-shoulder distance. The reflectors can be
detected by finding the local maxima of the RSS distributions
above. The azimuth-elevation heatmap of each range bin is
processed independently. Thus, the head and the shoulders can
be identified as distinct reflectors in most cases. Besides, the
special cases are handled later in Sec. II. Furthermore, a fine-
grained method is designed to localize the reflectors in the
3D space. Although the coordinates can be calculated from
the range bin index and the azimuth and elevation angles,
the localization error can hardly satisfy the requirements to
distinguish persons with biometric features.

The error mainly comes from the ranging error (up to
1
2

c
2B ). To reduce the error, MMTAI proposes a novel ranging

technique combining the analysis of mmWave propagation and
our specially designed signals, and mitigates the impact of
angle errors in Sec. III-C.

Inspired by the Multi-Signal Consolidation technique in
[15], we design a chirp group to measure the distance from
the radar to the same body part. All chirps in the group have
identical bandwidths, and each chirp has a different starting
frequency.

After the round-trip propagation between the radar and the
body part, the received signal phase φ is determined by the
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Fig. 6: Illustration of the short-time person matching algorithm with
re-association.

starting frequency f0 of the FMCW signal and the distance d:

φ(f0, d) =
1

B

∫ f0+B

f0

4πfd

c
df (2)

Within the duration of a chirp (60 µs), the change of the
distance from the radar to the body is typically no more than
300 µm. Therefore, we assume the distance d as constant, and
the phase linearly changes with the starting frequency:

∂φ

∂f0
=

1

B

(
4π(f0 +B)d

c
− 4πf0d

c

)
=

4πd

c
(3)

Furthermore, the radar-reflector distance can be calculated:

d =
c∆φ

4π∆f0
(4)

Different from the Step-Frequency Continuous Wave in
[18], this technique breaks the range resolution limit with
properties of both FMCW and step-frequency properties.

A preliminary experiment shows the feasibility of the rang-
ing technique. The median ranging error of a static object
within 20-100 cm away is 0.20 cm. Each chirp group includes
42 chirps with linearly increasing starting frequencies from
60 GHz to 61.348 MHz. The precision of the received signal
phase is 2π

NFFT
that can reach 0.010 rad with NFFT = 640

and the random error of them is 0.003 rad. The combination
of these data reveals the potential of mm-level ranging.
Clustering. From the point cloud, persons can be detected. A
person corresponds to a group of dense points much closer to
in-group points than outliers. We feed the coordinates in all
frames during a period to the clustering algorithm DBSCAN
to group points by their corresponding person.

C. Biometric Features Measurement

Detecting the Head and Shoulders. To detect the head and
shoulders from all the reflectors on each human body, we
design an approach based on the spatial constraints.

In the assumed body poses (i.e. standing or sitting) of MM-
TAI’s application scenario, the head and shoulders are among
the highest skeletal joints. After removing limb reflections by
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Fig. 7: Environmental settings.

applying velocity thresholding, the points with high height in
the point cloud are likely to be the head or shoulders.

Besides, the head-shoulder distances and the shoulder-
shoulder distance are constrained by the skeleton structure and
should be within a certain range. Therefore, for each triplet of
points in the point cloud, a score can be calculated regarding
the pair-wise distance and the point-wise height, and the triplet
with the best score is chosen as the head and shoulders.
Furthermore, the point with the nearest-to-middle projection
on its opposite edge is regarded as the head.

Specially, if only two points are left after velocity thresh-
olding, the higher one of them is regarded as the head, and
the other is viewed as the shoulder.
Head-shoulder Distance Estimation. Although the head-
shoulder distance can be directly calculated from the coordi-
nates, the limited angle resolution of the mmWave radar makes
the error overwhelm the diversity among persons.

To solve this problem, we notice that the radar-point range
of the coordinates are much more accurate than the azimuth
and elevation angles. Based on this, we propose a guess-and-
check technique utilizing accurate ranging results.

We guess the 3D coordinates HG, SG of the head and
shoulder and calculate the head-radar-shoulder angle θ =
∠HGRSG. After that, another estimation can be obtained by:

|HS|G =
√
|RH|2 + |RS|2 − 2|RH| · |RS| cos θ (5)

The guessed coordinates are scored as (|HS|G − |HGSG|)2,
and the coordinates with the smallest score are chosen for the
head-shoulder distance estimation.
Scalp Response Estimation. The change of dielectric permit-
tivity with frequency characterizes the head skin. The RSS of
a chirp starting at f0 and ending at f0 +B1 is:

RSS(f0) =
1

B1

∫ f0+B1

f0

Hr(f)Hp(f)df, (6)

where Hp(f) ∝ 1/(f2d4) is the Rayleigh free-space attenua-
tion and |Hr(f)| is the skin reflectivity at frequency f .



The scalp response can be defined and approximated as

SK(f) =
dRSS(f0)

RSS(f0)df0
=

εa

2
(√

εb(1 + εaB/2) + 1
) (7)

D. Multi-person Tracking
Short-time Person Matching. In MMTAI, a continuous
tracking scheme is implemented, wherein a short-time person
matching is performed between persons at each time instant
and those from the previous time instant. The matching
problem is formulated as a minimum-cost perfect bipartite
matching problem, where the persons at the previous and
current time instant are modeled as left-nodes and right-nodes.

Every two nodes on different sides share an edge with a cost
indicating their dissimilarity. The cost is a weighted mean of
the persons’ two biometric features, velocity and location.

The weights are applied to the normalized feature values
and adaptive to the Euclidean distance. When the distance
is greater than a threshold Td determined by the radar’s
range/angle resolution and the maximum velocity of humans,
the nodes are unlikely to belong to the same person, and
the weight of distance is Wfar. Otherwise, the weights are
automatically tuned to maximize the median relative difference
between the optimal and suboptimal matches in a training
trajectory. The parameters are: Whs = 0.8, Wscalp = 0.2,
Wv = 0.1, Wnear = 1, Wfar = 5, Td = 20 cm.

After modeling, the Kuhn-Munkres algorithm is applied to
solve the minimum-cost perfect matching for each time instant.
Concatenating the matching results continuously depicts the
trajectory of each person. The solid lines in Fig. 6 depict the
minimum-cost perfect matchings and the trajectories.
Trajectory Re-association. Persons can join and leave the
area, crossover with each other or move behind an obstacle,
causing fluctuation in the number of detected persons and
imbalance of the bipartite graph. Consequently, some nodes
cannot be matched and their corresponding trajectories may
break. Conventional bipartite matching algorithms typically
disregard these unmatched nodes, resulting in lost tracking
targets and performance degradation.

To solve this problem, MMTAI manages a storage for
the unmatched nodes. It stores essential information to re-
identify persons, including locations and biometric features.
The mechanics of the storage is two-fold: for unmatched left-
side nodes, their locations and biometric features are saved in
case it is blocked instead of leaving; for unmatched right-side
nodes, their locations and biometric features are looked up in
the storage to determine whether it is a newly-joined node or
an old one resumed from crossover or blockage.

IV. EVALUATION

A. Evaluation Setup
Testbed. We have successfully developed a prototype of
MMTAI leveraging a single commercial off-the-shelf (COTS)
mmWave radar TI IWR6843AOPEVM Rev.G. The chirp group
configuration is identical to that in Sec. III-B.
Environmental Settings. We select four typical indoor sce-
narios for evaluation, across different sizes and complexity: 1)

A lab (4.8×4.2 m2) with little multipath; 2) A meeting room
(4.2×3.2 m2) with moderate multipath; 3) A corridor (5.0×2.0
m2) with rich multipath; 4) An office (5.4×3.8 m2) with rich
multipath and a 1×0.5×1.5 m3 cabinet in the center. Fig. 7
shows the settings in the lab, where the red star stands for
the mmWave radar (on the ceiling) and the persons can walk
anywhere on the floor. The ground truth trajectory is obtained
from the monitoring video, and a reference grid is drawn on
the floor to help localize the person in any frame.
Data Collection. The persons naturally perform various daily
activities in the monitoring area, including walking, looking
around, looking down, telephoning, running and sitting. To ob-
tain ground truth, we pinpoint each person’s heels in the video
at keyframes. Subsequently, we interpolate their positions in
other frames using linear interpolation. MMTAI localizes all
persons every 10 ms, and the Euclidean distances between the
estimated positions and the ground truth are calculated. All
the distances are aggregated to analyze the performance.
Subjects. The experiments involve 3 male subjects: S1
(190cm, 68kg), S2 (188cm, 79kg), S3 (180cm, 65kg). All the
experiments are IRB-approved, and all data are anonymized.

B. Overall Performance

We first evaluate the tracking accuracy of MMTAI and
compare its performance with that of the state-of-the-art
method, mmTrack [10]. Intuitively, Fig. 8 illustrates estimated
trajectories of MMTAI in the two-person scenario, where both
two persons can be tracked with a low error, and the estimated
trajectories are well coordinated with the ground truth (GT).

Moving on to Fig. 9, we present the results of both methods
with varying numbers of persons under tracking. In the 1-
person and 2-person scenarios, MMTAI exhibits impressive
median errors of 9.56 cm and 11.11 cm, respectively, sur-
passing mmTrack, which demonstrates median errors of 14.68
cm and 19.43 cm for the same scenarios. As the complexity
increases with 3 persons under tracking, both methods expe-
rience a noticeable rise in median errors. However, MMTAI
maintains a superior performance compared to mmTrack,
recording median errors of 20.87 cm and 29.44 cm, respec-
tively. The challenges faced, such as severe multipath and
more frequent crossovers, contribute to the elevation in errors,
but MMTAI remains resilient. In all three scenarios, MMTAI
achieves a remarkable median error of 12.33 cm, signifying a
notable 35.88% reduction when compared to mmTrack, which
shows a median error of 19.23 cm.

C. Impacting Factors

We analyze the impact of four different factors on the
performance of MMTAI, that is, environment, trajectory-
breaking behaviors, activities during tracking and the location
of persons relative to the radar.
Environments. We deploy MMTAI in the four selected en-
vironments. In each environment, we conduct three groups
of experiments to track 1, 2 or 3 persons (1P/2P/3P). The
results are shown in Fig. 11. Due to the large vacancy of the
laboratory, the median errors in this scenario are the lowest,
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curacy.

which are 6.52 cm, 7.47 cm and 10.64 cm. By contrast,
the median errors in the 3-person setting rise drastically to
39.89 cm and 30.07 cm respectively in the corridor and office
because the small area strengthens crossover and blockages.

We also compare the performance of MMTAI and mmTrack
in the environments as shown in Fig. 12. In the lab, meeting
room and corridor, both MMTAI and mmTrack achieve a
median tracking error within 20 cm. By contrast, the median
error of mmTrack is 44.85 cm in the office, which is 75.63%
greater than that of MMTAI (i.e., 10.93 cm). The main cause
is the severe blockage between the radar and persons.
Trajectory-breaking Behaviors. During the tracking process,
various trajectory-breaking behaviors may occur, such as
crossovers, joining or leaving the monitoring area, or being
obstructed by indoor blockages. While these situations often
lead other tracking methods to encounter failures, MMTAI
exhibits much better robustness and resilience.

Fig. 10 shows the performance of MMTAI and mmTrack
when facing dense trajectory-breaking behaviors. Both mm-
Track and MMTAI perform well when the person passes
by blocked areas frequently. Nevertheless, when the person
frequently joins/leaves the area or crossovers with others, we
can see better error resilience in MMTAI than mmTrack. The
median errors of MMTAI are 31.26 cm and 19.70 cm, lower
than those of mmTrack (i.e., 57.38 cm and 33.33 cm).

Furthermore, we validate the trajectory re-association ability
of MMTAI after six trajectory-breaking behaviors, including
blockage (B), joining/leaving the area (J/L) and crossovers
(C1-C4 in Fig. 14). The results are shown in Fig. 13.

The tracking performance is positively related to the re-

association accuracy. Moreover, the re-association accuracy
is determined by the duration and strength of interference
brought by the behavior. Specifically, the duration of B, C1-
C4 and J/L increase progressively, and their corresponding
re-association accuracy decrease progressively; C2 is harder
to handle than C1 due to the location prediction based on the
velocity before crossover, while C3 and C4 are better resolved
because persons tend to remain a gap between them during a
longer crossover period, yielding weaker mutual interference.
Activities of the Persons. We conduct experiments where the
persons are asked to perform four activities: looking around,
looking down, telephoning and running.

As shown in Fig. 15, in the meeting room, if the person
walks, looks around or looks down, the median tracking error
is 10.17 cm, 11.21 cm and 14.19 cm, respectively. In contrast,
when the person is telephoning, the error increases to 18.78
cm. The raise of the arm may mislead the detection algorithm
to treat the hand as the head and hinder the measurement
of head-shoulder distance. What’s worse, if the person runs,
his/her body will wag from side to side, causing jitter in the
point cloud. Thus, the estimated trajectories will be more noisy
and the error increases to 21.98 cm.
Location of the Persons. Finally, we evaluate the impact of
the person’s location on the tracking error. A person walks
with a range of 0.7-1.5 m, 1.5-2.5 m or 2.5-3.5 m from the
radar and an azimuth angle of 0-20◦, 20-40◦ or 40-60◦. Fig.
16 shows no significant difference in the error across each
location, indicating the robustness of MMTAI.
Time Consumption. On an Intel i7-12700H CPU with 20
threads, the radar signal preprocessing costs 120 ms for each
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Fig. 16: Impact of the person’s location.

second of raw data, and the following steps of MMTAI cost 15
ms. The overall time cost supports real-time application. When
the person count N increases, the overall time consumption
increases slightly. The preprocessing time remains constant as
the size of the raw data depends only on the radar config-
uration; the biometric feature measurement requires minimal
computation and can be ignored; the multi-person tracking
algorithm has a complexity of O(N3) that guarantees the real-
time workflow of MMTAI for up to 11 persons.

V. DISCUSSION

We complete the discussion of MMTAI with some practical
issues of applicability and general use.
Ghost Targets Elimination. MMTAI exploits the reflected
signal from the person’s head and shoulder for tracking and
identification targets. However, ghost targets may exist because
of the inevitable indoor multipath effect. MMTAI mitigates
this adverse impact by filtering the propagation distance and
strength of the reflected signals. In our future work, we may
borrow the idea of [19], [20] and [21] to eliminate ghost targets
by modeling the process of signal reflection.
Impact of Hair and Clothes. The reflected signals from
the hair/clothes and those from human skin are superposed
and beyond the range and angle resolution of mmWave radar.
However, the reflections of hair [16] and clothes [17] only have
a slight impact on the biometric features. Besides, since they
are less likely to be changed during a multi-person tracking
task, they can hardly degrade the accuracy of MMTAI.
Large-scale Multi-person Tracking. The FoV of the
mmWave radar used in MMTAI is 120◦, which is configured
by the manufacturer and sufficient to monitor most rooms of
typical size. If a large indoor coverage is required, MMTAI can
be extended in two aspects: deploying the radar at the corner
of the ceiling to enlarge the monitoring area, or deploying
multiple radars like the vision-based tracking systems.

VI. RELATED WORK

A. Device-free Human Tracking

Device-free human tracking estimates the position of human
users without dedicated devices to them, providing much
more convenience and scalability. Vision-, RFID-, WiFi-

and mmWave-based methods have been widely explored for
device-free human tracking.

Vision-based methods track persons in video frames with
handcraft features like color, scale and velocity [22]. Based
on these features, deep neural networks (DNNs) are usually
exploited to track [23], [24].

To compensate for their disability in dark or privacy-
concerned places, RFID-based and WiFi-based methods are
developed. By analyzing the time of flight (ToF) and channel
state information (CSI) of reflected signals, [25]–[27] realize
tracking of a single person. Further studies simultaneously
track multiple persons by exploring and utilizing more in-
formation: mD-Track [28] integrates the ToF, AoA, angle of
departure (AoD) and Doppler frequency shift (DFS) to track
multiple persons; WiPolar [29] leverages the polarization angle
to pair up the AoAs from the same person at two receivers
and pinpoints multiple persons.

With higher spatial resolution, mmWave-based tracking
schemes provide relatively lower tracking error [10], [11],
[30], [31]. mmTrack [10] analyzes the point cloud that consists
the position of all reflection points in the field of view: it
clusters the reflection points on the same person into one
target, and continuously associates targets by location and
velocity. m3Track [11] extracts spatial and temporal features
from the range-Doppler spectrum of all reflections, feed them
into a DNN to reconstruct the 3D posture of multiple persons
and track the 3D postures with an extended Kalman filter
(EKF). Chen et al. [32] builds a reflection map based on the
locations of humans and static reflectors to eliminate multipath
and shadow ghosts. These works are limited in identifying
persons and suffer from trajectory breaks, which can be tackled
by MMTAI.

B. Human Identification

Identification requirements in authentication and security
check have explored a variety of human features. MU-ID
[33] extracts the motion features of the lower limb from the
mmWave range-doppler spectrum and trains a convolutional
neural network (CNN) to distinguish persons by gait; Wi-
PIGR [34] also applies CNN to extract the gait from WiFi
CSIs; AmbiEar [35] extracts the voice features; RF-Identity
[36] deploys multiple RFID tags at different heights on a door



frame and integrates their CSIs to identify persons by body
shape; DeepBreath [37] can extract respiratory frequencies of
two co-located persons with FMCW signals and distinguish
them; MSense [38] further supports vital sign extraction during
the movement of persons. They explore a wide range of
effective biometric features, and MMTAI proposes two novel
alternatives.

C. Identification-assisted Human Tracking

As a pioneering work, mmSense [39] characterizes the body
shape of multiple persons while tracking. mID [40] considers
the gait and trains a long-short time memory (LSTM) network
to distinguish persons by both gait and body shape. PALMAR
[41] extracts similar features with a CNN and proposes the
crossover path disambiguation algorithm to solve the crossover
case. [19] can suppress false targets with the body shape
feature and resolve multiple forms of trajectory break with
trajectory similarity of the same person. Compared with these
works, MMTAI can reduce the impact of indoor blockage and
perform multi-person tracking more resiliently.

VII. CONCLUSION

In this paper, we propose MMTAI, a biometrics-assisted
multi-person tracking technique. At its core, MMTAI integrates
the ability to identify persons to multi-person tracking by
discerning distinct persons’ biometric features, specifically the
scalp response to signals and the head-shoulder distance. This
discriminative ability is facilitated by harnessing the fine-
grained information encoded in the phase of the reflected
mmWave signals and by utilizing a bipartite graph to con-
tinuously map the persons’ biometric traits with their cor-
responding trajectories. Extensive experimental results show
that in the multi-person tracking scenarios, MMTAI has a
median tracking error of 12.33 cm, which is 35.88% lower
than that of the state-of-the-art approach. We envision MMTAI
as a promising step towards reliable location-based services in
smart applications.
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